人教版八年级上册数学期末复习:分式及其运算
人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
人教版八年级数学上册分式(含知识点)

⑴边边边( ):三边对应相等的两个三角形全等.
⑵边角边( ):两边和它们的夹角对应相等的两个三角形全等.
⑶角边角( ):两角和它们的夹边对应相等的两个三角形全等.
⑷角角边( ):两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边( ):斜边和一条直角边对应相等的两个直角三角形
⑷多边形的外角和:多边形的外角和为360°.
⑸多边形对角线的条数:①从 边形的一个顶点出发可以引 条对角
线,把多边形分成 个三角形.② 边形共有 条对角线.
第十二章 全等三角形
一、知识框架:
二、知识概念:
1.基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
2.基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
⑶经过分析,找出由已知推出求证的途径,写出证明过程.
第十三章 轴对称
一、知识框架:
二、知识概念:
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相
重合,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一
个图形重合,那么就说这两个图形关于这条直线对称.
一、知识框架 :
二、知识概念:
1.分式:形如 , 是整式, 中含有字母且 不等于0的整式叫做分式.其中 叫做分式的分子, 叫做分式的分母.
人教版八年级数学上册 15.2分式的运算 知识点归纳

人教版八年级数学上册15.2分式的运算知识点归纳分式的乘除法则:①乘法:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法:分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘。
字母表示:①ab ·cd=a·cb·d②ab ÷cd=ab·dc=a·db·c运算的结果应化成最简分式。
例1、4b3a3×6a25b2=24a2b15a3b2=85ab例2、7y22x ÷5x2y4=7y22x×45x2y=28y210x3y=14y5x3如果运算的时候,分子和分母是多项式,通常要先分解因式,再约分要计算分式的乘除混合运算,可以先把除法转化成乘法,再用乘法法则来计算。
分式乘方,要把分子、分母分别乘方。
字母表示:(ab )n=a nb n分式的加减法则:①分母相同的分式相加减,保持分母不变,把分子相加减。
②分母不同的分式相加减,要先通分,使分母化为相同的,然后再加减。
字母表示:①ac ±bc=a±bc②ab ±cd=adbd±bcbd=ad±bcbd在分式的混合运算中,运算顺序和以前是一样的,即:①从左往右计算。
②有括号先算括号里面的式子,依次按小括号、中括号、大括号的顺序进行。
③没有括号,则先算乘方,再算乘除,最后算加减。
一个数的负指数幂等于把幂指数变号后所得的幂的倒数。
字母表示:a−m=1a m(m是正整数)例3、3−2=132=19,4−3=143=164。
随着指数的取值范围由正整数推广到全体整数,前面《整式的乘法》一章中的一些运算性质也推广到了整数指数幂:①a m·a n=a m+n(m,n都是整数)②a m÷a n=a m−n(m,n都是整数)③(a m)n=a mn(m,n都是整数)④(a m b n)p=a mp b np(m,n都是整数)负指数幂也可用在科学记数法中,小于1的正数也可以用科学记数法表示。
八年级上数学分式知识点

八年级上数学分式知识点一、分式的概念分式也叫有理数,是数的一种表现形式,其中分子和分母都是整数,分母不能为0。
分式可以写成a/b的形式,a为分子,b为分母。
二、分式的化简1.因式分解法将分子和分母进行因式分解,然后将公因式约掉。
例如:(6a^2b)/(9ab^2) = (2a)/(3b)2.通分化简法将两个分母的最小公倍数作为分母,分子分别乘以分母的倍数,然后约掉公因式。
例如:(3/4) + (1/6) = (9/12) + (2/12) = (11/12) 3.除法化简法将除法转换成乘法,分子不变,分母倒过来。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)三、分式的加减1.通分后合并分子例如:(2/3) + (1/4) = (8/12) + (3/12) = (11/12) (1/2) - (1/3) = (3/6) - (2/6) = (1/6)2.需要先找到一个公因式例如:(1/4x) + (3/5) = (5/20x) + (12/20) = (5+12)/20x = (17/20x) (1/2y) - (2/3x) = (3/6y) - (4/6x) = (3x-4y)/6xy四、分式的乘法将分子相乘,分母相乘,然后约掉公因式。
例如:(3/4) × (2/5) = (6/20) = (3/10)五、分式的除法将除号转为乘号,然后取倒数,分子同分母约掉公因式。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)六、分式的绝对值分式的绝对值是分子分母的绝对值之商,如果分子分母符号相同,结果为正,如果符号不同,结果为负。
例如:|-2/3| = 2/3|-2/-3| = 2/3七、分式的倒数将分数的分子和分母交换位置,得到一个新的分数,即原分数的倒数。
例如:倒数是 4/5 的分数为 5/4以上就是八年级上数学分式知识点的详细介绍,希望同学们在学习数学的过程中能够掌握这些知识点,并且通过练习提高自己的数学水平。
人教版数学八年级上册15.2.1:分式的乘除法课件

分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
(2)12xy8x2y 5a
解:原式
12xy 5a
8
1 x2
y
12xy 5a 8x2 y
3 10 ax
巩固 练习
(3) xy yx ; xy xy
解:原式 x y -(x y) ; xy xy
(x y)(x y) (x y)(x y)
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
一定要注意符号变化呦!
当分子分母是多项式时,先分解因式便于约分的进行
3a16b 分 的乘法法则:
解:原 式 分 的乘法法则:
2
4b9a (3)因式分解在分式乘除法中的应用;
思考:类比分数的乘除法法则,你能说出分式的乘除法法则吗?
分数除以分数,把除数的分子、分母颠倒位置后,与被除数相乘。
2 分式运算的结果通常要化成最简分式或整式.
4 xy (3)因式分解在分式乘除法中的应用; 当分子分母是多项式时,先分解因式便于约分的进行 2
3 3 分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
6 x y 分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
当分子分母是多项式时,先分解因式便于约分的进行
分 的乘法法则:
(3)因式分解在分式乘除法中的应用;
4xy 分 的除法法则:
解:原 式 (2)运用法则时注意符号变化;
(3)因式分解在分式乘除法中的应用;
3
3y2x (1)分式的乘除法法则;
当分子分母是多项式时,先分解因式便于约分的进行
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
八年级数学上册《分式》知识点归纳

分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。
如果除式..B .中含有分母.....,那么称BA为分式。
(对于任何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。
人教版数学八年级上册15.分式的乘方及乘方与乘除的混合运算课件

9 x2
要注意判断乘方的结果 的符号
(2)(
y 2x
)3
(3)(
2a2b -3c
)2
原式= y3 (2x)3
(2a2b)2 原式= (-3c)2
y3
8x3
= 4a4b2 9c2
随堂演练
D 1.下列计算中,正确的是(
)
A. x 2 x2
3y
6y2
C.
x 3
3y
x3 27 y
B.
2x 3
拓展训练
1、计算:
(1) ( b )2n (n为正整数) a
(2) ( b )2n1 (n为正整数) a
解:原式=
b2n a2n
b 2 n 1
解:原式=
a 2 n 1
(3)
(
x
2
x2
4 6x
9
)2
解:原式=
(x 2)(x 2) (x 3)2
2
(x 2)2 (x 2)2
(x 3)4
y
2x3 y3
D.
2x 3
y
8x3 y3
2.计算:
(1)(- m )2 m2
n
n2
(2)(-
m )3 n
m3 n3
(3)(- ac )5 =- a5c5
b
b5
(4)( 2a )3 b
(2a)3
(b)3
8a3 b3
(5)(
a3c 3b2
)3
(a3c)3 (3b2 )3
(6)(
2xy2 3
分式的乘方法则:
一般地,当n 是正整数时,
n个a
( a )n= a a a = a a a = an , b b b b b b b bn
人教版数学八年级上册分式的加减乘除混合运算课件

4.解:
4a 2 a2
a
8a 2
a a
1 1
a a
1 1
4a(a 2)
4a
(a 2)(a 1) (a 1)(a 1)
4a (a 1)(a 1)
(a 1)
4a
a1
仔细观察题目的结构特点,灵活运用运 算律,适当运用计算技巧,可简化运算,提 高速度,优化解题。
人教版数学八年级上册分式的加减乘 除混合 运算课 件
2
2a-2b 3a+3b
-
a2 a2 -b2
a. b
例2 计算:
(1) m+2+
5
2-m
2m-4 ; 3-m
(2) xx2-+22x
-
x-1
x2
-4
x+4
x-4 . x
分式的混合运算:关键是要正 确的使用相应的运算法则和运算顺 序;正确的使用运算律,尽量简化 运算过程;结果必须化为最简。
y
2 3 x
2
1 3x
1
•
x
x
y
2• x x y
2x x y
人教版数学八年级上册分式的加减乘 除混合 运算课 件
人教版数学八年级上册分式的加减乘 除混合 运算课 件
2.
(m
2 n)3
1 m
1 n
m2
1 2mn
n2
1 m2
1 n2
mn
m3n3
人教版数学八年级上册分式的加减乘 除混合 运算课 件
4a b2
= 4a2 - 4(a a-b) b(2 a-b) b(2 a-b)
= 4a2 -4(a a-b)= 4a2 -4a2+4ab
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 分式及其运算☞解读考点☞2年中考 【2015年题组】1.(2015常州)要使分式23-x 有意义,则x 的取值范围是( )A.2x> B.2x< C.2x≠- D.2x≠【答案】D.【解析】试题分析:要使分式23-x有意义,须有20x-≠,即2x≠,故选D.考点:分式有意义的条件.2.(2015济南)化简2933mm m---的结果是()A.3m+ B.3m- C.33mm-+ D.33mm+-【答案】A.考点:分式的加减法.3.(2015百色)化简222624x xx x x--+-的结果为()A.214x- B.212x x+ C.12x- D.62xx--【答案】C.【解析】试题分析:原式=262(2)(2)xx x x--++-=2(2)(6)(2)(2)x xx x---+-=2(2)(2)xx x++-=12x-.故选C.考点:分式的加减法.4.(2015甘南州)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.13 B.23 C.16 D.34【答案】B.【解析】试题分析:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.故选B.考点:1.概率公式;2.分式的定义;3.综合题.5.(2015龙岩)已知点P(a,b)是反比例函数1yx=图象上异于点(﹣1,﹣1)的一个动点,则1111a b+++=()A.2 B.1 C.32 D.12【答案】B.考点:1.反比例函数图象上点的坐标特征;2.分式的化简求值;3.条件求值.6.(2015山西省)化简22222a ab b ba b a b++---的结果是()A.aa b- B.ba b- C.aa b+ D.ba b+【答案】A.【解析】试题分析:原式=2()()()a b ba b a b a b+-+--=a b ba b a b+---=a b ba b+--=aa b-,故选A.考点:分式的加减法.7.(2015泰安)化简:341()(1)32aaa a-+---的结果等于()A.2a- B.2a+ C.23aa-- D.32aa--【答案】B.【解析】试题分析:原式=(3)342132a a a aa a-+---⋅--=24332a aa a--⋅--=(2)(2)332a a aa a+--⋅--=2a+.故选B.考点:分式的混合运算.8.(2015莱芜)甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用12v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关【答案】B.考点:1.列代数式(分式);2.行程问题.9.(2015内江)已知实数a,b满足:211aa+=,211bb+=,则2015a b-|= .【答案】1.【解析】试题分析:∵2110aa+=>,2110bb+=>,∴0a>,0b>,∴()10ab a b++>,∵211aa+=,211bb+=,两式相减可得2211a ba b-=-,()()b aa b a bab-+-=,[()1]()0ab a b a b++-=,∴0a b-=,即a b=,∴2015a b-=02015=1.故答案为:1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题.10.(2015黄冈)计算)1(22baabab+-÷-的结果是________.【答案】1a b-.【解析】试题分析:原式=()()b a b a a b a b a b +-÷+-+=()()b a b a b a b b +⋅+-=1a b -.故答案为:1a b -.考点:分式的混合运算. 11.(2015安徽省)已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c≠0,则111a b +=;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c中只有两个数相等,则a +b +c =8.其中正确的是 (把所有正确结论的序号都选上). 【答案】①③④.考点:1.分式的混合运算;2.解一元一次方程.12.(2015梅州)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m .【答案】12;12-;1021.【解析】试题分析:1(21)(21)n n -+=2121a bn n +-+=(21)(21)(21)(21)a n b n n n ++-+-=(22)(21)(21)a b n a b n n ++-+-,可得(22)1a b n a b ++-=,即:01a b a b +=⎧⎨-=⎩,解得:a=12,b=12-;m=111111(1...)23351921-+-++-=11(1)221-=1021,故答案为:12;12-;1021. 考点:1.分式的加减法;2.综合题.13.(2015河北省)若02≠=b a ,则ab a b a --222的值为 .【答案】32.【解析】试题分析:∵2a b =,∴原式=2222442b b b b --=32,故答案为:32. 考点:分式的化简求值.14.(2015绥化)若代数式25626x x x -+-的值等于0,则x=_________. 【答案】2. 【解析】试题分析:由分式的值为零的条件得2560x x -+=,2x ﹣6≠0,由2560x x -+=,得x=2或x=3,由2x ﹣6≠0,得x≠3,∴x=2,故答案为:2. 考点:分式的值为零的条件.15.(2015崇左)化简:2221(1)2a a a a +--÷. 【答案】12-a .考点:分式的混合运算.16.(2015桂林)先化简,再求值:2269392x x xx-+-÷-,其中3x=-.【答案】23x+.【解析】试题分析:分解因式后,利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式=2(3)2(3)(3)3xx x x-⨯+--=23x+,当3x=-时,原式.考点:分式的化简求值.17.(2015南京)计算:22221()aa b a ab a b-÷--+.【答案】21a.【解析】试题分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.试题解析:原式=21[]()()()a ba b a b a a b a+-⨯+--=2[]()()()()a ab a ba ab a b a a b a b a++-⨯+-+-=2()()()a ab a ba ab a b a-++⨯+-=21a.考点:分式的混合运算.18.(2015苏州)先化简,再求值:2121122x xx x++⎛⎫-÷⎪++⎝⎭,其中1x=.【答案】11x+考点:分式的化简求值.19.(2015盐城)先化简,再求值:)()(131112+÷-+a aa ,其中a=4.【答案】31aa -,4.【解析】试题分析:根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.试题解析:原式=2113(1)(1)(1)a a a a a -++⋅+-=23(1)(1)(1)a a a a a +⋅+-=31aa -; 当a=4时,原式=3441⨯-=4.考点:分式的化简求值.20.(2015成都)化简:211()242a a a a a -+÷+-+.【答案】12a a --.【解析】试题分析:括号内先通分,同时把除法转化为乘法,再用分式乘法法则计算机即可.试题解析:原式=()()()22221212214412212a a a a a a a a a a a a a -⎛⎫-++-+⨯=⨯= ⎪---+---⎝⎭.考点:分式的加减法.21.(2015资阳)先化简,再求值:2112()111xx x x+-÷-+-,其中x满足260x-=.【答案】22x+,25.考点:1.分式的混合运算;2.分式的化简求值.22.(2015达州)化简2221432a aa a a a+⋅----,并求值,其中a与2、3构成△ABC 的三边,且a为整数.【答案】13a-,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a的值代入计算即可求出值.试题解析:原式=21(2)(2)(3)2a aa a a a a+⋅++---=11(2)(3)2a a a+---=13(2)(3)aa a+---=2(2)(3)aa a---=13a-,∵a与2、3构成△ABC的三边,且a为整数,∴1<a<5,即a=2,3,4,当a=2或a=3时,原式没有意义,则a=4时,原式=1.考点:1.分式的化简求值;2.三角形三边关系.23.(2015广元)先化简:222222()1211x x x x xx x x x+--÷--++,然后解答下列问题:(1)当3x=时,求原代数式的值;(2)原代数式的值能等于1-吗?为什么?【答案】(1)2;(2)不能.考点:分式的化简求值.24.(2015凉山州)先化简:222122(1)1211x x x xx x x x++-+÷+--+-,然后从22x-≤≤的范围内选取一个合适的整数作为x的值代入求值.【答案】241xx-+;当x=2时,原式=0,当x=-2时,原式=8.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将x=0代入计算即可求出值.试题解析:原式=211(1)2(1)1(1)(1)(1)x x x xx x x x x++---⋅+-++-=22(1)21(1)1x xx x x x-⋅--++=2(1)211xx x--++=241xx-+,∵满足22x-≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=22421⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+.考点:分式的化简求值.25.(2015广州)已知A=222111x x xx x++---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.【答案】(1)11x-;(2)1.考点:1.分式的化简求值;2.一元一次不等式组的整数解.26.(2015白银)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式21x+,22x--,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式AB.(1)请用画树状图或列表的方法,写出代数式AB所有可能的结果;(2)求代数式AB恰好是分式的概率.【答案】(1)答案见试题解析;(2)23.【解析】试题分析:(1)画出树状图,由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,利用概率公式求解即可求得答案.试题解析:(1)画树状图:(2)代数式AB所有可能的结果共有6种,其中代数式AB是分式的有4种,所以P (是分式)=46=23.考点:1.列表法与树状图法;2.分式的定义.【2014年题组】1.(2014年无锡中考)分式22x-可变形为()A.22x+ B.22x-+ C.2x2- D.2x2--【答案】D.考点:分式的基本性质.2.(2014年杭州中考)若241()w1a42a+⋅=--,则w=()A.a2(a2)+≠- B. a2(a2)-+≠ C. a2(a2)-≠ D. a2(a2)--≠-【答案】D.【解析】试题分析:∵()()()()()2414a 22a 1a 42a a 2a 2a 2a 2a 2a 2a 2+-+=-==---+--++-+,∴w=a 2(a 2)--≠-.故选D . 考点:分式的化简.3.(2014年温州中考)要使分式x 1x 2+-有意义,则x 的取值应满足( )A. x 2≠B. x 1≠-C. x 2=D. x 1=- 【答案】A . 【解析】试题分析:根据分式分母不为0的条件,要使x 1x 2+-在实数范围内有意义,必须x 20x 2-≠⇒≠.故选A .考点:分式有意义的条件.4.(2014年牡丹江中考)若x :y=1:3,2y=3z ,则的值是( )A .﹣5B . ﹣C .D . 5 【答案】A . 【解析】试题分析:∵x :y=1:3,∴设x=k ,y=3k ,∵2y=3z ,∴z=2k ,∴532322-=-+=-+k k kk y z y x .故选A . 考点:比例的性质.5.(2014年凉山中考)分式x 3x 3-+的值为零,则x 的值为( ) A. 3 B. ﹣3 C. ±3 D. 任意实数 【答案】A .考点:分式的值为零的条件.6.(2014年常德中考)计算:2111aa a-=--【答案】211a-.【解析】试题分析:原式=1(1)(1)(1)(1)a aa a a a+-+-+-=1(1)(1)a a+-=211a-.考点:分式的加减法.7.(2014年河池中考)计算:m1m1m1-=--.【答案】1.【解析】试题分析:根据分式加减法运算法则直接计算:m1m11m1m1m1--==---.考点:分式加减法.8.(2014年镇江中考)化简:1x1xx23x6-⎛⎫+÷⎪--⎝⎭.【答案】3x3-.考点:分式的混合运算.9.(2014年苏州中考)先化简,再求值:22x11x1x1⎛⎫÷+⎪--⎝⎭,其中x21=.2【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简. 然后代x的值,进行二次根式化简.试题解析:原式=x x 11x x x x 11()(x 1)(x 1)x 1x 1(x 1)(x 1)x 1(x 1)(x 1)xx 1--÷+=÷=⋅=-+---+--++.当x 1=时,原式====考点:1.分式的化简求值;2. 二次根式化简.10.(2014年抚顺中考)先化简,再求值:(1-11x +)÷221xx x ++,其中x=+1)0+(12)-1•tan60°.【答案】.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用零指数幂、负指数幂法则以及特殊角的三角函数值求出x 的值,代入计算即可求出值.试题解析:原式=2211(1)(1)111x x x x x x x x x +-++==+++,∵x=)0+(12)-1•tan60°时,原式+2.考点:1.分式的化简求值;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值. ☞考点归纳归纳 1:分式的有关概念 基础知识归纳:分式有意义的条件是分母不为零;分式无意义的条件是分母等于零;分式值为零的条件是分子为零且分母不为零. 注意问题归纳:分式有意义的条件是分母不为0,无意义的条件是分母为0. 分式值为0要满足两个条件,分子为0,分母不为0.【例1】使分式21x -有意义,则x 的取值范围是( )x ≠1 B .x=1 C .x ≤1 D .x ≥1 【答案】A .【解析】根据题意得:x-1≠0,解得:x ≠1.故选A . 考点:分式的有关概念.【例2】分式x3x3-+的值为零,则x的值为()A. 3B. ﹣3C. ±3D. 任意实数【答案】A.考点:分式的有关概念.归纳2:分式的性质基础知识归纳:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为)0()0(≠÷÷=≠⋅⋅=CCBCABACCBCABA注意问题归纳:分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值.【例3】化简2244xy yx x--+的结果是()2xx+B.2xx-C.2yx+D.2yx-【答案】D.考点:分式的性质.【例4】已知x+y=xy,求代数式11x y+-(1-x)(1-y)的值.【答案】0.【解析】∵x+y=xy,∴11x y+-(1-x)(1-y)=x yxy+-(1-x-y+xy)=x yxy+-1+x+y-xy=1-1+0=0.考点:分式的性质.归纳 3:分式的加减运算基础知识归纳:加减法法则:①同分母的分式相加减:分母不变,分子相加减②异分母的分式相加减:先通分,变为同分母的分式,然后再加减.注意问题归纳:1.分式加减运算的运算法则:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,然后再加减.异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.求最简公分母的方法是:①将各个分母分解因式;②找各分母系数的最小公倍数;③找出各分母中不同的因式,相同因式中取次数最高的,满足②③的因式之积即为各分式的最简公分母.【例5】计算:1aa11a+--的结果是.【答案】1-.【解析】1a1a1a1a11a a1a1a1-+=-==------.考点:分式的加减法.【例6】化简21639x x++-的结果是【答案】13x-.考点:分式的加减法.归纳 4:分式的乘除运算基础知识归纳:1.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.乘方法则:分式的乘方,把分子、分母分别乘方.2.除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.注意问题归纳:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.【例7】计算:222x1x x.x1x2x1--⋅+-+【答案】x.【解析】原式()()()()2x1x1x x1xx1x1+--=⋅=+-.考点:分式的乘除法.归纳5:分式的混合运算基础知识归纳:在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.注意问题归纳:注意运算顺序,计算准确.【例8】化简:222x2x6x3x1x1x2x1++-÷+--+【答案】2x1+.考点:分式的混合运算.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)要使321xx--有意义,则x应满足()A.12≤x≤3 B.x≤3且x≠12 C.12<x<3 D.12<x≤3【答案】D.【解析】试题分析:由题意得,3210xx--≥⎧⎨⎩①>②,解不等式①得,x≤3,解不等式②的,x >12,所以,12<x≤3.故选D.考点:1.二次根式有意义的条件;2.分式有意义的条件.2.(2015届山东省威海市乳山市中考一模)计算(-12)-1=()A.-12 B.12 C.-2 D.2【答案】C.【解析】试题解析:11()22--=.故选C.考点:负整数指数幂.3.(2015届山东省潍坊市昌乐县中考一模)分式211xx-+的值为0,则()A.x=-1 B.x=1 C.x=±1 D.x=0【答案】B.考点:分式的值为零的条件.4.(2015届广东省深圳市龙华新区中考二模)化简111xx x+--的结果是()A.-1 B.1 C.1+x D.1-x【答案】A.【解析】试题分析:原式=11111111x x xx x x x---==-=-----.故选A.考点:分式的加减法.5.(2015届江苏省南京市建邺区中考一模)计算a3•(1a)2的结果是()A.a B.a5 C.a6 D.a8【答案】A.【解析】试题分析:原式=a3•21a=a,故选A.考点:分式的乘除法.6.(2015届河北省中考模拟二)已知52,52,则(22a bab b ab a---)÷22a bab+的值为()A.1 B.14 C52 D510【答案】B.考点:分式的化简求值.7.(2015届北京市平谷区中考二模)分式2aa-有意义的条件是.【答案】a≠2.【解析】试题分析:根据分式有意义的条件可知分母a-2≠0,所以a≠2.考点:分式有意义的条件.8.(20151x+与(x+1)0都有意义,则x的取值范围为.【答案】x>-1且x≠1.【解析】试题分析:根据题意得:101010xxx+⎧≥-≠+≠⎪⎨⎪⎩解得:x>-1且x≠1.故答案为:x>-1且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件;3.零指数幂.9.(2015届广东省佛山市初中毕业班综合测试)若分式||11xx--的值为零,则x 的值为.【答案】x=-1.【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.故答案为:x=-1.考点:分式的值为零的条件.10.(2015届江苏省南京市建邺区中考一模)在函数y=11x-中,自变量x的取值范围是.【答案】x≠1.【解析】试题分析:根据题意得1-x≠0,解得x≠1.故答案为:x≠1.考点:1.函数自变量的取值范围;2.分式有意义的条件.11.(2015届北京市门头沟区中考二模)已知31m=-,求222442111m m mm m m-+-+÷+--的值.【答案】33.考点:分式的化简求值.12.(2015届四川省成都市外国语学校中考直升模拟)计算题(1)先化简,再求值:22222()2a ab a ba ba ab b b+---÷++,其中a=sin45°,b=cos30°;(2)若关于x的方程311x ax x--=-无解,求a的值.【答案】(1)265-;(2) a=1.【解析】试题分析:(1)原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算,约分得到最简结果,把a与b的值代入计算即可求出值;(2)分式方程去分母转化为整式方程,由分式方程无解求出x的值,代入计算即可求出a的值.试题解析:(1)原式=2()()a a ba b++-(a-b)•()()ba b a b+-=a b a ba b a b a b--=+++,当a=sin45°=22,b=cos30°=32时,原式=232322(526)265232322--==--=-++;(2)去分母得:x2-ax-3x+3=x2-x ,解得:x=32a +,由分式方程无解,得到x(x-1)=0,即x=0或x=1,若x=0,a 无解;若x=1,解得:a=1.考点:1.分式的化简求值;2.分式方程的解;3.特殊角的三角函数值. 13.(2015届安徽省安庆市中考二模)先化简,再求值:(﹣)÷,其中x=.【答案】3+x x,1﹣3.考点:分式的化简求值.14.(2015届山东省威海市乳山市中考一模)化简代数式22112x x x xx --÷+,并判断当x 满足不等式组⎧⎨⎩x +2<12(x -1)>6时该代数式的符号.【答案】负号.【解析】试题分析:做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分化简为12x x ++;再分别求出一元一次不等式组中两个不等式的解,从而得到一元一次不等式组的解集,依此分别确定x+1<0,x+2>0,从而求解.试题解析:原式=(1)(1)(2)1x x x x x x +-⨯+-=12x x ++; 不等式组⎧⎨⎩x +2<1①2(x -1)>6②,解不等式①,得x <-1.解不等式②,得x >-2,∴不等式组⎧⎨⎩x +2<12(x -1)>6的解集是-2<x <-1,∴当-2<x <-1时,x+1<0,x+2>0,∴12x x ++<0,即该代数式的符号为负号.考点:1.分式的化简求值;2.解一元一次不等式组.15.(2015届山东省日照市中考模拟)先化简,再求值:2211()()x y x y x y x y x y +----+,其中23x =+,23y =- 【答案】-4.考点:分式的化简求值.16.(2015届湖北省黄石市6月中考模拟)先化简再求值22213211143a a a a a a a +-+-⨯+-++,已知a2+2a ﹣7=0.【答案】2221a a ++,14.考点:分式的化简求值.。