2018年浙江省温州市中考数学试卷答案解析(Word版本)

合集下载

浙江温州市2018年中考数学试题(含解析)

浙江温州市2018年中考数学试题(含解析)

浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分 ) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数的定义,负数小于0 即可得出答案。

2. ( 2分 ) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。

3. ( 2分 ) 计算的结果是()A.B.C.D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6· a 2=a8故答案为:C。

【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。

4. ( 2分 ) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。

5. ( 2分 ) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。

【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。

浙江温州市2018年中考数学试题(含解析)(精选)

浙江温州市2018年中考数学试题(含解析)(精选)

浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分 ) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数的定义,负数小于0 即可得出答案。

2. ( 2分 ) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。

3. ( 2分 ) 计算的结果是()A.B.C.D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6· a 2=a8故答案为:C。

【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。

4. ( 2分 ) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。

5. ( 2分 ) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。

【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。

(真题)2018年浙江省温州市中考数学卷有答案

(真题)2018年浙江省温州市中考数学卷有答案

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.52,0,1-,其中负数是() A.5 B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是()3.计算62aa 的结果是()A.3aB.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是() A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是() A.2B.0C.2-D.5-0),(0,7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是()A.(1,0)B.33C.(13D.(1-38.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组()A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为()A. 4B. 3C. 2D.32A.B. C.D.10.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a=,4b =,则该矩形的面积为()A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.) 11.分解因式:25aa -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为. 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为. 14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线34y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932cm 2,则该圆的半径为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)27(21)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B. (1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题: (1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15 乙x x(2(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

【精品】浙江省温州市2018年中考数学试题(含答案)

【精品】浙江省温州市2018年中考数学试题(含答案)

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()A.B. 2C. 0D. 1- 2.移动台阶如图所示,它的主视图是()3.计算62a a 的结果是() A.3a B.4a C.8a D.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12 B.13 C.310 D.156.若分式25x x -+的值为0,则x 的值是() A.2 B.0 C.2- D.5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B的对应点B ’的坐标是()A.(1,0)B.) C.(1D.(1-)8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组() A.104937466x y x y +=⎧⎨+=⎩ B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩ D.466374910x y x y +=⎧⎨+=⎩A. B. C. D.9.如图,点A ,B 在反比例函数1(0)y xx =>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为() A. 4 B. 3 C. 2 D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994 D.532卷II 二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线43y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正cm 2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x=,交x 轴于点B.(1)求a ,b 的值. (2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S Km =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

浙江省温州市2018年中考数学试题(含答案)-精选

浙江省温州市2018年中考数学试题(含答案)-精选

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()A. B. 2 C. 0 D. 1- 2.移动台阶如图所示,它的主视图是()3.计算62a a 的结果是() A.3a B.4a C.8a D.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12 B.13 C.310 D.156.若分式25x x -+的值为0,则x 的值是() A.2 B.0 C.2- D.5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0).现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B的对应点B ’的坐标是()A.(1,0)B.(3,3) C.(1D.(1-)8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组()A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩ D.466374910x y x y +=⎧⎨+=⎩ 9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数A. B. C. D.(0)k y k x =>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为() A. 4 B. 3 C. 2 D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994 D.532卷II 二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932c m 2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)--(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x=,交x 轴于点B.(1)求a ,b 的值. (2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

浙江省温州市2018年中考数学试题(含答案)(精品推荐)

浙江省温州市2018年中考数学试题(含答案)(精品推荐)

2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()A. B. 2 C. 0 D. 1- 2.移动台阶如图所示,它的主视图是()3.计算62a a 的结果是() A.3a B.4a C.8a D.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12 B.13 C.310 D.156.若分式25x x -+的值为0,则x 的值是() A.2 B.0 C.2- D.5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是()A.(1,0)B.(3,3) C.(1) D.(1-)8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组() A.104937466x y x y +=⎧⎨+=⎩ B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩ D.466374910x y x y +=⎧⎨+=⎩ 9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数A. B. C. D.(0)k y k x =>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为() A. 4 B. 3 C. 2 D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994 D.532卷II 二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932c m 2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)--(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x=,交x 轴于点B.(1)求a ,b 的值. (2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。

2018浙江温州中考数学试卷(含解析)

2018浙江温州中考数学试卷(含解析)

2018年浙江省温州市初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018浙江温州,1,4分)2,0,1-,其中负数是()A. B.2 C.0 D.1-【答案】D【解析】本题考查了实数的分类,实数分为正实数和负实数和0,负实数是比0小的数,或者理解为正数前加上负号便成了负数。

因为在四个数中,只有-1有负号。

故选D【知识点】实数的分类,负数2.(2018浙江温州,,4)移动台阶如图所示,它的主视图是()A. B. C. D.【答案】B【解析】根据从正面看得到的图形是主视图,注意看到的线是实线看不到的线画虚线。

可得答案选B.【知识点】三视图,简单组合体的三视图3.(2018浙江温州,3,4)计算a6·a2的结果是()A. a3B. a4C. a8D. a12【答案】C【解析】利用同底数幂相乘底数不变指数相加, 得a6a2=a6+2=a8答案选C【知识点】同底数幂乘法法则4.(2018浙江温州,4,4)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【解析】利用中位数的定义,中位数是一组数据从小到大或从大到小排列后中间位置的数(当数的个数为偶数个时为中间两个数的平均数)。

这道题的数据从小到大排列后得6,7,7,7,8,9,9所以中间位置的数就是7故选C【知识点】中位数5.(2018浙江温州,5,4)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. 12B.13C.310D.15【答案】D【解析】利用概率的求法公式,事件发生的概率P(A)=事件发生的结果数所以可能出现的结果数A 所以从袋中任意摸出一个球,是白球的概率为21=105,故选D 【知识点】随机事件概率的公式求法6.(2018浙江温州,6,4)若分式25x x -+的值为0,则的值是() A. 2 B. 0 C. -2 D. -5【答案】A【解析】本题考查了分式值为零的条件分式值为零必须满足两个条件分母为0和分子不为0,所以由x-2=0得x=2 显然当x=2时分母为7不为0,所以选A【知识点】分式值为零的条件7.(2018浙江温州,7,4)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(-1,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB’,则点B 的对应点B’的坐标是()A.(1,0)B.) C.(1) D.(-1)【答案】C【解析】本题考查了平移的性质和在平面直角坐标系的点的坐标的表示法。

浙江省温州市中考数学试题(word版,含解析)

浙江省温州市中考数学试题(word版,含解析)

浙江省温州市·2018·中考数学试卷(解析版)一、选择题1、( 2分) 给出四个实数,2,0,-1,其中负数是()A、B、2C、0D、-1【答案】D【考点】正数和负数认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数定义,负数小于0 即可得出答案。

2、( 2分) 移动台阶如图所示,它主视图是()A、B、C、D、【答案】B【考点】简单组合体三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图定义,其主视图,就是从前向后看得到正投影,根据看情况一一判断即可。

3、( 2分) 计算结果是()A、 B、 C、 D、【答案】C【考点】同底数幂乘法【解析】【解答】解: a 6 · a 2=a8故答案为:C。

【分析】根据同底数幂乘法,底数不变,指数相加即可得出答案。

4、( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分中位数是()A、 9分B、 8分C、 7分D、 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数定义,首先将这组数据按从小到大顺序排列起来,由于这组数据共有7个,故处于最中间位置数就是第四个,从而得出答案。

5、( 2分) 在一个不透明袋中装有10个只有颜色不同球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球概率为()A、B、C、D、【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球概率为=故答案为:D。

【分析】一个不透明袋中装有10个只有颜色不同球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能结果,其中摸出白球所有等可能结果共有2种,根据概率公式即可得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年浙江省温州市中考数学试卷答案解析(Word版本)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A. B.2 C.0 D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。

【分析】根据负数的定义,负数小于0 即可得出答案。

2. ( 2分) 移动台阶如图所示,它的主视图是()A. B. C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

故答案为:B。

【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。

3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6 · a 2=a8故答案为:C。

【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。

4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。

【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。

5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。

【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。

6. ( 2分) 若分式的值为0,则的值是()A. 2B. 0C. -2D. -5【答案】A【考点】分式的值为零的条件【解析】【解答】解:根据题意得:x-2=0,且x+5≠0,解得x=2. 故答案为:A。

【分析】根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值。

7. ( 2分) 如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是()A. (1,0)B. (,)C. (1,)D. (-1,)【答案】C【考点】平移的性质【解析】【解答】解:∵A(-1,0),∴OA=1, ∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB’,∴平移的距离为1个单位长度,∴则点B的对应点B’的坐标是(1,). 故答案为:C。

【分析】根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案。

8. ( 2分) 学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车辆,37座客车辆,根据题意可列出方程组()A. B. C. D.【答案】A【考点】二元一次方程的实际应用-鸡兔同笼问题【解析】【解答】解:设49座客车x 辆,37座客车y 辆,根据题意得:故答案为:A。

【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组。

9. ( 2分) 如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD// 轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则的值为()A. 4B. 3C. 2D.【答案】B【考点】反比例函数图象上点的坐标特征【解析】【解答】解;把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD// y 轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3; 故答案为B。

【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案。

10. ( 2分) 我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若,,则该矩形的面积为()A. 20B. 24C.D.【答案】B【考点】几何图形的面积计算-割补法【解析】【解答】解;设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据题意得:2(ax+x2+bx)=(a+x)(b+x),化简得:ax+x2+bx-ab=0,又∵a = 3 ,b = 4 ,∴x2+7x=12;∴该矩形的面积为=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24. 故答案为:B。

【分析】设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b的值,得出x2+7x=12,再根据矩形的面积公式,整体代入即可。

二、填空题11. ( 1分) 分解因式:________.【答案】a(a-5)【考点】提公因式法因式分解【解析】【解答】解:原式=a(a-5)故答案为:a(a-5)。

【分析】利用提公因式法,将各项的公因式a提出,将各项剩下的商式写在一起,作为因式。

12. ( 1分) 已知扇形的弧长为2 ,圆心角为60°,则它的半径为________.【答案】6【考点】扇形面积的计算【解析】【解答】解:设扇形的半径为r,根据题意得:,解得:r=6 故答案为:6. 【分析】设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可。

13. ( 1分) 一组数据1,3,2,7,,2,3的平均数是3,则该组数据的众数为________.【答案】3【考点】一元一次方程的实际应用-和差倍分问题,众数【解析】【解答】解:1+3+2+7+x+2+3=3×7 解得:x=3, 这组数据中出现次数最多的是3,故该组数据的众数为3. 故答案为:3. 【分析】首先根据这组数据的总和等于各个数据之和,或等于这组数据的平均数乘以这组数据的个数,列出方程,得出x的值,再根据众数的概念,这组数据中出现次数最多的是3,从而得出答案。

14. ( 1分) 不等式组的解是________.【答案】x>4【考点】解一元一次不等式组【解析】【解答】解:由①得:x>2; 由②得:x>4; ∴此不等式组的解集为x>4; 故答案为:x>4; 【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集。

15. ( 1分) 如图,直线与轴、轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.【答案】【考点】勾股定理,菱形的判定,一次函数图像与坐标轴交点问题【解析】【解答】解:把x=0代入y = − x + 4 得出y=4,∴B(0,4);∴OB=4; ∵C是OB的中点,∴OC=2,∵四边形OEDC是菱形,∴DE=OC=2;DE∥OC,把y=0代入y = − x + 4 得出x=,∴A(,0);∴OA=,设D(x,) ,∴E(x,-x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;∴EF=1,∴S△AOE=·OA·EF=2. 故答案为:2【分析】根据直线于坐标轴交点的坐标特点得出,A,B两点的坐标,得出OB,OA的长,根据C是OB的中点,从而得出OC的长,根据菱形的性质得出DE=OC=2;DE∥OC;设出D点的坐标,进而得出E点的坐标,从而得出EF,OF的长,在Rt△OEF中利用勾股定理建立关于x的方程,求解得出x的值,然后根据三角形的面积公式得出答案。

16. ( 1分) 小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.【答案】8【考点】正多边形和圆【解析】【解答】解:设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=,而且面积等于小正六边形的面积的,故三角形PMN的面积为cm2,∵OG⊥PM,且O是正六边形的中心,∴PG=PM=∴OG=,在Rt△OPG中,根据勾股定理得:OP2=OG2+PG2,即=OP2,∴OP=7cm,设OB为x,∵OH⊥AB,且O是正六边形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根据勾股定理得OP2=PH2+OH2,即;解得:x1=8,x2=-3(舍)故该圆的半径为8cm。

故答案为:8. 【分析】设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM的长,,而且面积等于小正六边形的面积的,故三角形PMN的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出PG的长,进而得出OG的长,,在Rt△OPG中,根据勾股定理得OP 的长,设OB为x,,根据正六边形的性质及等腰三角形的三线和一可以得出BH,OH的长,进而得出PH 的长,在Rt△PHO中,根据勾股定理得关于x的方程,求解得出x的值,从而得出答案。

三、解答题17. ( 10分)(1)计算:(2)化简:【答案】(1)=4- +1=5- (2)=m2+4m+4+8-4=m2+12 【考点】实数的运算,整式的混合运算【解析】【分析】(1)根据乘方,算术平方根,0指数的意义,分别化简,再按实数的加减运算算出结果即可;(2)根据完全平方公式及单项式乘以多项式的法则,去括号,然后合并同类项得出答案。

相关文档
最新文档