新人教版八年级上册第15章分式导学案全册(45页)

合集下载

人教版八年级数学上册第十五章 分式导学案

人教版八年级数学上册第十五章 分式导学案

第十五章分式车每BB三、自学自测A.x≠1B.x≠2C.x≠1且x≠2D.以上结果都不对想一想:小明说:“因为2x x x =,所以x 取任何实数,分式2x x都有意义”,你同意他的观点吗?方法总结:分式AB 有意义的条件是B ≠0.(1)如果分母是几个因式乘积的形式,则每个因式都不为零.(2)判断分式有意义的条件,要看化简之前的式子.探究点3:分式值为0的条件想一想:(1)分式12x +的值可能为零吗?为什么? (2)当x 为何值时,分式22x x -+的值为零?(3)当x =2时,分式242x x --的值为零吗?为什么?要点归纳:分式AB =0的条件是A=0且B ≠0.例2:若使分式x 2-1x +1的值为零,则x 的值为 ( )A .-1B .1或-1C .1D .1和-1变式训练当x 时,分式||1(2)(1)x x x ---的值为零.方法总结:分式的值为零求字母的值:先根据分子为0,得出字母的值,然后一定要注意若分子中的整式是二次式或含有绝对值,解出的值一般有两个,要注意舍去使分母为0的值.1.下列各式:①2x ;②3x;③22x y x y -+;④32x y -.其中_________是整式,_________是分式.(填序号)2.若分式24xx -有意义,则x __________;若分式392--x x 的值为零,则x 的值是_______.3.在分式31x ax +-中,当x a =-时,分式( )A.值为零B.13a≠-时值为零 C.无意义 D.无法确定二、课堂小结探究点1:分式的基本性质问题1: 如何用字母表示分数的基本性质?一般地,对于任意一个分数a b ,有·÷,·÷==a a c a a cb bc b b c(c ≠0),其中a,b,c 表示数. 问题2:仿照分数的基本性质,你能说出分式的基本性质吗?做一做:分式.212·1·20,2_____212==≠a a a a a a a a a ,所以中,因为在分式与 .··0,_____222mnn n m n n m n n mn n mn n m n ==≠,所以中,因为在分式与分式 要点归纳:分式的基本性质:分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值_____. 即:()⨯=A A C B ,()÷=A A CB ,其中A ,B ,M 表示整式且C 是不等于0的整式. 例1:下列式子从左到右的变形一定正确的是( )A.a +3b +3=a bB.a b =ac bcC.3a 3b =a bD.a b =a 2b 2方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.例2:不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.0.015(1);0.30.04x x -+50.63(2).20.75a b a b--方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可.1.不改变分式0.2x +12+0.5x 的值,把它的分子、分母的各项系数都化为整数,所得结果为( )A.2x +12+5xB.x +54+xC.2x +1020+5xD.2x +12+x 2.不改变分式的值,使下列分式的分子和分母都不含“-”号.4.若把分式xyx y+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .扩大9倍C .扩大4倍D .不变第十五章分式..mn时,求水的高=B D_________作为积的分母.后,与被除式相乘..3xy等于(2 a B.2a2aD.xy2:探究点2:分式的化简求值3.老王家种植两块正方形土地,边长分别为a 米和b米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?5.先化简,再求值:(1)3x +3y 2x 2y ·4xy 2x 2-y 2,其中x =12,y =13; (2)x 2-x x +1÷x x +1,其中x =3+1.第十五章 分式15.2 分式的运算15.2.1 分式的乘除 第2课时 分式的乘方学习目标:1.了解分式的乘方的意义及其运算法则并根据分式乘方的运算法则正确熟练 地进行分式的乘方运算.6.能应用分式的乘除法法则进行混合运算.重点:能运用乘方法则熟练地进行分式乘方运算.难点:能分清乘方、乘除的运算顺序,进行分式的乘除、乘方混合运算.1.a n2.计算:1.(a b )2=a b ·其中a 2. 1.(1)(3-a 2) 2.填空:3.计算:探究点1想一想:议一议: 2244x x ÷-+要点归纳:①乘除运算属于同级运算,应按照先出现的先算的原则,不能交换运算顺序; ②当除写成乘的形式时,灵活的应用乘法交换律和结合律可起到简化运算的作用; ③结果必须写成整式或最简分式的形式 试一试:计算dd c c b b a 1112⨯÷⨯÷⨯÷等于( ) A.a 2B.2222dc b a C.bcd a 2D.其他结果例1:计算:a -1a +2·a 2-4a 2-2a +1÷1a 2-1.方法总结:分式乘除混合运算要注意以下几点:(1)利用分式除法法则把除法变成乘法;进行约分,计算出结果.特别提醒:分式运算的最后结果是最简分式或整式.探究点2:分式的乘方想一想:类比分数的乘方运算,你能计算下列各式吗?2a b ⎛⎫= ⎪⎝⎭ ,3a b ⎛⎫= ⎪⎝⎭ ,10a b ⎛⎫= ⎪⎝⎭. 要点归纳:分式的乘方,就是把分子分母分别乘方,即(ab )n = .例2:下列运算结果不正确的是( )A .(8a 2bx 26ab 2x )2=(4ax 3b )2=16a 2x 29b 2B .[-(x 32y )2]3=-(x 32y )6=-x 1864y 6C .[y -x (x -y )2]3=(1y -x )3=1(y -x )3D .(-x n y 2n )n =x 2ny 3n. 例3:计算:(1)(-x 2y )2·(-y 2x )3·(-1x)4;(2)(2-x )(4-x )x 2-16÷(x -24-3x )2·x 2+2x -8(x -3)(3x -4).b 2.3.计算:35.先化简22222412()21--+÷-+-a a a aa a a a,然后选取一个你喜欢的数作为a的值代入计算.第十五章分式..把分子相加(减). 计算:8.能熟练地进行分式的混合运算. 重点:明确分式混合运算的顺序.难点:熟练地进行分式的混合运算.一、知识链接1.计算:()()45431;775114543132.395114⎛⎫⨯÷-= ⎪⎝⎭⎡⎤⎛⎫+⨯-÷= ⎪⎢⎥⎝⎭⎣⎦3.实数的混合运算法则是什么?答:___________________________________________________________________.二、新知预习 3.类比实数的混合运算法则,完成下面运算:22221422441x x x x x x x x x x +--+⎛⎫-÷+ ⎪--+-⎝⎭()()221421x x x x x x ⎡⎤+--+=-÷+⎢⎥-⎣⎦ 有括号要先算括号内的()()()()2421x x x x ⎡⎤-+=-÷+⎢⎥-⎣⎦(异分母的分式的加减转化为同分母分式的加减)()()2421x x x x -+=÷+-先算乘除,后算加减()()()()21x x +=⨯+-(将分式的除法转化为分式的乘法)()()()()=+(异分母的分式的加减转化为同分母分式的加减)()()=要点归纳:在进行分式的加、减、乘、除混合运算时,一般按照运算顺序进行:先算_______,再算_______;如果有括号,先算____________. 三、自学自测1.计算:⎣⎦24a a -⎫⎪⎭ 难点:熟练进行整数指数幂及其相关的计算.八、要点探究探究点1:负整数指数幂问题1:a m 中指数m 可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么? 问题2:计算:a 3 ÷a 5=? (a ≠0)要点归纳:当n 是正整数时,=(a≠0).即a -n (a ≠0)是a n的倒数.正整数指数幂的运算由此扩充到整数指数幂.例1:若a =(-23)-2,b =(-1)-1,c =(-32)0,则a 、b 、c 的大小关系是( )A .a >b =cB .a >c >bC .c >a >bD .b >c >a方法总结:关键是理解负整数指数幂及零次幂的意义,依次计算出结果.当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.例2:计算:(1)(x 3y -2)2;(2)x 2y -2·(x -2y )3;(3)(3x 2y -2)2÷(x -2y )3;(4)(3×10-5)3÷(3×10-6)2.方法总结:正整数指数幂的运算性质推广到整数范围后,计算的最后结果常化为正整数指数幂.例3:若(x -3)0-2(3x -6)2有意义,则x 的取值范围是( )A .x >3B .x ≠3且x ≠2C .x ≠3或x ≠2D .x <2方法总结:任意非0数的0指数幂为1,底数不能为0. 例4:计算:-22+(-12)-2+(2016-π)0-|2-3|.方法总结:分别根据有理数的乘方、0指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.探究点2:用科学记数法表示绝对值小于1的数 想一想:你还记得1纳米=10-9米,即1纳米=米吗? 算一算:10-2= ___________;10-4= ___________;10-8= ___________. 议一议:指数与运算结果的0的个数有什么关系?要点归纳:利用10的负整数次幂,把一个绝对值小于1的数表示成a ×10-n 的形式,其中n 是正整数,1 ≤na n a19101第十五章 分式15.3 分式方程第1课时 分式方程及其解法学习目标:1.了解分式方程的概念,掌握解分式方程的基本思路. 10.掌握可化为一元一次方程的分式方程的解法.3.理解分式方程无解的原因,掌握分式方程验根的方法.重点:掌握解分式方程的基本思路和解法. 难点:理解分式方程无解的原因.一、知识链接1.下列哪些式子是方程?(1)267=-x ( ) (2)549=- ( ) (3)8+x ( ) (4)312 -x ( ) (5)2131x x =- ( ) (6)132=-yx ( ) (7)132=-y x ( ) (8)5=x ( )2.解一元一次方程的一般需经过哪些步骤呢?结合例题回顾.3.找出下列各组分式的最简公分母:(1)11+x 与11-x 的最简公分母是 . (2)21+a 与412-a 的最简公分母是 .二、新知预习问题1:什么是分式方程?要点归纳:分母中含有________的方程叫做分式方程.问题2:解分式方程的一般步骤有哪些?要点归纳:(1)去分母:在方程的两边都乘以___________,化成整式方程; (2)解这个整式方程:去括号、移项、合并同类项;(3)检验:把解得的根代入______________,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则这个解不是原分式方程的解. 三、自学自测1.下列各式中,分式方程是 ( )A.65x x = B.1051x x =- C.2341x x =+ D.()1033x xa a =-≠ 2.解分式方程2211x x x++--=3时,去分母后变形为 ( )问题3:解分式方程的基本思路是什么?需要注意的问题是什么?1.下列关于x 的方程中,是分式方程的是( ) A.3+x 2=2+x 5 B.2x -17=x 2C.x π+1=2-x 3D.12+x=1-2x 2. 要把方程 化为整式方程,方程两边可以同乘以( ) 3. 解分式方程 时,去分母后得到的整式方程是( ) A.2(x-8)+5x=16(x-7) B.2(x-8)+5x=8 C.2(x-8)-5x=16(x-7) D.2(x-8)-5x=8 4.若关于x 的分式方程2213m x x x +-=-无解,则m 的值为 ( ) A .-1,5 B .1 C .-1.5或2 D .-0.5或-1.53. 解方程:.所用时间相同.已知两人每;x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()例2:朋友们约着一起开着2辆车自驾去黄山玩,其中面包车为领队,小轿车车紧随其后,他们同时出发,原来少分摊3元车费,若设原来参加旅游的学生有x 人,则所列方程为( )A.180x -180x +2=3B.180x +2-180x =3C.180x -180x -2=3D.180x -2-180x =3 2.一轮船往返于A 、B 两地之间,顺水比逆水快1小时到达.已知A 、B 两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度.3. 农机厂到距工厂15千米的向阳村检修农机,一部分人骑自行车先走,过了40分钟, 其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.4.某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?。

人教版八年级上数学第十五章分式分式方程导学案

人教版八年级上数学第十五章分式分式方程导学案

人教版八年级上数学第十五章分式分式方程导学案一. 学习目标1、掌握分式方程的定义2、会解可化为一元一次方程的分式方程3、会解已知方程有增根时方程中有待定字母的值4、列分式方程解有关应用题二、重难点重点:掌握解分式方程的方法难点:分式方程的增根及其应用三、知识链接前面讲过的一元一次方程的解法,以及怎样在应用题中找等量关系四、学法指导注意分式方程向整式方程的转化五、学习过程(A级)(一)、基础知识梳理(1)分母中含有______的方程叫做分式方程。

(2)在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的____(3)解分式方程的思想:把分式方程转化为_______.(4)解分式方程的一般步骤①把方程两边都乘以_________,化成整式方程。

②解这个______方程。

③检验:把整式方程的根代入________,若使最简公分母的值为_____,则这个根是原方程的______,必须舍去,若_________不等于零,则它是________. (5)整式方程和__________叫做有理方程。

(二)注意事项2、由增根求参数值的解答思路:(1)将原方程化为整式方程(两边同时乘以最简公分母)(2)确定增根(题目已知或使分母为零的未知数的值)(3)将增根代入变形后的整式方程,求出参数的值。

(理由:增根是由分式方程化成的整式方程的根)3、列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂些,解题时应抓住“找等量关系,恰当设未知数,确定主要等量关系,用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解。

另外,还要注意从多角度思考,分析,解决问题,注意检验。

(三)典例解答(B 级)1、解方程:22321011x x x x x --+=--(B 级)2、解分式方程x x +27—23x x -=1+1722--x x点拨:找好最简公分母,注意对几个分母进行分解后,来找.(C 级)3、若关于x 的分式方程0111=----x x x m 有增根,则m 的取值是? 点拨:把分式方程进行转化,然后找到有可能的增根,代入。

最新人教版八年级上册第15章《分式》全章学案(共12份)

最新人教版八年级上册第15章《分式》全章学案(共12份)

导学案15.1.1 从分数到分式【学习目标】1、掌握分式概念,掌握分式有意义的条件和值为零的条件,能用分式表示数量关系.2、经历分式概念的自我建构过程及用分式描述数量关系的过程,体验类比的数学思想.3、体验数学活动充满着探索和创造,体会分式模型思想.【学习重点】理解分式有意义的条件,分式的值为零的条件.【学习难点】能熟练地求解分式有意义的条件、分式的值为零的条件. 【学习过程】一、课前导学:(学生自学课本126-127页内容,并完成下列问题) 1、单项式和多项式统称 .2、53表示 ÷ 的商,)()2(n m b a +÷+可以表示为 . 3、填空:⑴长方形的面积为102cm ,长为7cm ,宽应为 cm ;长方形的面积为S ,长为a ,宽应为 .⑵把体积为2003cm 的水倒入底面积为332cm 的圆柱形容器中,水面高度为 cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 .思考:式子a s ,s v ,5+x x ,212-+x x 有什么共同点? 答:它们与分数有什么相同点和不同点? 答:相同点: ,不同点 【定义】一般地,形如BA 的式子叫做分式,其中A 和B 均为 ,B 中含有 . 5、⑴当x 时,分式x 32有意义; ⑵当x 时,分式1-x x有意义;⑶当x 时,分式523+-x x 有意义; ⑷当x = 时,分式623+-x x 无意义【结论】分式有意义的条件是 ;分式无意义的条件是 . 6、当x = 时,分式xx 3+值为零; 当x = 时,分式54--x x 值为零【结论】分式值为零的条件是 .二、合作、交流、展示: 1.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?2.例题: 例题1列各式中,哪些是分式,哪些整式?(1)x 4 (2)4a(3)y x -1 (4)43x(5)21x 2 (6)232-x ⑺y x x +2注意:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别.例题2. 当x 为何值时,下列分式有意义. (1)535+-x x (2)432--x x (3)()21-x x (4)232+-x x 例题3当x 为何值时,下列分式的值为零(1)x x 32+ (2)592--x x (3)33+-x x ⑷()242+-x x x思考:分式112-+x x 的值可能为0,为什么?三、巩固与应用:1.填空;⑴走一段长10千米的路,步行用了x 2小时,骑自行车所用时间比步行所用时间的一半少为0.2小时,骑自行车的平均速度为 .⑵甲完成一项工作需t 小时,乙完成同样工作比甲少用1小时,甲乙的工作效率是⑶小李要打一份12000字的文件,第一天他打了2h ,打字速度为字每分钟w 字/min ,第二天他打字的速度比第一天快了10字/ min ,两天打完全部文件,第二天他字用的时间为2、下列各式中,分式的有 , 是整式的有 ; ①x 1,②3x ,③a π,④)(3b a c -,⑤352-a ,⑥22y x x -,⑦11x +,⑧n m n m -+,⑨ 22a b a b--, 3、下列各式中,无论x 取何值,分式都有意义的是( )A .121x + B .21xx + C .231x x+ D .2221x x + 4、当x = 时,分式2212x x x -+-的值为零, 当x = 时,分式()623--x x x 的值为零四、小结: 1. 式子 BA 是分式的条件是A 和B 均为 ,B 中含有2. 分式B A 有意义的条件是 ,分式B A 值为零的条件是五、作业:《课本》第133页. 第1、2、3题赣州一中2013—2014学年度第一学期初二数学导学案15.1.2(1) 分式基本性质(一)【学习目标】1.理解分式的基本性质和分式的变号法则. 2.会用分式的基本性质将分式约分,.3.经历探索分式的基本性质的过程,体验分式变形的方法,体验类比的数学思想.【学习重点】理解分式的基本性质,理解分式变号的法则,利用分式的基本性质进行分式的约分. 【学习难点】灵活运用分式的基本性质进行分式的约分. 【学习过程】一、课前导学:(学生自学课本129-131页内容,并完成下列问题)1.因式分解中平方差公式: ,完全平方公式: .2.把下列各式分解因式:⑴2226ab b a += ⑵y y x 42-= ⑶3222b ab b a +-= 3.填空:⑴()1032= , ()35624= , ()a 232=(其中a ≠0 ), ()595=c c (其中a ≠0 ) 分数的基本性质: .4.【思考】类比分数的基本性质,你能猜想分式的有什么性质?分式的基本性质:用式子表示为⑴B A = (C ≠0) ⑵BA= (C ≠0) 5.填空:⑴ ()ab ac b 2= ⑵ ()2632xyy x= ⑶ ()2-=a b b a ⑷()y y x 486= ⑸ ()x x xy x 242222=+ ⑹ ()()()()y x y x y x xy -=--2 5. ⑴=÷÷=232232242242b b b ab b ab ⑵()()()()()()=-÷--÷-=--2222222222x x x x x x 【定义】与分数的约分类似,利用分式的基本性质,我们可以对分式进行约分.把一个分式的分子和分母中的 约去,叫做分式的约分.【定义】把一个分式约分后,分式中的分子和分母没有公因式, 这样的分式叫做 .5.把下列分式进行约分:⑴=c b ab 32 ⑵=22188mn n m ⑶=+x x x 222 ⑷()()()=+--4332x x x 二、合作、交流、展示:1.分式的基本性质: 分式的分子、分母乘以(或除以)同一个不为0的整式,分式的值不变. 可用式子表示为:B A =C B C A ∙∙ B A =CB C A ÷÷(C ≠0) (思考:为什么C ≠0) 2.例题 例题1.填空:⑴c a b ++1=()cn an + ⑵ ()x x x x -=+21 ⑶()y xy x =3 ⑷()yx xxy x +=+22633 例题2.约分:⑴c ab bc a 2321525- ⑵96922++-x x x ⑶()a a --1)1(3 ⑷y x y xy x 33612622-+- 注意:1、约分的关键步骤是确定分子与分母的公因式,当分子或分母是多项式时,应先分解因式,然后再约分.2、分式约分后的结果是最简分式或整式.例题3.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 23b ac -- (2) 235b xy - (3)()22b a b a ++-- ⑷ 2317b a ---仔细观察,思考:分子、分母、分式本身的三个符号中,同时改变几个符号,分式值不会改变? 三、巩固与应用:1.若分式 yx xy + 的分子、分母中的x 与y 同时扩大2倍,则分式的值( )A 、扩大2倍B 、缩小2倍C 、不变D 、是原来的2倍2、(1) x x x 3222+= ()3+x ;(2) 32386b b a =()33a (3) c a b ++1=()cn an +; (4) ()222y x y x +-=()yx - 3.约分:(1)c ab b a 2263 (2)x y y x --3)(2 (3)222b a ab a -+ ⑷()222y x y x +- 4.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)b a ba +---2 (2)yx y x -+--32四、小结: 1.分式的基本性质2.分式约分的步聚五、作业:《课本》第133页. 第4、5、6题赣州一中2013—2014学年度第一学期初二数学导学案15.1.2(2) 分式的基本性质(二)――通分【学习目标】1. 理解最简公分母的含义.2. 灵活运用分式的基本性质进行分式的通分.3、从分数通分到分式的通分,体验类比转化的数学思想.【学习重点】准确确定分式的最简公分母,熟练进行分式的通分. 【学习难点】灵活运用分式的基本性质进行分式的通分. 【学习过程】一、课前导学:(学生自学课本131-132页内容,并完成下列问题)1.分式的基本性质: .2.填空:⑴25x y --= ;⑵()22--x x= ;⑶3---x y = . 3.把分数87和123通分:87= , 123= . 4.利用分式的基本性质,把ab 21和232ab -化成分母都是b a 26的分式: ab 21=()()∙∙ab 21=()ba 26 ,232a b -=()()()∙∙-232a b = ()ba 26【定义】与分数的通分类似,把几个异分母的分式分别化成与原来分式相等的 的分式,叫做分式的通分. 我们把分母b a 26叫做分式ab 21和232a b-的最简公分母,思考:最简公分母b a 26与分母ab 2、23a 之间有什么关系?【定义】一般取各分母的 因式的 的积作公分母,它叫做最简公分母. 【方法】确定最简公分母的步骤: ⑴系数取: ;⑵字母和因式取: ;⑶字母和因式的指数取 . 简称为“小、全、高” 5. 指出下列分式分母的最简公分母,并把它们通分. ⑴223ab 和28bc a解: 最简公分母: 223ab =()()∙∙223ab = , 28bc a =()()∙∙28bc a = (2)11-y 和11+y 解: 最简公分母: 11-y =()()∙-∙)1(1y = ,11+y =()()∙+∙)1(1y =二、合作、交流、展示: 1. 确定最简公分母的步骤:“小、全、高”! “小”: “全”: “高”: . 2.例题 例1、指出下列分式的最简公分,并通分: ⑴bc a 362 与d b a a 22152- ⑵ d b c 382与2127abd - 例2、指出下列分式的最简公分母并通分:⑴52-x x 与53+x x ⑵ x x x 222+-与()221+-x x【方法】当分母是多项式时,先把分母分解因式后,再确定最简公分母. 例3、指出下列分式的最简公分,并通分: ⑴2121a a a -++与261a - ⑵ 229y x y-与y x x --32三、巩固与应用:1.通分: ⑴bc a d 26-与2274ab cd ⑶x y y x 33-+与()2y x xy- ⑷9422-m mn 与m m 2332+- 2.若分式()x x x-3有意义则x 的取值范围是 .3.下列各式对不对?如果不对,写出正确答案:⑴ x x x x -=+--111212 ⑵ ()yx xy x x xy -=--22 4.拓展: ⑴.使分式1332-+x x 的值是整数x 的值为 . ⑵.已知2+32=3222⨯,3+83=8332⨯,4+154=15442+,… 若10+a b =a b ⨯210(其中a 、b为正整数),求分式ba ab b ab a 22222+++的值.四、小结: 1. 最简公分母的意义; 2.确定最简公分母的步骤:3.通分的步骤:五、作业:《课本》第133页. 第7题赣州一中2013—2014学年度第一学期初二数学导学案15.2.1分式的乘法【学习目标】1.理解分式的乘除法法则,体会类比的思想. 2.会根据分式的乘除法法则进行简单的运算. 【学习重点】运用分式的乘除法法则进行运算. 【学习难点】分子、分母为多项式的分式乘除运算. 【学习过程】一、课前导学:(自学课本第135-137页,完成下列问题)1、约分 ⑴233123ac c b a = ⑵ ()2xy y y x += ⑶ ()22y x xy x ++= ⑷()222y x y x --= 2、分数的乘除:32×54=()()()()⨯⨯,75×92=()()()()⨯⨯,32÷54=32×()()=()()⨯⨯32,75÷92=75×()()=()()⨯⨯75 【分数的乘法法则】:分数乘分数,用 作为积的分子, 作为积的分母. 【除法法则】:除以一个 的数等于 这个数的 .分式的乘除,猜一猜a b ×c d =()()()()⨯⨯, a b ÷c d =a b ×()()=()()()()⨯⨯ 【分式的乘法法则】:分式乘分式,用 作为积的分子, 作为积的分母. 【分式的除法法则】:分式除以分式,把除式的分子、分母 位置后,与被除数 .2、填空(1)=∙c a a b (2)a ba 22∙=(3)=÷a b a 22 (4)nxmymx ny -∙=3、问题1、一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b ,当容器内的水占容积的nm时,水面的高度为多少?(提示:这个长方体容器的高怎么表示?) 4、问题2、大拖拉机m 天耕地a 2hm ,小拖拉机n 天耕地b 2hm ,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(分析)大拖拉机和小拖拉机的工作效率怎样表示?所以:大拖拉机的工作效率是小拖拉机的工作效率的 ÷ = 倍. 二、合作、交流、展示:例1:分子、分母为单项式的分式乘除(1)y x 34·32x y (2)cd b a cab 4522223-÷【收获】:(1)运算结果应约分到最简。

新人教版八年级上第十五章分式15.1.1从分数到分式导学案

新人教版八年级上第十五章分式15.1.1从分数到分式导学案

新人教版八年级上第十五章分式学案15、1、1 从分数到分式八年数学 备课人: 审核学习目标:1、了解分式产生的背景和分式的概念以及分式与整式概念的区别与联系。

2、掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。

3、以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。

重点: 分式的概念和分式有意义的条件。

难点: 分式的特点和分式有意义的条件。

一、课前热身:1、 什么是整式?2、 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x - ;a 1 ;xy x 2- ;3a ;5 . 3、 自主探究:完成p 2的“思考”,通过探究发现,a s 、sV 、v +20100、v -2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。

4、 归纳:分式的意义: 。

上面所看到的a 1 、x y x 2-、a s 、sV 、v +20100、v -2060都是 。

我们小学里学过的分数有意义的条件是 。

那么分式有意义的条件是 。

二、课堂展示:例1、在下列各式中,哪些是整式?哪些是分式?(1)、5x-7 ;(2)、3x 2-1 ;(3)123+-a b ;(4)、7)(p n m +;(5)、—5 ;(6)、1222-+-x y xy x 。

(7)、72;(8)、cb +54。

例2、p 3的“例1”例3、x 为何值时,下列分式有意义?(1)、1-x x ; (2)、15622++-x x x (3)、242+-a a ;例4、x 为何值时,下列分式的值为0?(1)、11+-x x ;(2)、392+-x x ;(3)、112+-a a (4)11--x x三、随堂练习:p 4的“练习”四、课堂检测:1、下列各式中,(1)yx y x -+(2)132+x (3)x x 13-(4)π22y xy x ++(5)14.3--πb a (6)0.整式是 ,分式是 。

新人教版八年级数学上册第十五章分式学案

新人教版八年级数学上册第十五章分式学案

新人教版八年级数学上册第十五章分式学案【学习目标】1、理解并掌握分式的概念;理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

2、经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人交流合作。

3、体验数学活动充满着探索和创造,体会分式模型思想及从特殊到一般的数学思想。

【重点难点】重点:理解分式有意义的条件,分式的值为零的条件。

难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

【学法指导】“问题引导—发现教学法”,借助课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。

引导学生积极自主探索、合作交流与实践创新。

叫做分母。

)分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,、、分式、分式A B第十五章分式第2课时分式的基本性质(一)【学习目标】1、学生理解并掌握分式的基本性质及变号法则,能运用这些性质进行分式的恒等变形;2、通过分式的恒等变形提高学生的运算能力;3、渗透类比转化的数学思想方法。

【重点难点】重点:使学生理解并掌握分式的基本性质,这是学好本章的关键难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形【学法指导】引导学生类比、积极自主探索、合作交流与实践创新。

第十五章分式第3课时分式的基本性质(二)【学习目标】1、会用分式的基本性质将分式变形,正确进行分式通分;2、经历探索分式通分的方法的过程,在理解的基础上灵活的进行分式的通分变形;3、体验灵活运用分式的基本性质进行通分的分式变形的方法,突破难点,收获成功。

【重点难点】重点:掌握分式的通分方法难点:最简公分母的确定【学法指导】引导学生类比、积极自主探索、合作交流与实践创新。

第十五章分式第4课时分式的乘除(一)【学习目标】1、理解分式乘除法的法则,会进行分式乘除运算;2、通过探索分式的乘除法法则的过程,使学生掌握类比的数学思想方法能较好地实现新知识的转化;3、体验学习主体性的发挥,具备主动获取知识的能力。

新人教八年级上册第15章15.1.2 分式的基本性质导学案

新人教八年级上册第15章15.1.2 分式的基本性质导学案

新人教八年级上册第15章15.1.2 分式的基本性质一、新课导入1.导入课题:你知道分数的基本性质吗?由此你是否能联想出分式的基本性质呢?2.学习目标:(1)能说出分式的基本性质.(2)能利用分式的基本性质将分式变形.(3)会用分式的基本性质进行分式的约分和通分.3.学习重、难点:重点:分式的基本性质及运用,分式的符号法则.难点:分式基本性质的运用——约分和通分.二、分层学习1.自学指导:(1)自学内容:教材第129页到第130页第15行.(2)自学时间:8分钟.(3)自学方法:回顾分数的基本性质,联想并归纳分式的基本性质.(4)自学参考提纲:①回忆分数的基本性质:一个分数的分子、分母同时乘以(或除以)同一个不为零的数,分数的值不变.2 3=2(6)36⨯⨯4545(9)54549÷=÷=56②判断(正确的打“√”,错误的打“×”)4433c c = (×) 515=55155÷÷ (√) 363644040+4+=(×) 22x -x 11x x x x -=++ (√) ③类比分数的基本性质,得出分式的基本性质.一个分式的分子,分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为:A B=A CBC ∙∙,A B =A CB C÷÷ (C≠0). ④在运用分式的基本性质时应特别注意什么? 要注意分子和分母同时乘(或除以)的这个整式是否为0. 2.自学:同学们根据自学指导进行自学. 3.助学: (1)师助生:①明了学情:让学生说一说,辨一辨,了解学生对分式基本性质的运用情况,特别是乘(或除以)的数(或整式)一定要满足的条件.②差异指导:对部分认识存在困难的学生进行点拨、启发和引导. (2)生助生:相互启发,互助解决疑难问题. 4.强化:(1)分式的基本性质:文字叙述、字母表达. (2)判断正误:1.自学指导:(1)自学内容:教材第130页倒数第7行到例3前的内容.(2)自学时间:5分钟.(3)自学方法:阅读课本内容,结合自学提纲进行自学.不懂的问题做上记号.(4)自学参考提纲:①什么是约分?把一个分式的分子与分母的公因式约去,叫做分式的约分.②约分的依据是什么?约分的依据是分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的数(或式子),分式的值不变.③约分后的分式,其分子与分母没有公因式,这样的分式叫做最简分式.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否弄清楚自学提纲中的问题.②差异指导:对学有困难的学生予以分类指导.(2)生助生:学生之间相互展示交流和帮助.4.强化:(1)分式约分的定义以及最简分式的概念.(2)约分的依据:分式的基本性质.(3)下列各分式,不是最简分式的有D.1.自学指导:(1)自学内容:教材第131页例3.(2)自学时间:5分钟.(3)自学方法:认真阅读课本例3的解答过程,仔细观察每步分子分母变化的目的及依据.(4)自学参考提纲:①约分约去的是公因式,因此,约分要先找出公因式;②如果分子或分母是多项式,就要先对多项式进行因式分解,以便找出分母、分子的公因式,最后约分.③约分结果都要成为最简分式或整式.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否弄清例题中化简分式的思路、方法和过程.②差异指导:对部分学生在学习例题时存在的疑点进行点拨引导.(2)生助生:学生之间相互交流帮助.4.强化:(1)约分要领:约分都是先找分子和分母的公因式(是多项式的还要分解因式),再约去公因式.(2)约分的理论依据是分式的基本性质.(3)约分要求约到最简分式为止.(4)练习:约分1.自学指导:(1)自学内容:教材第131页“思考”到第132页例4 的内容. (2)自学时间:5分钟.(3)自学方法:认真阅读课本,比照分数通分的方法,类比归纳分式通分的方法.(4)自学参考提纲: ①什么叫通分?把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.②通分的依据是什么?分式的基本性质:分式的分子与分母乘(或除以)同一个不等于O 的整式,分式的值不变.③通分的关键是什么? 确定各分式的最简公分母. ④如何确定n 个分式的公分母?一般取各分母的所有因式的最高次幂的积作公分母. ⑤分式2214a b 与36x a b c的最简公分母是12a 2b 3c ,通分后的结果分别是23312bc a b c 23212acx a b c. ⑥分数的约分与通分和分式的约分通分有什么异同点?大家相互交流一下.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否知道找最简公分母的方法及明白通分的依据.②差异指导:帮助部分学困生,如何找最简公分母,如何进行通分,比照分数的通分进行指导.(2)生助生:生生互助交流.4.强化:(1)通分的依据和定义,最简公分母的定义及确定通分的方法.(2)练习:①分式x+y2xy ,2y3x,2x-y6x y的最简公分母为6x2y2,通分后x+y 2xy =22223x y+3xy6x y,2y3x=3222y6x y,2x-y6x y=222x-xy6x y.②分式x2()x y+,2y3()x y-的最简公分母是6(x+y)(x-y).三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果、不足之处进行简要点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):分式的基本性质在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生学习的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.一、基础巩固(第1、2、3、4题每题10分、第5题20分,共60分)1.填空:2.下列等式正确的是(B )3.分式21x x +,221x -,21x x-的最简公分母是x(x+1)(x-1). 4.化简下列分式.5.把下列各式通分.二、综合应用(每题10分,共20分)7.不改变分式的值,把下列分式中分子、分母的各项系数化为整数.三、拓展延伸(每题10分,共20分)。

八年级上第十五章分式导学案

八年级上第十五章分式导学案

中学“学议练思”自学指导教学学案编制:审核:学生姓名:课题:15.2.1 分式的乘除(二)主讲:学习目标:1.能应用分式的乘除法法则进行乘除混合运算。

2.能灵活应用分式的乘除法法则进行分式的乘除混合运算。

3.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣学习重点::掌握分式乘除法法则及其应用学习难点:掌握分子分母是多项式的分式的乘除法混合运算教学流程学习过程备注(一)依案自学,自主构建;(10分钟)(1)创设情境,导入新课。

(2)下发学案,学生自学(3)教师巡视,适时指导。

预习新知1.分式的约分:__________________________________________ 最简分式:__________________________________________下列各分式中,最简分式是()A.()()yxyx+-8534B.yxxy+-22C.2222xyyxyx++D.()222yxyx+-2.分解因式:2232x y xy y-+=3a a-=2312x-= 220.01a b-=21222x x++=2242x y x y-++= 3. 计算(1)=÷⨯4156523(2)=⨯÷251225354.分数乘除法混合运算顺序是什么?分式的乘除法混合运算与分数的乘除法混合运算类似你能猜想出分式的乘除法混合运算顺序吗?(二)热点追议,互动交流;(15分钟)(1)组内交流,初步解决问题。

(2)班内交流,解决热点问题。

(3)教师示范,展示知识脉络。

例1.计算(先把除法变乘法,把分子、分母分解因式约分,然后从左往右依次计算)注意:过程中,分子、分母一般保持分解因式的形式。

随堂练习1.完成课后练习2.计算(1)2224369a aa a a--÷+++(2)(ab-b2)÷baba+-22(3)xyxxyxyyxyx++÷++-222222243.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖机的工作效率是小拖机的工作效率( )倍.中学“学议练思”自学指导教学学案编制:审核:学生姓名:课题: 15.2.1 分式的乘除(三)主讲:学习目标: 1.能应用分式的乘除法,乘方进行混合运算。

新人教版八年级上册第15章分式导学案全册(45页)

新人教版八年级上册第15章分式导学案全册(45页)

2013年秋八年级上册导学案第十五章 分式从分数到分式一、学习目标:1、了解分式的概念以及分式与整式概念的区别与联系。

2、掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。

3、以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。

二、学习重点: 分式的概念和分式有意义的条件。

三.学习难点: 分式的特点和分式有意义的条件。

四.温故知新:1、 什么是整式? ,整式中如有分母,分母中 (含、不含)字母2、 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x - ;a 1 ;xy x 2- ;3a ;5 . 3、 阅读“引言”, “引言”中出现的式子是整式吗? 4、 自主探究:完成“思考”,通过探究发现,a s、s V 、v +20100、v-2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。

5、 归纳:分式的意义: 。

代数式a 1 、x y x 2-、a s 、sV 、v +20100、v -2060都是 。

分数有意义的条件是 。

那么分式有意义的条件是 。

五、学习互动:例1、在下列各式中,哪些是整式?哪些是分式? (1)5x-7 (2)3x 2-1 (3)123+-a b (4)7)(p n m + (5)—5 (6)1222-+-x y xy x (7)72 (8)cb +54例2、填空:(1)当x 时,分式x32有意义(2)当x 时,分式1-x x 有意义(3)当b 时,分式b351-有意义(4)当x 、y 满足关系 时,分式y x y x -+有意义例3、x 为何值时,下列分式有意义?(1)1-x x(2)15622++-x x x (3)242+-a a六、拓展延伸:例4、x 为何值时,下列分式的值为0?(1)11+-x x (2)392+-x x (3)11--x x七、自我检测:1、下列各式中,(1)y x y x -+(2)132+x (3)x x 13-(4)π22y xy x ++(5)5b a -(6)0.(7)43(x+y )整式是 ,分式是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年秋八年级上册导学案第十五章 分式从分数到分式一、学习目标:1、了解分式的概念以及分式与整式概念的区别与联系。

2、掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。

3、以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。

二、学习重点: 分式的概念和分式有意义的条件。

三.学习难点: 分式的特点和分式有意义的条件。

四.温故知新:1、 什么是整式? ,整式中如有分母,分母中 (含、不含)字母2、 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x - ;a 1 ;xy x 2- ;3a ;5 . 3、 阅读“引言”, “引言”中出现的式子是整式吗? 4、 自主探究:完成“思考”,通过探究发现,a s、s V 、v +20100、v-2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。

5、 归纳:分式的意义: 。

代数式a 1 、x y x 2-、a s 、sV 、v +20100、v -2060都是 。

分数有意义的条件是 。

那么分式有意义的条件是 。

五、学习互动:例1、在下列各式中,哪些是整式?哪些是分式? (1)5x-7 (2)3x 2-1 (3)123+-a b (4)7)(p n m + (5)—5 (6)1222-+-x y xy x (7)72 (8)cb +54例2、填空:(1)当x 时,分式x32有意义(2)当x 时,分式1-x x 有意义(3)当b 时,分式b351-有意义(4)当x 、y 满足关系 时,分式y x y x -+有意义例3、x 为何值时,下列分式有意义?(1)1-x x(2)15622++-x x x (3)242+-a a六、拓展延伸:例4、x 为何值时,下列分式的值为0?(1)11+-x x (2)392+-x x (3)11--x x七、自我检测:1、下列各式中,(1)y x y x -+(2)132+x (3)x x 13-(4)π22y xy x ++(5)5b a -(6)0.(7)43(x+y )整式是 ,分式是 。

(只填序号) 2、当x= 时,分式2+x x没有意义。

3、当x= 时,分式112+-x x 的值为0 。

4、当x= 时,分式22x x +的值为正,当x= 时,分式1132+-a a 的值为非负数。

5、甲,乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同而行则b 小时甲追上乙,那么甲的速度是乙的速度的( )倍. A.b b a + B.b a b + C.a b a b -+ D.a b ab +-6、“循环赛”是指参赛选手间都要互相比赛一次的比赛方式.如果一次乒乓球比赛有x 名选手报名参加,比赛方式采用“循环赛”,那么这次乒乓球比赛共有 场7、使分式63||2---x x x 没有意义的x 的取值是( )A.―3B.―2C. 3或―2D. ±3 五、小结与反思:分式的基本性质(1)学习目标:1、能类比分数的基本性质,推出分式的基本性质。

2、理解并掌握分式的基本性质,能进行分式的等值变形。

学习重点:分式的基本性质及其应用。

学习难点:利用分式的基本性质,判断分式是否有意义。

学习过程:一、温故知新:1.若A 、B 均为_____式, 且B 中含有_________. 则式子叫做分式B A。

值为负的条件是值为正的条件是值为零的条件是无意义的条件是有意义的条件是、式子____________,_____________________________,_______,2BA3、小学里学过的分数的基本性质的内容是什么?由分数的基本性质可知,如数c ≠0,那么c c 3232=,5454=c c 4、你能通过分数的基本性质猜想分式的基本性质吗?试一试归纳:分式的基本性质: _____________________________用式子表示为 5、 分解因式(1)x 2-2x = (2)3x 2+3xy=(3)a 2-4= (4) a 2-4ab+b 2= 二、学习互动:1、把书中 “例2”整理在下面。

(包括解析)2、填空:(1)aby a xy=、 (2)z y z y z y x +=++2)(3)(6。

3、下列分式的变形是否正确?为什么?(1)2xxyx y = 、 (2)222)(b a b a b a b a --=+-。

4、不改变分式的值,使分式b a ba +-32232的分子与分母各项的系数化为整数5、将分式yx x+2中的X,Y 都扩大为原来的3倍,分式的值怎么变化? 解:()yx xy x x y x x +=+=+⨯2363332 所以分式中的X Y 都扩大原来的3倍,但分式的值不变。

三 1、不改变分式的值,使下列分式的分子与分母都不含“—”号: (1)b a 2-、 (2)y x 32-、 (3)nm43-、(4)—n m 54- (5)ba32-- (6)—a x 22-四、反馈检测:1、不改变分式的值,使下列分式的分子与分母都不含“—”号:(1)n m 2-= 、(2)—2ba-= 。

2、填空:(1))1(1m ab m --=ab (2)2)2(422-=+-a a a 、(3)abb ab ab =++332 3.若X,Y,Z 都扩大为原来的2倍,下列各式的值是否变化?为什么 ?(1)z y x + (2)zy yz+4、不改变分式的值,使下列分式的分子与分母的最高次项的系数化为正数。

(1)121--+x x (2)322+--x x(3)11+--x x 。

5、 下列各式的变形中,正确的是( )A.2a aab a a b -=- B.c bac ab =--11 C. 1313-=--b a b aD.yxy x 255.0=6、 下面两位同学做的两种变形,请你判断正误,并说明理由.甲生:2222)()())((y x y x y x y x y x y x y x +-=++-=+-; 乙生:2222)())(()(yx y x y x y x y x yx y x --=-+-=+-分式的基本性质(2)——(约分)学习目标:1、进一步理解分式的基本性质,并能用其进行分式的约分。

2、了解最简分式的意义,并能把分式化成最简分式。

3、通过思考、探讨等活动,发展学生实践能力和合作意识。

学习重点:分式的约分。

学习难点:利用分式的基本性质把分式化成最简分式。

学习过程:一、温故知新:1、分式的基本性质是:_____________________________________________________.用式子表示 ________________。

2、分解因式:(1)x 2—y 2 =______(2)x 2+xy=_____(3)9a 2+6ab+b 2 =_____(4)-x 2+6x-9 =_________3、(1)使分式42+X X有意义的X 的取值范是(2)已知分式11+-X X 的值是0,那么X(3)使式子11+X 有意义X 的取值范围是 (4)当X 时分式24XX +是正数。

5、自主探究:“思考”部分。

归纳:分式的约分定义: 最大公因式:所有相同因式的最 次幂的积最简分式:二、学习互动:1、例1、(“例3”整理)通过上面的约分,你能说出分式进行约分的关键是确定分子和分母___________ 2、例2、约分:(1)321015xy yx -、 (2)44222+--m m m m 、想一想:分式约分的方法:1、(1)当分子和分母的都是单项式时,先找出分子和分母的最大公因式(即系数的__________与相同字母的最___次幂的积),然后将分子和分母的最大公因式约去。

(2)、当分式的分子和分母是多项式时,应先把多项式_______, 然后约去分子与分母的________。

2、约分后,分子和分母没有_______,称为最简分式。

化简分式时,通常要使结果成为_____分式或_____得形式。

三、拓展延伸: 1.约分:(1)2510522+--m m m m 、 (2)、22222y xy x y x ++-2.请将下面的代数式尽可能地化简,在选择一个你喜欢的数(要合适哦!)带入求值:11)1(22--++-a a a a四、反馈检测:1.下列各式中与分式aa b--的值相等的是( ). (A )a a b -- (B) a a b + (C) a b a - (D)ab a--2.如果分式211x x -+的值为零,那么x 应为( ).(A )1 (B )-1 (C )±1 (D )0 3.下列各式的变形:①x y x y x x -+-=;②x y x yx x-++=-;③x y x y y x x y -++=--;④y x x y x y x y --=-++.其中正确的是( ).(A )①②③④ (B )①②③ (C )②③ (D )④4、约分:(1)d b a bc a 10235621-、 (2)、2323510c b a bc a -(3)1681622++-a a a 、 (4)mm m m 24422++- 、(5)mm m m -+-2212 。

(6)224202525y xy x y x +--分式的基本性质(3)——(通分)学习目标:1、了解分式通分的步骤和依据。

2、掌握分式通分的方法。

3、通过思考、探讨等活动,发展学生实践能力和合作意识。

学习重点:分式的通分。

学习难点:准确找出不同分母的分式的最简公分母。

学习过程一、温故知新:1、分式的基本性质的内容是 ________________ 用式子表示 _______________________2、计算:3121+ ,运算中应用了什么方法?________. 这个方法的依据是什么?__________________.4、猜想:利用分式的基本性质能对不同分母的分式进行通分吗? ____________________________. 自主探究:“思考”。

归纳:分式的通分: 二、学习互动:例1、(整理“例4”。

)最简公分母: 通分的关键是准确找出各分式的 例2、分式22(1)x x --,323(1)x x --,51x -的最简公分母( ) A .(x-1)2 B .(x-1)3 C .(x-1)D .(x-1)2(1-x )3例3、求分式b a -1、22b a a-、ba b +的最简公分母 ,并通分。

三、拓展延伸: “练习”的2.五.反馈检测: 1、通分:(1)bca y ab x 229,6、(2)16,12122-++-a a a a 、 (3)xx x x 32,1,1+2、通分:(1)a a a --11,1 (2)2,422+-x x x(3)bca bab a 215,32- 1612122-++-a a a a 与 3、 分式121,11,121222++-+-a a a a a 的最简公分母是( ) A.22)1(-a B.)1)(1(22+-a a C.)1(2+a D.4)1(-a 3.先约分再计算:444242222++-+++x x x x x x x 969392222++-+++x x x x x x x4.通分并计算:1122++-+x x x112---a a a分式的乘除(一)学习目标 1.理解并掌握分式的乘除法则,运用法则进行简单的分式乘除运算;2.经历探索分式的乘除法运算法则的过程,并能结合具体情境说明其合理性。

相关文档
最新文档