人工神经网络算法(基础完整讲)ppt课件
合集下载
《人工神经网络》课件

添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
《人工神经网络算法》课件

添加标题
计算网络输出
添加标题
反向传播误差
添加标题
重复以上步骤直到达到预设 的停止条件,如损失函数值 小于某个阈值或达到预设的
迭代次数。
添加标题
添加标题
输入训练数据
添加标题
计算损失函数
添加标题
更新网络权重和偏置
常见的人工神经网 络算法
前馈神经网络算法
概念:一种多层感知器模型,输入层、隐藏层和输出层之间没有反馈连 接
特点:易于训练,适合处理线性和非线性问题
应用:图像识别、语音识别、自然语言处理等领域
结构:输入层、隐藏层和输出层,其中隐藏层可以有多个
训练方法:反向传播算法,通过调整权重和偏置来最小化损失函数
优缺点:优点是易于实现,缺点是难以处理时间序列数据
循环神经网络算法
特点:能够处理序列数据,如 语音、文本等
理复杂问题
深度学习技术 将更加安全, 能够更好地保 护用户隐私和
数据安全
人工神经网络算法与其他算法的结合应用
人工神经网络算法与深度学习的结合:提高模型的准确性和泛化能力 人工神经网络算法与强化学习的结合:解决复杂决策问题,提高模型的适应性和学习能力 人工神经网络算法与自然语言处理的结合:提高文本理解和生成能力,实现人机交互 人工神经网络算法与图像处理的结合:提高图像识别和生成能力,实现图像理解和生成
1986年, Rumelha rt等人提 出反向传 播算法, 解决了多 层神经网 络的训练 问题
1998年, LeCun等 人提出卷 积神经网 络,开启 了深度学 习的新时 代
2012年, Hinton等 人提出深 度信念网 络,进一 步推动了 深度学习 的发展
2015年, Google 的 AlphaGo 战胜人类 围棋冠军, 标志着人 工智能的 突破性进 展
计算网络输出
添加标题
反向传播误差
添加标题
重复以上步骤直到达到预设 的停止条件,如损失函数值 小于某个阈值或达到预设的
迭代次数。
添加标题
添加标题
输入训练数据
添加标题
计算损失函数
添加标题
更新网络权重和偏置
常见的人工神经网 络算法
前馈神经网络算法
概念:一种多层感知器模型,输入层、隐藏层和输出层之间没有反馈连 接
特点:易于训练,适合处理线性和非线性问题
应用:图像识别、语音识别、自然语言处理等领域
结构:输入层、隐藏层和输出层,其中隐藏层可以有多个
训练方法:反向传播算法,通过调整权重和偏置来最小化损失函数
优缺点:优点是易于实现,缺点是难以处理时间序列数据
循环神经网络算法
特点:能够处理序列数据,如 语音、文本等
理复杂问题
深度学习技术 将更加安全, 能够更好地保 护用户隐私和
数据安全
人工神经网络算法与其他算法的结合应用
人工神经网络算法与深度学习的结合:提高模型的准确性和泛化能力 人工神经网络算法与强化学习的结合:解决复杂决策问题,提高模型的适应性和学习能力 人工神经网络算法与自然语言处理的结合:提高文本理解和生成能力,实现人机交互 人工神经网络算法与图像处理的结合:提高图像识别和生成能力,实现图像理解和生成
1986年, Rumelha rt等人提 出反向传 播算法, 解决了多 层神经网 络的训练 问题
1998年, LeCun等 人提出卷 积神经网 络,开启 了深度学 习的新时 代
2012年, Hinton等 人提出深 度信念网 络,进一 步推动了 深度学习 的发展
2015年, Google 的 AlphaGo 战胜人类 围棋冠军, 标志着人 工智能的 突破性进 展
第6章人工神经网络算法ppt课件

1.基本概念 1.3 主要的神经网络模型 目前使用的比较典型的一些神经网络模型主要有以下几类:
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;
神经网络方法-PPT课件精选全文完整版

信号和导师信号构成,分别对应网络的输入层和输出层。输
入层信号 INPi (i 1,根2,3据) 多传感器对标准试验火和各种环境条件
下的测试信号经预处理整合后确定,导师信号
Tk (k 1,2)
即上述已知条件下定义的明火和阴燃火判决结果,由此我们
确定了54个训练模式对,判决表1为其中的示例。
15
基于神经网络的融合算法
11
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X(n) x1 (n), x2 (n), x3 (n)
式中,xi (n) (i 1,2,3) 分别为温度、烟雾和温度采样信号。
12
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (差n) 值之和
样板和对应的应识别的结果输入人工神经网络,网络就会通过
自学习功能,慢慢学会识别类似的图像。
第二,具有联想存储功能。人的大脑是具有联想功能的。用人
工神经网络的反馈网络就可以实现这种联想。
第三,具有容错性。神经网络可以从不完善的数据图形进行学
习和作出决定。由于知识存在于整个系统而不是一个存储单元
中,一些结点不参与运算,对整个系统性能不会产生重大影响。
18
仿真结果
19
仿真结果
20
2
7.2 人工神经元模型—神经组织的基本特征
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。
人工神经网络讲PPT课件

图2-1 神经元的解剖
2、生物神经元
突触,是一个神经元与另一 个神经元之间相联系并进行 信息传送的结构。 突触的存在说明:两个神经 元的细胞质并不直接连通, 两者彼此联系是通过突触这 种结构接口的。有时.也把 突触看作是神经元之间的连 接。
图2-2 突触结构
2生物神经元
目前,根据神经生理学的研究,已经发现神经元及其间的 突触有4种不同的行为。神经元的4种生物行为有:
ykj ——模式k第j个输出单元的期望值; 式中:
y j k ——模式k第j个输出单元的实际值;
M——样本模式对个数;
Q——输出单元个数。
第二种:误差平方和
E
k 2 ( y y ) j kj k 1 j 1
M
Q
MQ
式中:M——样本模式对个数;
Q——输出单元个数。
1 Q Ek ( y j k ykj ) 2 2 j 1 E Ek
r r (Wi , X , di )
权矢量的变化是由学习步骤按时间t,t+1,…,一步一步进行计算的。在 时刻t连接权的变化量为:
Wi (t ) cr[Wi (t ), X i (t ), di (t )] X (t )
其中c是一个正数,称为学习常数,决定学习的速率。
神经元网络的学习规则
——这一能力可以算作是智能的高级形式 ——是人类对世界进行适当改造、推动社会不断发展的能力
4
联想、推理、判断、决策语言的能力
——这是智能高级形式的又一方面 ——主动与被动之分。联想、推理、判断、决策的能力是主动的基础。
1、引言
5 6 7 8
通过学习取得经验与积累知识的能力 发现、发明、创造、创新的能力 实时、迅速、合理地应付复杂环境的能力 预测,洞察事物发展、变化的能力
人工神经网络ppt课件

LOGO
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络-PPT课件

*
《医学信息分析与决策》课程组
7
一、神经网络简介
神经网络的基本特征
结构特征: 并行式处理 分布式存储 容错性
能力特征: 自学习 自组织 自适应性
*
《医学信息分析与决策》课程组
8
一、神经网络简介
神经网络的基本功能
联 想 记 忆 功 能
*
《医学信息分析与决策》课程组
9
一、神经网络简介
神经网络的基本功能
人脑与计算机信息处理机制的比较 系统结构 信号形式 信息存储 信息处理机制
*
《医学信息分析与决策》课程组
5
一、神经网络简介
生物神经网络 人类的大脑大约有1.41011个神经细胞,亦称 为神经元。每个神经元有数以千计的通道同其 它神经元广泛相互连接,形成复杂的生物神经 网络。 人工神经网络 以数学和物理方法以及信息处理的角度对人脑 神经网络进行抽象,并建立某种简化模型,就 称为人工神经网络(Artificial Neural Network,缩写 ANN)。
*
《医学信息分析与决策》课程组
19
一、神经网络简介
神经网络的软硬件实现
MATLAB以商品形式出现后,仅短短几年,就以 其良好的开放性和运行的可靠性,使原先控制 领域里的封闭式软件包(如英国的UMIST,瑞 典的LUND和SIMNON,德国的KEDDC)纷纷淘汰, 而改以MATLAB为平台加以重建。在时间进入20 世纪九十年代的时候,MATLAB已经成为国际控 制界公认的标准计算软件。
*
《医学信息分析与决策》课程组
21
一、神经网络简介
神经网络的软硬件实现
MATLAB的推出得到了各个领域的专家学者的广 泛关注,在此基础上,专家们相继推出了 MATLAB工具箱,主要包括信号处理、控制系统、 神经网络、图像处理、鲁棒控制、非线性系统 控制设计、系统辨识、最优化、模糊逻辑、小 波等工具箱,这些工具箱给各个领域的研究和 工程应用提供了有力的工具。
人工神经网络PPT演示课件

感知器的学习算法
采用感知器学习规则进行训练。训练步骤为:
① 对各初始权值w0j(0),w1j(0),w2j(0),…,wnj(0),j=1,2,…,m(m为计算层的节点数) 赋予较小的非零随机数;
② 输入样本对{Xp,dp},其中Xp=(-1, x1p , x2p ,…, xnp ),dp为期望的输出向量(教师信 号),上标p代表样本对的模式序号,设样本集中的样本总数为P,则p=1,2,…,P;
③
计算各节点的实际输出
o
p j
(t
)
sgn[X
T j
(t)
X
],
j 1,2,, m
;
④
调整各节点对应的权值,Wj
(t
1)
Wj
(t)
[dLeabharlann p jop j
]X
p
,
j 1,2,, m
,其中η
为学习率,用于控制调整速度,太大会影响训练的稳定性,太小则使训练的收敛
速度变慢,一般取0<η ≤1;
x1
oj Wj
x2 ······ xi ······xn
由方程 w1 j x1 w2 j x2 Tj 0 确定的直线成为二维输入样本空间上的一条分界线。
② 设输入向量X=(x1,x2,x3)T,则三个输入分量在几何上构成一个三维空间。节点j的
输出为
1, o j 1,
w1 j x1 w2 j x2 w3 j x3 Tj 0 w1 j x1 w2 j x2 w3 j x3 Tj 0
智能信息处理技术
华北电力大学
1
第5章 人工神经网络
1 人工神经网络基础知识 2 前馈神经网络 3 自组织神经网络 4 反馈神经网络
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分段线性激活函数的定义为:
1,若x 0 f (x) x,若 1 x 1
1,若x 0
19
.
1.6激活函数
4.概率型激活函数
概率型激活函数的神经元模型输入和输出的关系是不确定的, 需要一种随机函数来描述输出状态为1或为0的概率,设神经元输出 (状态)为1的概率为:
4
.
1.1人工神经网络发展简史
最早的研究可以追溯到20世纪40年代。1943年,心理学家 McCulloch和数学家Pitts合作提出了形式神经元的数学模型。这一 模型一般被简称M-P神经网络模型,至今仍在应用,可以说,人工 神经网络的研究时代,就由此开始了。
1949年,心理学家Hebb提出神经系统的学习规则,为神经网络的 学习算法奠定了基础。现在,这个规则被称为Hebb规则,许多人工 神经网络的学习还遵循这一规则。
④神经元的输出和响应是个输入值的综合作用的结果。
⑤兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋
状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
14
.
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不 同的激活函数决定神经元的不同输出特性,常用的激活函数有如下 几种类型:
9
.
1.4生物神经元的特点 生物神经元的特点:
阈值特性
单向性传递
延时性传递
生物神经元的特点
.
1.5人工神经元模型
神经元模型
从神经元的特性和功能可以知道,神经元相当于一个多输入单 输出的信息处理单元,而且,它对信息的处理是非线性的,人工神 经元的模型如图所示:
神经元的n个输入 对应的连接权值
阈值
激活函数
人工神经网络
二〇一五年十二月
.
目录
2
.
一、人工神经网络的 基本概念
3
.
一、人工神经网络的 基本概念
人工神经网络(Artificial Neural Network,即ANN)可以概 括的定义为:
由大量具有适应性的处理元素(神经元)组成的广泛并行互联 网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交 互反应,是模拟人工智能的一条重要途径。人工神经网络与人脑相 似性主要表现在:
6
.
1.2生物神经元结构
生物神经元结构
(1)细胞体: 细胞核、细胞质和细胞膜。 (2)树突:胞体短而多分枝的突起。相当于神经元的输入端。 (3)轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神 经末稍传出神经冲动。
7
.
1.2生物神经元结构
(4)突触:神经元间的连接接口,每个神经元约有1万~10万个突 触。神经元通过其轴突的神经末稍,经突触与另一神经元的树突联 接,实现信息的传递。由于突触的信息传递特性是可变的,形成了 神经元间联接的柔性,称为结构的可塑性。
①神经网络获取的知识是从外界环境学习得来的; ②各神经元的连接权,即突触权值,用于储存获取的知识。
神经元是神经网络的基本处理单元,它是神经网络的设计基础 。神经元是以生物的神经系统的神经细胞为基础的生物模型。在人 们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元 数学化,从而产生了神经元数学模型。因此,要了解人工神经模型 就必须先了解生物神经元模型。
n
o f wjxj
j0
其中, W0=-Ɵ ; x0=1
13
.
1.5人工神经元模型
神经元的模型具有以下特点:
①神经元是一个多输入、单输出单元。
②它具有非线性的输入、输出特性。
③它具有可塑性,反应在新突触的产生和现有的神经突触的调整上 ,其塑性变化的部分主要是权值w的变化,这相当于生物神经元的 突出部分的变化,对于激发状态,w取正直,对于抑制状态,w取负 值。
1957年,F.Rosenblatt提出“感知器”(Perceptron)模型,第一 次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神 经网络研究的第一次高潮。
5
.
1.1人工神经网络发展简史
20世纪60年代以后,数字计算机的发展达到全盛时期,人们误以 为数字计算机可以解决人工智能、专家系统、模式识别问题,而放 松了对“感知器”的研究。于是,从20世纪60年代末期起,人工神 经网络的研究进入了低潮。
突触结构示意图
.
1.3生物神经元的信息处理机理
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图12.2 生物神经元功能模型
神经元的兴奋与抑制
当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位 的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。 当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时, 为抑制状态,不产生神经冲动。
net= w i x i
输出
11
.
1.5人工神经元模型
上面的神经元模型可以用一个数学表达式进行抽象与概括,从 而得到神经元的数学模型:
n
o f w jx j
j1
w x 神经元的网络输入记为net,即
n
net=
jj
j1
12
.
1.5人工神经元模型
有时为了方便起见,常把-Ɵ也看成是恒等于1的输入X0 的权值 ,这时上面的数学模型可以写成:
1982年,美国加州工学院物理学家Hopfield提出了离散的神经网 络模型,标志着神经网络的研究又进入了一个新高潮。1984年, Hopfield又提出连续神经网络模型,开拓了计算机应用神经网络的 新途径。
1986年,Rumelhart和Meclelland提出多层网络的误差反传(back propagation)学习算法,简称BP算法。BP算法是目前最为重要、应 用最广的人工神经网络算法之一。
15
.
1.6激活函数
1.阈值型激活函数
阈值型激活函数是最简单的,前面提到的M-P模型就属于这一类 。其输出状态取二值(1、0或+1、-1),分别代表神经元的兴奋和 抑制。 当f(x)取0或1时,
1,若x0 f (x) 0,若x0
16
.
1.6激活函数
当f(x)取1或-1时,f(x)为下图所示的sgn(符号)函数
sgn(x)=
1, 若x 0 f (x) -1,若x 0
17
.
1.6激活函数
2.S型激活函数
神经元的状态与输入级之间的关系是在(0,1)内连续取值的单 调可微函数,称为
1 1 ex
双极性S型函数:
f(x)12ex 1=11 eexx
18
.
1.6激活函数
3.分段线性激活函数
1,若x 0 f (x) x,若 1 x 1
1,若x 0
19
.
1.6激活函数
4.概率型激活函数
概率型激活函数的神经元模型输入和输出的关系是不确定的, 需要一种随机函数来描述输出状态为1或为0的概率,设神经元输出 (状态)为1的概率为:
4
.
1.1人工神经网络发展简史
最早的研究可以追溯到20世纪40年代。1943年,心理学家 McCulloch和数学家Pitts合作提出了形式神经元的数学模型。这一 模型一般被简称M-P神经网络模型,至今仍在应用,可以说,人工 神经网络的研究时代,就由此开始了。
1949年,心理学家Hebb提出神经系统的学习规则,为神经网络的 学习算法奠定了基础。现在,这个规则被称为Hebb规则,许多人工 神经网络的学习还遵循这一规则。
④神经元的输出和响应是个输入值的综合作用的结果。
⑤兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋
状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
14
.
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不 同的激活函数决定神经元的不同输出特性,常用的激活函数有如下 几种类型:
9
.
1.4生物神经元的特点 生物神经元的特点:
阈值特性
单向性传递
延时性传递
生物神经元的特点
.
1.5人工神经元模型
神经元模型
从神经元的特性和功能可以知道,神经元相当于一个多输入单 输出的信息处理单元,而且,它对信息的处理是非线性的,人工神 经元的模型如图所示:
神经元的n个输入 对应的连接权值
阈值
激活函数
人工神经网络
二〇一五年十二月
.
目录
2
.
一、人工神经网络的 基本概念
3
.
一、人工神经网络的 基本概念
人工神经网络(Artificial Neural Network,即ANN)可以概 括的定义为:
由大量具有适应性的处理元素(神经元)组成的广泛并行互联 网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交 互反应,是模拟人工智能的一条重要途径。人工神经网络与人脑相 似性主要表现在:
6
.
1.2生物神经元结构
生物神经元结构
(1)细胞体: 细胞核、细胞质和细胞膜。 (2)树突:胞体短而多分枝的突起。相当于神经元的输入端。 (3)轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神 经末稍传出神经冲动。
7
.
1.2生物神经元结构
(4)突触:神经元间的连接接口,每个神经元约有1万~10万个突 触。神经元通过其轴突的神经末稍,经突触与另一神经元的树突联 接,实现信息的传递。由于突触的信息传递特性是可变的,形成了 神经元间联接的柔性,称为结构的可塑性。
①神经网络获取的知识是从外界环境学习得来的; ②各神经元的连接权,即突触权值,用于储存获取的知识。
神经元是神经网络的基本处理单元,它是神经网络的设计基础 。神经元是以生物的神经系统的神经细胞为基础的生物模型。在人 们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元 数学化,从而产生了神经元数学模型。因此,要了解人工神经模型 就必须先了解生物神经元模型。
n
o f wjxj
j0
其中, W0=-Ɵ ; x0=1
13
.
1.5人工神经元模型
神经元的模型具有以下特点:
①神经元是一个多输入、单输出单元。
②它具有非线性的输入、输出特性。
③它具有可塑性,反应在新突触的产生和现有的神经突触的调整上 ,其塑性变化的部分主要是权值w的变化,这相当于生物神经元的 突出部分的变化,对于激发状态,w取正直,对于抑制状态,w取负 值。
1957年,F.Rosenblatt提出“感知器”(Perceptron)模型,第一 次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神 经网络研究的第一次高潮。
5
.
1.1人工神经网络发展简史
20世纪60年代以后,数字计算机的发展达到全盛时期,人们误以 为数字计算机可以解决人工智能、专家系统、模式识别问题,而放 松了对“感知器”的研究。于是,从20世纪60年代末期起,人工神 经网络的研究进入了低潮。
突触结构示意图
.
1.3生物神经元的信息处理机理
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图12.2 生物神经元功能模型
神经元的兴奋与抑制
当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位 的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。 当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时, 为抑制状态,不产生神经冲动。
net= w i x i
输出
11
.
1.5人工神经元模型
上面的神经元模型可以用一个数学表达式进行抽象与概括,从 而得到神经元的数学模型:
n
o f w jx j
j1
w x 神经元的网络输入记为net,即
n
net=
jj
j1
12
.
1.5人工神经元模型
有时为了方便起见,常把-Ɵ也看成是恒等于1的输入X0 的权值 ,这时上面的数学模型可以写成:
1982年,美国加州工学院物理学家Hopfield提出了离散的神经网 络模型,标志着神经网络的研究又进入了一个新高潮。1984年, Hopfield又提出连续神经网络模型,开拓了计算机应用神经网络的 新途径。
1986年,Rumelhart和Meclelland提出多层网络的误差反传(back propagation)学习算法,简称BP算法。BP算法是目前最为重要、应 用最广的人工神经网络算法之一。
15
.
1.6激活函数
1.阈值型激活函数
阈值型激活函数是最简单的,前面提到的M-P模型就属于这一类 。其输出状态取二值(1、0或+1、-1),分别代表神经元的兴奋和 抑制。 当f(x)取0或1时,
1,若x0 f (x) 0,若x0
16
.
1.6激活函数
当f(x)取1或-1时,f(x)为下图所示的sgn(符号)函数
sgn(x)=
1, 若x 0 f (x) -1,若x 0
17
.
1.6激活函数
2.S型激活函数
神经元的状态与输入级之间的关系是在(0,1)内连续取值的单 调可微函数,称为
1 1 ex
双极性S型函数:
f(x)12ex 1=11 eexx
18
.
1.6激活函数
3.分段线性激活函数