数据挖掘神经网络BP算法ppt课件
合集下载
BP神经网络bp设计PPT课件

第三章 前馈人工神经网络
--误差反传(BP)算法的改进 与BP网络设计
3.4 基于BP算法的多层前馈网络模型
三层BP网络
o1 W1○
…
ok Wk○
…
ol
输出层
Wl
○
…
y1○ V1
y2○
…
○ yj
○ym
Vm
隐层
○
x1
○
x2
…
○
xi
…
○
xn-1
○
xn
输入层
数学表达
模型的数学表达
输入向量: X=(x1,x2,…,xi,…,xn)T 隐层输出向量: Y=(y1,y2,…,yj,…,ym)T
利用算法使得权值在更新的过程中,‘走’合适的路径,
比如跳出平坦区来提高收敛速度,跳出局部最小点等等
如何操作?
需要在进入平坦区或局部最小点时进行一些判断,通过
改变某些参数来使得权值的调整更为合理。
标准的BP算法内在的缺陷:
⑴ 易形成局部极小而得不到全局最优; ⑵ 训练次数多使得学习效率低,收敛速度慢; ⑶ 隐节点的选取缺乏理论指导; ⑷ 训练时学习新样本有遗忘旧样本的趋势。
输出层与隐层之间的连接权值调整
E w jk w jk
j=0,1,2,…,m; k=1,2,…,l (3.4.9a)
隐层和输入层之间的连接权值调整
E vij vij
i=0,1,2,…,n; j=1,2,…,m
(3.4.9b)
式中负号表示梯度下降,常数η∈(0,1)表示比例系数,反映了 训练速率。可以看出BP算法属于δ学习规则类,这类算法常被 称为误差的梯度下降(Gradient Descent)算法。
--误差反传(BP)算法的改进 与BP网络设计
3.4 基于BP算法的多层前馈网络模型
三层BP网络
o1 W1○
…
ok Wk○
…
ol
输出层
Wl
○
…
y1○ V1
y2○
…
○ yj
○ym
Vm
隐层
○
x1
○
x2
…
○
xi
…
○
xn-1
○
xn
输入层
数学表达
模型的数学表达
输入向量: X=(x1,x2,…,xi,…,xn)T 隐层输出向量: Y=(y1,y2,…,yj,…,ym)T
利用算法使得权值在更新的过程中,‘走’合适的路径,
比如跳出平坦区来提高收敛速度,跳出局部最小点等等
如何操作?
需要在进入平坦区或局部最小点时进行一些判断,通过
改变某些参数来使得权值的调整更为合理。
标准的BP算法内在的缺陷:
⑴ 易形成局部极小而得不到全局最优; ⑵ 训练次数多使得学习效率低,收敛速度慢; ⑶ 隐节点的选取缺乏理论指导; ⑷ 训练时学习新样本有遗忘旧样本的趋势。
输出层与隐层之间的连接权值调整
E w jk w jk
j=0,1,2,…,m; k=1,2,…,l (3.4.9a)
隐层和输入层之间的连接权值调整
E vij vij
i=0,1,2,…,n; j=1,2,…,m
(3.4.9b)
式中负号表示梯度下降,常数η∈(0,1)表示比例系数,反映了 训练速率。可以看出BP算法属于δ学习规则类,这类算法常被 称为误差的梯度下降(Gradient Descent)算法。
数学建模之BP神经网络ppt课件

单 纯 型 层 次 型 结 构
.
14
Ø 按网络连接的拓扑结构分类:
Ø 互连型网络结构:网络中任意两个节点之 间都可能存在连接路径
局 部 互 连 型
.
15
人工神经网络的分类(C.)
Ø 按网络内部的信息流向分类:
Ø 前馈型网络:网络信息处理的方向是从输入层到各 隐层再到输出层逐层进行
前 馈 型 网 络
Ø 它是有指导训练的前馈多层网络训练算法,是靠调 节各层的权值,使网络学会由输入输出对组成的训 练组。其核心思想是将输出误差以某种形式通过隐 含层向输入层逐层反传,即:信号正向传播;误差 反向传播
Ø 执行优化的方法是梯度下降法
Ø 最常用的激活函数是Sigmoid函数
f
(x) .
1 1ex
21
Ø BP算法
PF:性能函数,默认函数为mse函数。
.
28
具体算法如下:
%%清空环境变量 clc clear %%输入样本数据 p1=[1.24,1.27;1.36,1.74;1.38,1.64;1.38,1.82;1.38,1.90; 1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08]; %Af p2=[1.14,1.82;1.18,1.96;1.20,1.86; 1.26,2.00;1.28,2.00;1.30,1.96]; %Apf p=[p1;p2]'; pr=minmax(p); %输入向量的最小值和最大值 %%输出样本数据 goal=[ones(1,9),zeros(1,6);zeros(1,9),ones(1,6)]; %%绘图 plot(p1(:,1),p1(:,2),'h',p2(:,1),p2(:,2),'o')
数据挖掘ppt课件(2024)

医疗数据类型及特点
电子病历、医学影像、基因测序等 。
数据预处理与特征提取
针对不同类型的医疗数据进行预处 理和特征提取,如文本处理、图像 识别、基因表达谱分析等。
2024/1/29
模型评估与应用
通过准确率、灵敏度、特异度等指 标评估模型性能,将模型应用于实 际医疗场景中,提高医生诊断效率 和准确性。
疾病预测与辅助诊断模型构建
贝叶斯分类器应用案例
03
如垃圾邮件识别、新闻分类、情感分析等。
17
神经网络在分类预测中应用
1 2
神经网络基本概念
模拟人脑神经元连接方式的计算模型,通过训练 学习输入与输出之间的映射关系。
神经网络在分类预测中的应用
通过构建多层感知机、卷积神经网络等模型,对 输入数据进行自动特征提取和分类预测。
3
神经网络应用案例
5
数据挖掘与机器学习关系
机器学习是数据挖掘的重 要工具之一。
2024/1/29
数据挖掘包括数据预处理 、特征提取、模型构建等 步骤,其中模型构建可以 使用机器学习算法。
机器学习算法如决策树、 神经网络、支持向量机等 在数据挖掘中有广泛应用 。
6
2024/1/29
02
数据预处理技术
7
数据清洗与去重
推荐模型构建
利用机器学习、深度学习等技 术构建推荐模型,如逻辑回归 、神经网络等。
模型评估与优化
通过准确率、召回率、F1值等 指标评估模型性能,采用交叉 验证、网格搜索等方法优化模
型参数。
32
金融欺诈检测模型构建与优化
金融欺诈类型及特点
信用卡欺诈、贷款欺诈、洗钱等。
2024/1/29
数据来源与处理
BP神经网络详解和实例ppt课件

• 得到的结果见图1
• 图1飞蠓的触角长和翼长
• 思路:作一直线将两类飞蠓分开
• 例如;取A=(1.44,2.10)和 B=(1.10,1.16), 过A B两点作一条直线:
•
y= 1.47x - 0.017
• 其中X表示触角长;y表示翼长.
• 分类规则:设一个蚊子的数据为(x, y) • 如果y≥1.47x - 0.017,则判断蚊子属Apf类; • 如果y<1.47x - 0.017;则判断蚊子属Af类.
算法的目的:根据实际的输入与输出数据,计算模型的参 数(权系数) 1.简单网络的B-P算法
图6 简单网络
• 假设有P个训练样本,即有P个输入输出对 • (Ip, Tp),p=1,…,P, 其中
输入向量为 :
I p (i p1 ,...,i pm )T
目标输出向量为(实际上的):
Tp (t p1 ,...,t pn )T
神经网络研究的两个方面
• 从生理上、解剖学上进行研究 • 从工程技术上、算法上进行研究
脑神经信息活动的特征
(1)巨量并行性。 (2)信息处理和存储单元结合在一起。 (3)自组织自学习功能。
神经网络基本模型
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图 12.2 生物神经元功能模型
• 神经元的数学模型
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
• 图1飞蠓的触角长和翼长
• 思路:作一直线将两类飞蠓分开
• 例如;取A=(1.44,2.10)和 B=(1.10,1.16), 过A B两点作一条直线:
•
y= 1.47x - 0.017
• 其中X表示触角长;y表示翼长.
• 分类规则:设一个蚊子的数据为(x, y) • 如果y≥1.47x - 0.017,则判断蚊子属Apf类; • 如果y<1.47x - 0.017;则判断蚊子属Af类.
算法的目的:根据实际的输入与输出数据,计算模型的参 数(权系数) 1.简单网络的B-P算法
图6 简单网络
• 假设有P个训练样本,即有P个输入输出对 • (Ip, Tp),p=1,…,P, 其中
输入向量为 :
I p (i p1 ,...,i pm )T
目标输出向量为(实际上的):
Tp (t p1 ,...,t pn )T
神经网络研究的两个方面
• 从生理上、解剖学上进行研究 • 从工程技术上、算法上进行研究
脑神经信息活动的特征
(1)巨量并行性。 (2)信息处理和存储单元结合在一起。 (3)自组织自学习功能。
神经网络基本模型
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图 12.2 生物神经元功能模型
• 神经元的数学模型
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
数据挖掘算法介绍ppt课件

❖ 粗糙集对不精确概念的描述方法是:通过上近似概念和 下近似概念这两个精确概念来表示;一个概念(或集合 )的下近似指的是其中的元素肯定属于该概念;一个概 念(或集合)的上近似指的是其中的元素可能属于该概 念。
❖ 粗糙集方法则有几个优点:不需要预先知道的额外信息 ,如统计中要求的先验概率和模糊集中要求的隶属度; 算法简单,易于操作。
❖ 国外现状:
成熟、 产品:SAS、CLEMENTINE、UNICA、各大数据库
❖ 国内现状:
起步 产品:大部分是实验室产品
数据挖掘分类
❖ 挖掘对象
▪ 基于数据库的挖掘 ▪ 基于web的挖掘 ▪ 基于文本的挖掘 ▪ 其他:音频、视频等多媒体数据库
数据挖掘分类
❖ 应用
▪ 响应模型 ▪ 交叉销售 ▪ 价值评估 ▪ 客户分群
遗传算法
❖ 遗传算法(Genetic Algoritms,简称GA )是以自然选择和遗传理论为基础,将生 物进化过程中“适者生存”规则与群体内 部染色体的随机信息交换机制相结合的搜 索算法 ;
❖ 遗传算法主要组成部分包括编码方案、适 应度计算、父代选择、交换算子和变异算 子。
序列模式
❖ 是指在多个数据序列中发现共同的行为模 式。
谢谢
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
Hale Waihona Puke 策树❖ 决策树学习是以实例为基础的归纳学习算 法,着眼于从一组无次序/无规则的事例中 推理出决策树表示形式的分类规则;
❖ 决策树基本算法是:贪心算法,它以自顶向 下递归、各个击破方式构造决策树.
关联规则
❖ 关联规则是形式如下的一种规则,“在购 买面包和黄油的顾客中,有90%的人同时 也买了牛奶”(面包+黄油 → 牛奶);
❖ 粗糙集方法则有几个优点:不需要预先知道的额外信息 ,如统计中要求的先验概率和模糊集中要求的隶属度; 算法简单,易于操作。
❖ 国外现状:
成熟、 产品:SAS、CLEMENTINE、UNICA、各大数据库
❖ 国内现状:
起步 产品:大部分是实验室产品
数据挖掘分类
❖ 挖掘对象
▪ 基于数据库的挖掘 ▪ 基于web的挖掘 ▪ 基于文本的挖掘 ▪ 其他:音频、视频等多媒体数据库
数据挖掘分类
❖ 应用
▪ 响应模型 ▪ 交叉销售 ▪ 价值评估 ▪ 客户分群
遗传算法
❖ 遗传算法(Genetic Algoritms,简称GA )是以自然选择和遗传理论为基础,将生 物进化过程中“适者生存”规则与群体内 部染色体的随机信息交换机制相结合的搜 索算法 ;
❖ 遗传算法主要组成部分包括编码方案、适 应度计算、父代选择、交换算子和变异算 子。
序列模式
❖ 是指在多个数据序列中发现共同的行为模 式。
谢谢
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
Hale Waihona Puke 策树❖ 决策树学习是以实例为基础的归纳学习算 法,着眼于从一组无次序/无规则的事例中 推理出决策树表示形式的分类规则;
❖ 决策树基本算法是:贪心算法,它以自顶向 下递归、各个击破方式构造决策树.
关联规则
❖ 关联规则是形式如下的一种规则,“在购 买面包和黄油的顾客中,有90%的人同时 也买了牛奶”(面包+黄油 → 牛奶);
神经网络初步与BP算法—有监督和BP神经网络1.ppt

神经网络研究的发展
(1)第一次热潮(40-60年代未) 1943年,美国心理学家W.McCulloch和数学家W.Pitt
在提出了一个简单的神经元模型,即MP模型。1958年, F.Rosenblatt等研制出了感知机(Perceptron)。
(2)低潮(70-80年代初): (3)第二次热潮
1982年,美国物理学家J.J.Hopfield提出Hopfield模型, 它是一个互联的非线性动力学网络,他解决问题的方法是 一种反复运算的动态过程,这是符号逻辑处理方法所不具 备的性质. 1987年首届国际ANN大会在圣地亚哥召开,国 际ANN联合会成立,创办了多种ANN国际刊物。1990年12 月,北京召开首届学术会议。
yn
a in
vi 线性系统 x i
非线性函数
yi
u1
bi1
uk
bi2
︰
um
bim
1)加法器 2)线性动态系统(SISO) 3)静态非线性系统
1
wi
n
m
vi (t) aij yi (t) bikuk (t) wi
j 1
k 1
式中 aij 和bik 为权系数,i,j =1,2,…,n, k= 1,2,…m. n 个加法器可以写成向量形式:
即 W1X1+W2X2-θ=0
或
-直线
感知器的分类例子
感知器的学习算法
目的:在于找寻恰当的权系数 w=(w1.w2,…,Wn),使系统对一个特 定 的样本x=(xt,x2,…,xn)能产生期望输出值 d。当x分类为A类时,期望值d=1;X为B类 时, d=-1。
为了方便说明感知器学习算法,把阀值θ并入 权系数w中,同时,样本x也相应增加一 个分 量xn+1。故令: Wn+1=-θ,Xn+1=1
BP神经网络模型PPT课件
激活函数: f()
误差函数:e
1 2
q o1
(do (k )
yoo (k ))2
BP网络的标准学习算法
第一步,网络初始化 给各连接权值分别赋一个区间(-1,1) 内的随机数,设定误差函数e,给定计 算精度值 和最大学习次数M。
第二步,随机选取第 k个输入样本及对应 期望输出
修正各单元权 值
误差的反向传播
BP网络的标准学习算法-学习过程
正向传播:
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
x(k) x1(k), x2(k), , xn(k)
do (k) d1(k),d2(k), ,dq(k)
BP网络的标准学习算法
第三步,计算隐含层各神经元的输入和
输出
n
hih (k ) wih xi (k ) bh
i 1
h 1, 2, , p
hoh (k) f(hih (k)) h 1, 2, , p
f(
yio (k)))2)
hoh (k)
hoh (k)
hih (k)
( 1 2
q
((do (k)
o1
p
f(
h1
whohoh (k)
bo )2 ))
hoh (k)
hoh (k)
hih (k)
q o1
(do (k )
神经网络BP网络课堂PPT
它是一种多层前向反馈神经网络,其神经元的 变换函数是S型函数
输出量为0到1之间的连续量,它可实现从输入 6 到输出的任意的非线性映射
.
2.1 BP网络简介
BP网络主要用于下述方面 函数逼近:用输入矢量和相应的输出矢量训练一个 网络逼近一个函数 模式识别和分类:用一个特定的输出矢量将它与输 入矢量联系起来;把输入矢量以所定义的合适方式 进行分类; 数据压缩:减少输出矢量维数以便于传输或存储
利用梯度下降法求权值变化及误差的反向传播
– 输出层的权值变化
• 其中 • 同理可得
16
.
2.3 学习规则
利用梯度下降法求权值变化及误差的反向传播
– 隐含层权值变化
• 其中
• 同理可得
17
.
2.3 学习规则
对于f1为对数S型激活函数,
对于f2为线性激活函数
18 .
2.4 误差反向传播图形解释
之间的误差修改其权值,使Am与期望的Tm,(m=l,…,q) 尽可能接近
12
.
2.3 学习规则
BP算法是由两部分组成,信息的正向传递与误差 的反向传播
– 正向传播过程中,输入信息从输入层经隐含层逐层计 算传向输出层,每一层神经元的状态只影响下一层神 经元的状态
– 如果在输出层未得到期望的输出,则计算输出层的误 差变化值,然后转向反向传播,通过网络将误差信号 沿原来的连接通路反传回来修改各层神经元的权值直 至达到期望目标
38
.
4.2 附加动量法
带有附加动量因子的权值调节公式
其中k为训练次数,mc为动量因子,一般取0.95左右
附加动量法的实质是将最后一次权值变化的影响,通 过一个动量因子来传递。
当动量因子取值为零时,权值变化仅根据梯度下降法产生
输出量为0到1之间的连续量,它可实现从输入 6 到输出的任意的非线性映射
.
2.1 BP网络简介
BP网络主要用于下述方面 函数逼近:用输入矢量和相应的输出矢量训练一个 网络逼近一个函数 模式识别和分类:用一个特定的输出矢量将它与输 入矢量联系起来;把输入矢量以所定义的合适方式 进行分类; 数据压缩:减少输出矢量维数以便于传输或存储
利用梯度下降法求权值变化及误差的反向传播
– 输出层的权值变化
• 其中 • 同理可得
16
.
2.3 学习规则
利用梯度下降法求权值变化及误差的反向传播
– 隐含层权值变化
• 其中
• 同理可得
17
.
2.3 学习规则
对于f1为对数S型激活函数,
对于f2为线性激活函数
18 .
2.4 误差反向传播图形解释
之间的误差修改其权值,使Am与期望的Tm,(m=l,…,q) 尽可能接近
12
.
2.3 学习规则
BP算法是由两部分组成,信息的正向传递与误差 的反向传播
– 正向传播过程中,输入信息从输入层经隐含层逐层计 算传向输出层,每一层神经元的状态只影响下一层神 经元的状态
– 如果在输出层未得到期望的输出,则计算输出层的误 差变化值,然后转向反向传播,通过网络将误差信号 沿原来的连接通路反传回来修改各层神经元的权值直 至达到期望目标
38
.
4.2 附加动量法
带有附加动量因子的权值调节公式
其中k为训练次数,mc为动量因子,一般取0.95左右
附加动量法的实质是将最后一次权值变化的影响,通 过一个动量因子来传递。
当动量因子取值为零时,权值变化仅根据梯度下降法产生
BP神经网络PPTppt课件
输 入 至 网 络 , 由 前 向 后 , 逐 层 得 到 各 计 算 单 元 的 实 际 输 出 y:
对 于 当 前 层 l 的 第 j个 计 算 单 元 ,j 1,..., nl
该
单
元
的
净
输
入
实
际
输
出
n l1
n
e
t
l j
Ol l 1 ij i
i 1
O
l j
f
n
e
t
l j
1
=
1+
e
➢ 可见层
输入层 (input layer) 输入节点所在层,无计算能力
输出层 (output layer) 节点为神经元
➢ 隐含层( hidden layer) 中间层,节点为神经元
可编辑课件PPT
20
具有三层计算单 元的前馈神经网络结 构
可编辑课件PPT
21
2. 感知器神经网络(感知器)、感知器神经元
s ig n 型 函 数 , 不 可 微 ; 对 称 硬 极 限 函 数 ;
双
极
函
数
f
net
=
sgn
net
=
1
-
1
net 0 net < 0
m atlab函 数 hardlim s
D .阈 值 函 数
f
net
=
-
net net <
其 中 , , 非 负 实 数
可编辑课件PPT
单层感知器网络
感知器神经元
可编辑课件PPT
22
2. 感知器神经网络、感知器神经元(续)
感知器神经元的传递函数
数据挖掘神经网络BP算法最全PPT资料
表7-13 隐藏层与输出层每个单元的误差
单元j
误差
6
0.474×(1-0.474)×(l-0.474)=0.1311
5
0.525×(l-0.525)×(0.1311×(-0.2))=-0.0065
4
0.332×(l-0.332)×(0.1311×(-0.3))=-0.0087
表7-14 有向加权边的新权重、每个隐藏层与输出层单元的新偏置
如何选取最佳的隐藏层数目,可以参考下面的 公式
n
k c(in1 ), n1 n m a, n1 log 2n i0
其中,k为样本数,n为输入结点数,m为输出样本, 为隐藏层结点数。
神经网络工作过程
如播果进得 行不计到算实,际再的经输过出正W,向则传15转播入过反程向。传播过程-0,.3将+误0.差9×信号(-沿0.原00来6的5连)×接1线=路-0返.3回0,6 通过修改各层神经元的权值,逐次地向输入层传
表7-11 权重、单元的偏置
工输程入上 信用息的先人传工到神隐经藏元层W模的型结24如点图上所,示经:过各单元0.的4+特0性.9为×S(型-0的.0激0活87函)数×运0算=0后.4,把隐藏层结点的输出信息传到输出结点,最后给出输出
表7-12 隐藏层与输出层每个单元的输入、输出
单元j
输入Ij
4 0.2×1+0.4×0+(-0.5)×1+(-0.4)=-0.7 5 (-0.3)×l+0.1×0+0.2 × 1+0.2=0.1 6 (-0.3) ×0.332+(-0.2)×0.525+0.1=-0.105
输出Oj
1/(l+e-(-0.7))=0.332 1/(l+e-0.1)= 0.525 1/(l+e-(-0.105))=0.474
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.3 神经网络算法
7.3.1 神经网络的基本原理 人工神经网络是在研究生物神经系统的启发下发
展起来的一种信息处理方法。它模拟生物神经系统结 构,由大量处理单元组成非线性自适应动态系统,具 有高度非线性的超大规模实践特性,网络的全局作用、 大规模并行分布处理及高度的鲁棒性和容错性,有联 想记忆、抽象概括和自适应能力,这种抽象概括和自 适应能力一般称之为自学能力。
方法:
(1) 初始化网络的权和阈值
(2) WHILE终止条件满足{
(3) FOR S中的每个训练样本X{
(4) FOR隐藏或输出层每个单元j{(
(5)
I j wij oi j
i
1
;
//相对于前一层计算单元j的净输入
(6)
oj (1 ej I ) ; // 计算每个单元j的输出
(12) wij wij l Errjoi
;
(13) FOR网络中每个单元偏量 j (14) j j l Errj
5
【例7-5】 假设训练样本s 的属性值为{1,0,1}, 实际类别分别为1,两层 前馈神经网络NT如图 7.4所示,NT中每条有 一向加权边的权重、每
(7) FOR输出层每个单元
(8) ; Errj oj (1 oj )(Tj oj )
//计算误差
(9) FOR由最后一个到第一个隐藏层,对于隐藏层每个单元j
(10) ; Errj oj (1 oj ) Errk wjk k
//计算关于下一个较高层k的误差
(11) FOR网络中的每一个权 wij
4
0.332×(l-0.332)×(0.1311×(-0.3))=-0.0087
10
表7-14 有向加权边的新权重、每个隐藏层与输出层单元的新偏置
W46
-0.3+0.9×0.1311×0.332=-0.261
W56
-0.2+0.9×0.1311×0.525=-0.138
W14
0.2+0.9×(-0.00087)×1=0.192
个隐藏层与输出层单元 的偏置如表7-11所示, 学习率为0.9。写出输入 S训练NT的过程。
1
w14
w15
2
w24
w25
. .
w34
.
3
w35
4
w46
6
5
w56
.
.
.
.
..
.
6
首先算出单元4、5、6的输入、输出,具体结果 见表7-12,然后计算4、5、6的误差,见表7-13; NT中每条有向加权边的新权重、每个隐藏层与输 出层单元的新偏置见表7-14。
(2) 学习阶段,各处理单元状 态保持不变,各连接权值可修 改。
开始
设定连接权初值
评价
输入数据 评价标准
连接权调整
13
教师示教学习方式,
需要给定一组样本(输入
学习系统
输出数据对),网络根据
实际输出与样本的比较, 输入 神经网络
输出层
x2
. . .
xi wij
. . ..
wjk Oj
. .P网络学习过程是一种误差边向后传播边修正
权系数的过程,BP算法把网络的学习过程分为正向
传播和反向传播两种交替过程。
(1)正向传播
输入信息先传到隐藏层的结点上,经过各单 元的特性为S型的激活函数运算后,把隐藏层结 点的输出信息传到输出结点,最后给出输出结果。
•图7.4 两层前馈神经网络
7
表7-11 权重、单元的偏置
8
表7-12 隐藏层与输出层每个单元的输入、输出
单元j
输入Ij
4 0.2×1+0.4×0+(-0.5)×1+(-0.4)=-0.7 5 (-0.3)×l+0.1×0+0.2 × 1+0.2=0.1 6 (-0.3) ×0.332+(-0.2)×0.525+0.1=-0.105
(2)反向传播
如果得不到实际的输出,则转入反向传播
过程,将误差信号沿原来的连接线路返回,通过
修改各层神经元的权值,逐次地向输入层传播进
行计算,再经过正向传播过程。这两个过程的反
复运用,逐渐使得误差信号最小,网络学习过程
就结束。
4
3.BP算法
BP算法如下。 其中的 相,期连l为望的学输有习出向率;加;权Eror边j为i为的与单权隐元重藏i的;层输为单出改元;变j的o单j误为元差单j活加元性权j的的和输偏;出量w;j。k为Tj为单输元出j与层单单元元k j 输入:训练样本S,学习率l,多层前馈网络。 输出:一个训练的、对样本分类的神经网络。
5
0.2+0.9×(-0.0065)=0.194
4
-0.4+0.9×(-0.0087)=-0.408
11
7.3.3 定义神经网络拓扑
神经网络在开始训练之前,必须确定输人层 的单元数、层数,每个隐藏层的单元数和输出层 的单元数,以确定网络拓扑结构。
如何选取最佳的隐藏层数目,可以参考下面的 公式
n
W15
-0.3+0.9×(-0.0065)×1=-0.306
W24
0.4+0.9×(-0.0087)×0=0.4
W25
0.1+0.9×(-0.0065)×0=0.1
W34
-0.5+0.9×(-0.0087)×1=-0.508
W35
0.2+0.9×(-0.0065)×1=0.194
6
0.1+0.9×0.1311=0.218
k c(in1 ), n1 n m a, n1 log 2n i0
其中,k为样本数,n为输入结点数,m为输出样本, 为隐藏层结点数。
12
7.3.4 神经网络工作过程
所有神经网络的工作过程主 要分两个阶段:工作阶段和学 习阶段
(1) 工作阶段,此时各连接权 值固定,处理单元状态变化, 以求达到稳定状态;
输出Oj
1/(l+e-(-0.7))=0.332 1/(l+e-0.1)= 0.525 1/(l+e-(-0.105))=0.474
9
表7-13 隐藏层与输出层每个单元的误差
单元j
误差
6
0.474×(1-0.474)×(l-0.474)=0.1311
5
0.525×(l-0.525)×(0.1311×(-0.2))=-0.0065
1
工程上用的人工神经元模型如图所示:
2
7.3.2 反向传播模型
1.工作原理
神经网络模型分为前 馈多层式网络模型、 反馈递归式网络模型、 随机型网络模型等。
误差反向传播(Back propagation,简称BP 网络) ,又称为多层 前馈神经网络。
其模型结构如图7.3所示
输入层 x1
隐藏层
7.3.1 神经网络的基本原理 人工神经网络是在研究生物神经系统的启发下发
展起来的一种信息处理方法。它模拟生物神经系统结 构,由大量处理单元组成非线性自适应动态系统,具 有高度非线性的超大规模实践特性,网络的全局作用、 大规模并行分布处理及高度的鲁棒性和容错性,有联 想记忆、抽象概括和自适应能力,这种抽象概括和自 适应能力一般称之为自学能力。
方法:
(1) 初始化网络的权和阈值
(2) WHILE终止条件满足{
(3) FOR S中的每个训练样本X{
(4) FOR隐藏或输出层每个单元j{(
(5)
I j wij oi j
i
1
;
//相对于前一层计算单元j的净输入
(6)
oj (1 ej I ) ; // 计算每个单元j的输出
(12) wij wij l Errjoi
;
(13) FOR网络中每个单元偏量 j (14) j j l Errj
5
【例7-5】 假设训练样本s 的属性值为{1,0,1}, 实际类别分别为1,两层 前馈神经网络NT如图 7.4所示,NT中每条有 一向加权边的权重、每
(7) FOR输出层每个单元
(8) ; Errj oj (1 oj )(Tj oj )
//计算误差
(9) FOR由最后一个到第一个隐藏层,对于隐藏层每个单元j
(10) ; Errj oj (1 oj ) Errk wjk k
//计算关于下一个较高层k的误差
(11) FOR网络中的每一个权 wij
4
0.332×(l-0.332)×(0.1311×(-0.3))=-0.0087
10
表7-14 有向加权边的新权重、每个隐藏层与输出层单元的新偏置
W46
-0.3+0.9×0.1311×0.332=-0.261
W56
-0.2+0.9×0.1311×0.525=-0.138
W14
0.2+0.9×(-0.00087)×1=0.192
个隐藏层与输出层单元 的偏置如表7-11所示, 学习率为0.9。写出输入 S训练NT的过程。
1
w14
w15
2
w24
w25
. .
w34
.
3
w35
4
w46
6
5
w56
.
.
.
.
..
.
6
首先算出单元4、5、6的输入、输出,具体结果 见表7-12,然后计算4、5、6的误差,见表7-13; NT中每条有向加权边的新权重、每个隐藏层与输 出层单元的新偏置见表7-14。
(2) 学习阶段,各处理单元状 态保持不变,各连接权值可修 改。
开始
设定连接权初值
评价
输入数据 评价标准
连接权调整
13
教师示教学习方式,
需要给定一组样本(输入
学习系统
输出数据对),网络根据
实际输出与样本的比较, 输入 神经网络
输出层
x2
. . .
xi wij
. . ..
wjk Oj
. .P网络学习过程是一种误差边向后传播边修正
权系数的过程,BP算法把网络的学习过程分为正向
传播和反向传播两种交替过程。
(1)正向传播
输入信息先传到隐藏层的结点上,经过各单 元的特性为S型的激活函数运算后,把隐藏层结 点的输出信息传到输出结点,最后给出输出结果。
•图7.4 两层前馈神经网络
7
表7-11 权重、单元的偏置
8
表7-12 隐藏层与输出层每个单元的输入、输出
单元j
输入Ij
4 0.2×1+0.4×0+(-0.5)×1+(-0.4)=-0.7 5 (-0.3)×l+0.1×0+0.2 × 1+0.2=0.1 6 (-0.3) ×0.332+(-0.2)×0.525+0.1=-0.105
(2)反向传播
如果得不到实际的输出,则转入反向传播
过程,将误差信号沿原来的连接线路返回,通过
修改各层神经元的权值,逐次地向输入层传播进
行计算,再经过正向传播过程。这两个过程的反
复运用,逐渐使得误差信号最小,网络学习过程
就结束。
4
3.BP算法
BP算法如下。 其中的 相,期连l为望的学输有习出向率;加;权Eror边j为i为的与单权隐元重藏i的;层输为单出改元;变j的o单j误为元差单j活加元性权j的的和输偏;出量w;j。k为Tj为单输元出j与层单单元元k j 输入:训练样本S,学习率l,多层前馈网络。 输出:一个训练的、对样本分类的神经网络。
5
0.2+0.9×(-0.0065)=0.194
4
-0.4+0.9×(-0.0087)=-0.408
11
7.3.3 定义神经网络拓扑
神经网络在开始训练之前,必须确定输人层 的单元数、层数,每个隐藏层的单元数和输出层 的单元数,以确定网络拓扑结构。
如何选取最佳的隐藏层数目,可以参考下面的 公式
n
W15
-0.3+0.9×(-0.0065)×1=-0.306
W24
0.4+0.9×(-0.0087)×0=0.4
W25
0.1+0.9×(-0.0065)×0=0.1
W34
-0.5+0.9×(-0.0087)×1=-0.508
W35
0.2+0.9×(-0.0065)×1=0.194
6
0.1+0.9×0.1311=0.218
k c(in1 ), n1 n m a, n1 log 2n i0
其中,k为样本数,n为输入结点数,m为输出样本, 为隐藏层结点数。
12
7.3.4 神经网络工作过程
所有神经网络的工作过程主 要分两个阶段:工作阶段和学 习阶段
(1) 工作阶段,此时各连接权 值固定,处理单元状态变化, 以求达到稳定状态;
输出Oj
1/(l+e-(-0.7))=0.332 1/(l+e-0.1)= 0.525 1/(l+e-(-0.105))=0.474
9
表7-13 隐藏层与输出层每个单元的误差
单元j
误差
6
0.474×(1-0.474)×(l-0.474)=0.1311
5
0.525×(l-0.525)×(0.1311×(-0.2))=-0.0065
1
工程上用的人工神经元模型如图所示:
2
7.3.2 反向传播模型
1.工作原理
神经网络模型分为前 馈多层式网络模型、 反馈递归式网络模型、 随机型网络模型等。
误差反向传播(Back propagation,简称BP 网络) ,又称为多层 前馈神经网络。
其模型结构如图7.3所示
输入层 x1
隐藏层