基因芯片及其在植物病原物检测中的应用

基因芯片及其在植物病原物检测中的应用
基因芯片及其在植物病原物检测中的应用

基因芯片及其在植物病原物检测中的应用

摘要:基因芯片是近年来发展起来的一项新兴技术,是把大量DNA探针或基因片段按特定的排列方式固定在硅片、玻璃、塑料或尼龙膜等载体上,形成致密、有序的DNA分子点阵,在基因定位、DNA测序、突变检测、基因筛选、基因诊断和发现新基因等方面起着重要的作用。基因芯片技术已广泛应用于病原物检测,在植物病害预测和防治中起着重要的作用。

关键词:基因芯片; 病原物检测

1996年,美国Affvmetrix生物公司制造出世界上第一块商业化的基因芯片(Gene chips),由此掀起了基因芯片研究热潮。基因芯片被迅速而广泛地应用于生命科学与医学的各领域,被誉为继大规模集成电路后又一次意义深远的科技革命[1]。随着基因芯片技术的不断发展,其在生命科学和医学中的研究领域中的应用几乎是全方位的,包括基因定位、DNA测序、突变检测、基因筛选、基因诊断和发现新基因等[2]。本文仅叙述基因芯片原理已经基因芯片在植物病原物检测中的作用。

基因芯片的基本原理

基因芯片,又称DNA芯片(DNA chips),属于生物芯片(bio-chip)中的一种,是综合微电子学、物理学、化学及生物学等高新技术,把大量DNA探针或基因片段按特定的排列方式固定在硅片、玻璃、塑料或尼龙膜等载体上,形成的致密、有序的DNA分子点阵,因固相载体常用硅玻片或硅芯片,故称之为基因芯片[3]。基因芯片技术的基本原理是分子生物学中的核酸分子原位杂交技术:将短链核酸分子固定在固相载体上作为探针,待分析样品经过标记后与固定在芯片上的探针杂交。其技术流程主要包括芯片的制备、待测样本的制备和标记、杂交反应、结果检测和数据处理分析等。与传统的核酸印迹杂交技术相比,基因芯片具有可信度高、信息量大、操作简单、重复性强以及可以反复利用等诸多优点[4]。

基因芯片技术的四个技术环节

芯片的制备

主要是原位合成法和直接点样法。原位合成法适用于寡核苷酸;点样法多用于大片段,有时也用于寡核苷酸。原位合成法包括光导合成法和压电合成法。其优点是反应量大,探针的密度高并且可以和其他芯片制备方法结合使用,该方法的缺点是探针的长度较短,一般为20-50bp。点样法包括接触式点样和非接触式点样又称喷墨式打印。因点样法成本高,故适用于芯片上需要同一探针或是探针是长链DNA。

样品制备与标记

从待检细胞或组织中分离出DAN或RNA,经逆转录、PCR扩增、末端标记等操作,标记主要有荧光标记,生物素或同位素标记、现在常用荧光素标记,以提高检测的灵敏度和使用者的安全性。

杂交反应

属于固-液相反相杂交,探针分子固定于芯片表面,与液相的靶分子进行反应。但杂交条件的选择需考虑多方面的因素,如杂交反应体系中盐浓度、探针GC含量和所带电荷、探针与芯片之间连接臂的长度及种类、检测基因的二级结构的影响。由于基因芯片影响因素很多,所以要合理设置异种核酸平行实验、核酸质量、检测对照、封闭对照、归整化对照,以保证结果的准确性和重复性。信号检测和分析

常用的荧光标记法使用激光共聚集荧光扫描仪进行信号检测。激光共聚焦扫描仪的激光光源可产生激发不同荧光染料的光,当探针与待测核酸完全正常配对时的荧光信号强度是具有单个或2个错配碱基探针的5~35倍,而且荧光信号的强度还与样品中靶分子的含量呈一定的线性关系。新发展的纳米金标记,通过银放大后可直接用肉眼观察,具有非常好的灵敏度(超过荧光标记法100倍)和特异性。

基因芯片在植物病毒检测中的应用

目前对植物病毒的检测、鉴定虽然有一些方法,如电镜、ELISA、PCR技术等,但每次试验只能针对1种病原菌进行检测。近年来发展的基因芯片技术是一种高效、快速并可同时测定基因组成千上万个基因活动的新方法,该技术的原理是将大量DNA探针片段有序地固化于支持物表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,从而识别样品中存在的特异性核酸序列[5]。它最大的优点在于高通量、并行化和微型化,在基因芯片上,单位面积可以高密度排列大量的生物探针,1次试验就可以同时分析多种生物靶点,其效率远远高于传统检测手段。

基因芯片检测技术在植物病毒检测中也有很多探索和应用:Lee等[6]设计了一种芯片可以检测和区别4种感染葫芦科植物的烟草花叶病毒组成员,Abdullah 等[7]应用该技术成功检测了马铃薯A病毒(PV A)等12种病毒,马新颖等[8]建立了黄瓜花叶病毒、烟草花叶病毒、木槿褪绿环斑病毒等10种植物病毒的基因芯片检测方法。本研究结合RT-PCR,制备了用于检测CMV、TMV和PVY 3种植物病毒的基因芯片,以期为病毒病的防治提供一种简单、快速、准确的理想方法。

基因芯片在黄单胞菌检测中的应用

目前对黄单胞菌的分子生物学检测大多基于PCR技术。这些方法存在易污染、灵敏度低,而且每次只能检测一种致病菌等不足。基因芯片技术是近年发展起来的高新生物技术,可以对多种靶基因同时检测和鉴定,以其高通量、快速、多靶标等优势得到广泛的应用[9]。

龙海[10]等结合双重PCR和基因芯片技术同时检测和鉴定我国检疫性细菌,包括水稻白叶枯病菌(Xanthomonas oryzaepv.oryzae,Xoo)、水稻细菌性条斑病菌(X.oryzaepv.oryzicola,Xooc)、柑桔溃疡病菌(X.axonopodispv.citri,Xac)以及严重危害十字花科作物的甘蓝黑腐病菌(Xanthomonas campestrispv.campestris,Xcc)。以铁载体受体(Putative siderophore receptor)基因序列和RNA多聚酶西格玛因子(RNA polymerase sigma factor, rpoD)基因序列为靶标,设计引物和特异性探针能够

同时检测这4种重要的病原菌。对17个细菌菌株进行芯片检测,仅4种靶标菌得到阳性结果,证明此方法具有很高的特异性。4种致病菌基因组DNA的检测灵敏度约为3 pg。

基因芯片在植原体检测中的应用

植物植原体(phytoplasma)病害是一类危害严重的植物病害,其侵染性强,危害寄主广泛,曾造成许多经济作物、林木的大量死亡,带来严重的经济损失,如我国发生的泡桐丛枝病、枣疯病就是典型的例子。目前世界各地先后报道的植原体病害达700多种,我国也报道了100余种。因而及早发现感病植物中植原体的存在,及早采取相应的措施,将带毒植物予以铲除,杜绝侵染来源,对该类病害的防治具有重要意义。

但由于植原体在体外不能人工培养,长期以来主要依靠生物学、电镜观察、抗生素试验相结合的传统方法进行检测。自80年代以来,出现了血清学检测和多种分子生物学检测方法,主要有基于16S rRNA、23S rRNA以及核糖体蛋白基因rp序列的分析,建立限制性片段长度多态性分析(RFLP)、核酸杂交、PCR等检测方法。随着上述检测方法的不断改进,其准确性、灵敏性均有所提高。但这些方法大多都难以实现高通量检测。近年来,基因芯片检测技术已用于检测植物植原体。罗焕亮[11]等通过分析比对11种检疫性植原体的16S rDNA序列,设计了通用引物以及种间特异性探针,并建立了植原体基因芯片检测技术,实现了高通量检测植原体病原,提升了检疫鉴定植原体的速度。

参考文献

[1]熊伟.基因芯片技术在生命科学研究中的应用进展及前景分析.生命科学仪器,2010,8(1):32-36.

[2]Check Hayden E.Gene chips unmask cryptic diseases[J].Nature,2008,18;455(7211):274-276.

[3]尚丹.基因芯片技术的研究进展.国外医学:生物医学工程分册,2005,28(1):61-64.

[4]耿明杰,郑翠芝.基因芯片及其研究进展[J].黑龙江畜牧兽医职业学院学报,2002,1(1):28-30.

[5]王升启.基因芯片技术及应用研究进展[J].生物工程进展,1999,19(4): 45-51.

[6]Lee G P,Min B E,Kim C S,et al.Plant virus cDNA chip hybridization for detection and differentiation of four cu-curbit-infecting Tobamoviruses.Journal of Virological Methods,2003,110:19-24.

[7]Abdullahi I,Koerbler M.The 18S rDNA sequence of Synchytrium endobioticum and it's utility in microarrays for the simultaneous detection of fungal and viral patho-gens of potato.Applied Microbiology Biotechnology,2005,68:368-375.

[8]马新颖,汪琳,任鲁风,等.10种植物病毒的基因芯片检测技术研究.植物病理学报,2007,37(6):561-565.

[9] 陈昱,潘迎捷,赵勇,等.基因芯片技术检测3种食源性致病微生物方法的建立.

微生物学通报, 2009, 36(2): 285-291.

[10] 龙海,李一农,李芳荣.四种黄单胞菌的基因芯片检测方法的建立.生物技

术通报,2011,1(1):186-190.

[11]罗焕亮,张丽君,胡小华等.植原体检测基因芯片制备及其初步应用.植物检疫,

2011,25(1):9-13.

基因芯片技术基础知识(概念、制备、杂交、应用及发展方向)

生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP (human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学)[1],涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术[2]。 一.什么是基因芯片 生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交[3]的芯片。 基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。

(推荐)植物病原菌的接种

实验五植物病原物的接种 一、实验目的 人工使病原物与寄主植物感病部位接触,创造条件使病原物侵入并诱致寄主发病叫接种,接种是证病过程的重要步骤,在研究寄生现象发病规律,测定品种抗病性,药剂防病效果时都需要接种。因此,接种是植病工作者必须掌握的基本技术环节。 植物病害人工接种方法,是根据病害的传染方式和侵染途径设计的,植物病害的种类很多、其传染方式和侵染途径各异。因此接种方法也不相同。本次实验以玉米大斑病,小麦根腐病,小麦秆锈病,梨褐腐病等为内容学习常用的接种方法。 二、内容、材料和方法 (一)拌土法(小麦根腐病) 拌土法适于土壤传染的病害,方法是将消毒的土壤分别装入两个小花盆中,其中一盆表层覆以一厘米厚的菌土,菌土是用玉米砂培养菌1份加消毒土5份混合而成,另一盆不接种(不覆菌土)作为对照。将经0.1%升汞表面消毒3分钟并用无菌水洗3次的小麦种子,分别播种在两个花盆内,插上标牌,注明接种日期,方法病害名称及接种人姓名,花盆放在室温下,浇水保湿,遮阴管理,待幼苗出土展开叶子后(大约一周),观察并记载根腐病发生情况。 (二)喷雾法(玉米大斑病) 气流及雨水传播的病害常用此法接种,将培养好的玉米大斑病的斜面

菌种一支,用移植钩刮于装有100毫升无菌水的三角瓶中,用力振荡,待孢子洗下后,以纱布过滤,并于滤液中加入

0.1克中性肥皂,即成孢子菌丝悬液,用卫生喷雾器均匀喷布在麦苗上。同时设一不喷菌液而喷无菌水的作对照,用塑料罩保湿48小时,揭布后正常管理,7天后作发病调查。 (三)涂抹法(小麦秆锈病) 这也是气流传播的病害常用的接种方法,用于禾本科锈病接种。方法是用姆指沾锈菌夏孢子悬液自下向上轻轻涂欲接种的小麦叶片,也可先用手指沾水摩擦叶片,使叶表有一层水膜,然后将夏孢子粉抹在上面,以不涂抹孢子悬液或孢子粉的作为对照。塑料罩保湿48小时后揭布,正常管理,7天后作发病调查。 (四)创伤接种法(白菜软腐病及梨褐腐病) 创伤接种法是伤口侵入的弱寄生菌常用的接种方法。 1.白菜软腐病:取切成适当大小的白菜帮两块、经水洗,待水稍干后,以10%漂白粉溶液作表面消毒,分放在两个灭过菌的上下铺有吸水纸的培养皿中,用酒精擦过的玻璃棒顺着白菜帮打三排不穿透的孔穴。将培养好的白菜软腐病菌斜面菌种的菌苔以无菌水洗下作成菌悬液。然后,先以灭过菌的兽用注射器吸取无菌水滴于菜帮的第一排内孔作为对照,再用该注射器吸菌液滴于第二、三排孔内。注意无论无菌水、还是菌液都不要滴的过多。以免流出孔穴,另一培养皿的菜帮以同法处理作为重复。盖好皿盖,置于26—28℃的温箱中,24小时后检查发病情况。 2.梨褐腐病:取白梨以酒精火焰表面消毒后,用炽热的解剖刀,在其上切成小手指粗的孔穴3

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.360docs.net/doc/1c7700725.html,/geo/)和ArryExpress (http:// ;https://www.360docs.net/doc/1c7700725.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

基因芯片技术及其应用简介(精)

基因芯片技术及其应用简介 生物科学学院杨汝琪 摘要:随着基因芯片技术的发展,基因芯片越来越多的被人们利用,它可应用于生活中的方方面面,如:它可以应用于医学、环境科学、微生物学和农业等多个方面,基因技术的发展将有利于社会进一步的发展。 关键词:基因芯片;技术;应用 基因(gene是载有生物体遗传信息的基本单位,存在于细胞的染色体(chromosome上。将大量的基因片段有序地、高密度地排列在玻璃片或纤维膜等载体上,称之为基因芯片(又称DNA 芯片、生物芯片。在一块1 平方厘米大小的基因芯片上,根据需要可固定数以千计甚至万计的基因片段,以此形成一个密集的基因方阵,实现对千万个基因的同步检测。基因芯片技术是近年来兴起的生物高新技术,把数以万计的基因片段以显微点阵的方式排列在固体介质表面,可以实现基因检测的快速、高通量、敏感和高效率检测,将可能为临床疾病诊断和健康监测等领域,带来全新的技术并开拓广阔的市场。 1 基因芯片技术原理及其分类 1.1基因芯片的原理: 基因芯片属于生物芯片的一种"其工作原理是:经过标记的待测样本通过与芯片上特定位置的探针杂交,可根据碱基互补配对的原则确定靶序列[1],经激光共聚集显微镜扫描,以计算机系统对荧光信号进行比较和检测,并迅速得出所需的信息"基因芯片技术比常规方法效率高几十到几千倍,可在一次试验中间平行分析成千上万个基因,是一种进行序列分析及基因表达信息分析的强有力工具。 1.2基因芯片分类: 1.2.1根据其制造方法可分原位合成法和合成后点样法;

1.2.2根据所用载体材料不同分为玻璃芯片!硅芯片等; 1.2.3根据载体上所固定的种类可分为和寡核苷酸芯片两种; 1.2.4根据其用途可分测序芯片!表达谱芯片!诊断芯片等 2 基因芯片技术常规流程 2.1 芯片设计根据需要解决的问题设计拟采用的芯片,包括探针种类、点阵数目、片基种类等。 2.2 芯片制备将DNA, cDNA或寡核昔酸探针固定在片基上的过程。从本质上可分为两大类fz} ,一类是在片基上直接原位合成,有光蚀刻法、压电印刷法和分子印章多次压印法三种;另一类是将预先合成的探针固定于片基表面即合成点样法。 2.3 样品制备常规方法提取样品总RNA,质检控制。再逆转录为。DNAo 2.4 样品标记在逆转录过程中标记荧光素等。 2.5 芯片杂交标记的cDNA溶于杂交液中,与芯片杂交。 2.6 芯片扫描一用激光扫描仪扫描芯片。 2.7 图像采集和数据分析专用软件分析芯片图像,然后对数据进行归一化,最后以差异为两倍的标准来确定差异表达基因。 2.8 验证用定量PCR或原位杂交验证芯片结果的可信性。 3基因芯片合成的主要方法 目前已有多种方法可以将基因片段(寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种: 3.1原位合成:

基因芯片技术的研究进展与前景

基因芯片技术的研究进展与前景 摘要 关键词基因芯片,遗传性疾病,基因组计划, 一、基因芯片技术的产生背景 基因芯片技术是伴随着人类基因组计划而出现的一项高新生物技术。2001年6月公布了人类基因组测序工作草图;2002年出发飙了较高精确度和经过详细注解的人类基因组研究结果;2004年10月发表了已填补基因组中许多Gap片段的更精确的人类全基因组序列,标志人类基因组计划的完成和新时代的开始。随着人类基因组计划的开展,也同时进行了模式生物基因组测序工作。动物、植物、细菌及病毒基因组等测序工作都已取得重大进展。 随着各种基因组计划的实施和完成(有的即将完成),一个庞大的基因数据库已经建成。怎样从海量的基因信息中发掘基因功能。如何研究成千上万基因在生命过程中所担负的角色;如何开发利用各种基因组的研究成果,将基因的序列与功能关联起来,认识基因在表达调控、机体分化等方面的生物学意义;解释人类遗传进化、生长发育、分化衰老等许多生命现象的奥秘;深入了解疾病的物质基础及发生、发展过程;开发基因诊断、治疗和基因工程药物并用来预防诊断和治疗人类几千种遗传性疾病……这些都将成为现代生物学面临的最大挑战。这样的背景促使人们研究和开发新的技术手段来解决后基因组时代面临的一系列关键问题。20世纪90年代初,为适应“后基因组时代”的到来,产生了一项新的技术,即以基因芯片为先导的生物芯片技术。 二、基因芯片的概念 基因芯片(又称DNA芯片、DNA微阵列)技术是基于核酸互补杂交原理研制的。该技术指将大量(通常每平方厘米点阵密度高于400 )探针分子固定于支持物上后与有荧光素等发光物质标记的样品DNA或RNA分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息,从而对基因表达的量及其特性进行分析。通俗地说,就是通过微加工技术,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,只是在固相基质上古高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,所以被称为基因芯片。 三、基因芯片技术的分类 1 根据功能分类:基因表达谱芯片和DNA测序芯片两类。基因表达图谱芯片可以将克隆的成千上万个基因特异的探针或其cDNA片段固定在一块DNA芯片上,对于来源不同的个体、组织、细胞周期、发育阶段、分化阶段、病变、刺激(包括不同诱导、不同治疗手段)下的细胞内mRNA或反转录后产生的cDNA进行检测,从而对这个基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特异性进行综合的分析和判断,迅速将某个或某几个基因与疾病联系起来,极大地加快这些基因功能的确定,同时可进一步研究基因与基因间相互作用的关系,DNA测序芯片则是基于杂交测序发展起来的。其原理是任何线状的单链DNA或RNA序列均可裂解成一系列碱基数固定、错落而重叠的寡核苷酸,如能把原序列所有这些错落重叠的寡核苷酸序列全部检测出来,就可据此重新组建出新序列。 2 根据基因芯片所用基因探针的类型不同,可分为cDNA微阵列和寡核苷酸微阵

植物与病原菌互作和抗病性的分子机制

中国农业科学 1999,32(增刊):94~102 Scientia A gricultrua Sinica 植物与病原菌互作和抗病性的分子机制3 刘胜毅1 许泽永1 何礼远2 (1中国农业科学院油料作物研究所,武汉 430062;2中国农业科学院植物保护研究所) 提要 概述了近几年在寄主植物抗病基因与防卫反应基因、病原菌毒性基因、寄主抗病性机制和抗病基因工程策略等方面取得的主要进展,重点分析了抗病反应的一般过程、毒性基因 产物胞外水解酶和毒素的作用与关系、作物抗毒素基因工程策略。 关键词 植物;抗病基因;防卫基因;毒性基因;基因工程策略 早在40年代末50年代初,F lo r(1947;1955)在对亚麻和亚麻锈菌互作的遗传规律研究中,提出了基因对基因假说(gene2fo r2gene hypo thesis)〔4,5〕,这标志着对植物与病原菌互作的认识深入到了基因水平,从而为应用分子生物学手段研究植物抗病性奠定了基础。本文概要地综述近几年在寄主植物抗病基因、病原菌致病基因、寄主抗病机制等方面取得的主要进展,并试图侧重分析概括抗病反应的一般过程及毒素的作用与基因工程策略。 1 抗病相关基因 根据基因的作用性质,可把抗病反应过程中起作用的基因分为两类:抗病基因和防卫反应基因。抗病基因是决定寄主植物对病原菌的专化性识别,并激发抗病反应的基因。即按F lo r的基因对基因理论,它与病原菌的无毒基因互补;按Keen(1990)提出的用来解释基因对基因理论分子机制的配体2受体模型〔6〕,它的产物是抗病反应信号传导链的起始组分,即信息链的前端,当它与病原菌的无毒基因直接或间接编码产物互补结合后,启动信号传导激发植物的抗病反应。防卫反应基因是一类在抗病机制中最终起作用的基因,它们的编码产物直接或间接地作用于病原。除此之外,抗病基因和防卫反应基因的区别还有:(1)抗病基因编码产物具有特异性,而防卫反应基因编码产物具有普遍性,即不同的寄主植物中有一套类似的防卫反应基因,如植保素合成链中的酶基因、病程相关(PR)蛋白基因、植物细胞壁成分合成酶基因等。(2)抗病基因产物是植物防卫反应基因表达的直接或间接调节因子。防卫反应基因一般是受病原菌诱导表达的,编码产物比较容易分离的一类基因,而抗病基因是组成型表达的,编码产物不容易分离的一类基因。因此在基因克隆、基因编码产物的结构和功能分析等方面的研究工作中,防卫反应基因均早于抗病基因。所以植物防卫基因既有普遍性,又有特殊性。除有一部分是相似的外,还有一部分是不同的,如对真菌、细菌毒素的解毒基因,因毒素不同而不同。而人工赋予植物的解毒基因则可能更加不同,有动物源的,也有微生物源的。 1.1 抗病基因 接收病原菌信号,启动植物抗病反应信号转导的是植物抗病基因的编码产物,这是分子植物病理学研究寄主植物的重点和难点。自1992年应用转座子标签法分离出第一个抗病基  收稿日期 1999207215

基因芯片技术及其应用(精)

基因芯片技术及其应用 李家兴1001080728 园艺107 基因芯片( gene chip, DNA chip, DNA microarray 又被称为DNA芯片、DNA微阵列和生物芯片, 是指以大量人工合成的或应用常规分子生物学技术获得的核酸片段作为探针, 按照特定的排列方式和特定的手段固定在硅片、载玻片或塑料片上, 一个指甲盖大小的芯片上排列的探针可以多达上万个[1- 3]。在使用时,先将所研究的样品标记, 然后与芯片上的寡聚核苷酸探针杂交,再用激光共聚焦显微镜等设备对芯片进行扫描, 配合计算机软件系统检测杂交信号的强弱, 从而高效且大规模地获得相关的生物信息。此项技术将大量的核酸分子同时固定在载体上, 一次可检测分析大量的DNA和RNA, 解决了传统核酸印迹杂交技术复杂、自动化程度低、检测目标分子数量少、成本高、效率低等的缺点[4]。此外, 通过设计不同的探针阵列( array , 利用杂交谱重建DNA序列, 还可实现杂交测序( sequencing by hybridization,SBH [5]。目前, 该技术在基因表达研究、基因组研究、序列分析及基因诊断等领域已显示出重要的理论和应用价值[6]。 1 基因芯片技术的产生和发展 21 世纪将是生命科学的世纪, 基因芯片技术是近年产生的一项生物高新技术, 它将像计算机一样成为21 世纪即将来临的又一次新兴革命的奠基石[7,8]。基因芯片技术的产生与发展与人类基因组计划(Human Genome Project, HGP 的研究密不可分[9]。人类基因组的大量信息需要有一种快速、敏感、平行检测的技术,随着越来越多的基因被解码, 基因的功能研究成为迫切需要解决的课题。在这一背景下, 以基因芯片技术为主体的生物芯片诞生了, 它被誉为是20 世纪90 年代中期以来影响最深远的重大科技进展之一。基因芯片技术充分结合灵活运用了寡核苷酸合成、固相合成、PCR 技术、探针标记、分子杂交、大规模集成电路制造技术、荧光显微检测、生物传感器及计算机控制和图像处理等多种技术, 体现了生物技术与其他学科相结合的巨大潜力。基因芯片技术的理论基础是核酸杂交理论, Southern 印迹可以看作是生物芯片的雏形; 其后, 人们又发明了一个以膜片为介质基础的克隆库扫描

基因芯片技术及其应用

基因芯片技术及其应用摘要: DNA芯片技术是指在固相支持物上原位合成寡核苷酸,或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。 关键词 DNA芯片制备检测应用 随着人类基因组计划的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组测序得以测定,基因序列数据正在以前所未有的速度迅速增长。DNA芯片的出现是科学发展的必然产物。本文就DNA芯片的制备及其在医学领域的应用予以阐述。 1 基因芯片的制备及检测技术[1-4] 1.1 基因芯片的制备方法 1.1.1 原位合成法其中最具代表的是原位光刻合成法。该法是利用分子生物学、微电光刻技术及计算机技术等直接在基片上合成所需的DNA探针。除原位光刻合成法外,原位合成法还包括原位喷印合成和分子印章在片合成法。 1.1.2 直接点样法该法是将制备好的DNA(cDNA)片段直接点在芯片上。近来有人提出用电定位捕获法和选择性沉淀法制备芯片。 1.1.3 电定位捕获法是将生物素标记的探针在电场的作用下快速地固定在含有链霉素亲和素的琼脂糖凝胶膜上。由于生物素与链霉素亲和素的强亲合力,使得探针的固定更加容易和牢固。在电场的作用下,靶基因能快速地在杂交部位积聚,大大缩短了杂交时间,提高了杂交的效率,且改变电场电极的方向可以除去未杂交或低效率杂交的靶基因。 1.1.4 选择性沉淀法该技术是用金属纳米粒标记探针的方法来制备微阵列,靶基因在芯片上与探针杂交后发生选择性沉淀,通过检测沉淀物的电化学值等来获取相应的生物信息。

基因芯片技术及其应用

基因芯片技术及其应用 摘要 进入21世纪以来,生命科学发展日益迅速,基因芯片作为生命科学研究的一种新的技术平台日益受到人们的关注,并已经广泛应用于生命科学研究、医学研究、食品卫生领域以及其它相关的各个学科领域。随着技术的不断完善,基因芯片必将在越来越多的领域里面发挥作用。本文阐述了基因芯片的基本概念及技术流程,简述了其在不同领域的应用,并对其发展前景作了展望。 关键词:基因芯片技术流程应用展望 Gene Chip Technology and its Application Shu Mian (College of Horticulture, South China Agricultural University Guangzhou 510642, China) Abstract: Life science has developed rapidly since the 21th century, gene chip, as a new technical platform in the reaseach of Life science, has got increasingly attention, and has been used widely in life science research、medical research、food hygiene field and other related disciplines. With the continuous improvement of the technology, gene chip will be helpful in more fields. This article expounds the basic concepts and technological process of gene chip, gives an introduction of its application in different fields, and a prospection of its development prospect. Key words: gene chip technological process application prospection 基因芯片(gene chip),又称DNA芯片(DNA chip)或DNA微阵列(DNA microarray),是生物芯片的一种类型,它是将DNA分子固定于支持物上,并与标记的样品杂交,通过自动化仪器检测杂交信号的强度来判断样品中靶分子的数量,进而得知样品中mRNA的表达量,也可进行基因突变体的检测和基因序列的测定,为进一步了解基因间的相互关系及基因克隆提供有用的工具。作为一项基于基因

基因芯片技术及其应用

基因芯片技术及其应用 郑敏 (临沂大学生命科学学院,山东临沂276000) 摘要基因芯片(DNA芯片,微阵列)是20世纪后期在杂交理论基础上发展起来的又一个分子生物学技术.将大量的核苷酸探针以点阵列方式排列于特定的固相支持物上,与放射性或荧光标记的样品靶DNA杂交,通过激光共聚焦等技术来分析靶DNA的存在和量的方法.基因芯片技术已基本实现了自动化,应用于功能基因研究、杂交测序、药物筛选诊断、基因表达、基因多态性和突变检测等,在生物学、医学、制药学、环境保护学和农林业等领域上都有极为广阔的应用前景。 .关键词基因芯片;微阵列;分子生物学;基因表达 基因芯片(genechip)是生物芯片(biochip)的一种,又称DNA芯片、DNA微阵列(DNA microarray)、寡核苷酸阵列(oligonucleotide array),是20世纪90年代初随着人类基因组计划的发展而兴起的技术。基因芯片是按预先设计的阵列方式,把大量核酸片段固定在载体基片上,组成密集的按序排列的探针集群,通过与标记样品核酸杂交,检测其杂交信号,从而达到判断靶核酸的有无或数量的目的[1].基因芯片技术室当今生命科学领域集微电子学、生物学、化学、计算机科学于一体的高度交叉的一项尖端应用型新技术,现已成为国际上的前沿和热点[2]。现将基因芯片技术及其应用作一综述。 1基因芯片技术的产生和发展 21 世纪将是生命科学的世纪, 基因芯片技术是近年产生的一项生物高新技术, 它将像计算机一样成为21 世纪即将来临的又一次新兴革命的奠基石[]。基因芯片技术的产生与发展与人类基因组计划(Human Genome Project, HGP) 的研究密不可分[5]。人类基因组的大量信息需要有一种快速、敏感、平行检测的技术,随着越来越多的基因被解码, 基因的功能研究成为迫切需要解决的课题。在这一背景下, 以基因芯片技术为主体的生物芯片诞生了, 它被誉为是20 世纪90 年代中期以来影响最深远的重大科技进展之一。基因芯片技术充分结合并灵活运用了寡核苷酸合成、固相合成、PCR 技术、探针标记、分子杂交、大规模集成电路制造技术、荧光显微检测、生物传感器及计算机控制和图像处理等多种技术, 体现了生物技术与其他学科相结合的巨大潜力。

基因芯片技术基本过程

基因芯片技术基本过程 1 DNA方阵的构建 选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;(2)或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。 2 样品DNA或mRNA的准备。 从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅 读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。 在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。 3 分子杂交 样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟(6)。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。

基因芯片综述

基因芯片文献综述 摘要:基因芯片技术是伴随着人类基因组计划的实施而发展起来的生命科学领域里的前沿生物技术。目前,人们对疾病的分类和诊断的水平已经有了进一步的提高,基于基因芯片的特征选择技术在其中起到了关键性的作用。经过十几年的发展,基因芯片技术也在不断完善、成熟,并广泛运用于生命科学的各个领域。本文重点介绍基因芯片技术的进展、分类、应用领域及发展前景。 关键词:基因芯片技术背景,分类,应用领域,展望 1.基因芯片技术背景 1.1技术背景 20世纪80年代启动的由多个国家参加的人类基因组计划,被称为是继曼哈顿原子计划、阿波罗登月计划之后的第三大科学计划,这个计划的完成对人类认识自身,提高健康水平,推动生命科学、医学、生物技术、制药业、农业等的发展具有极其重要的意义。 随着人类基因组计划(Human Genome Project, HGP)的完成以及分子生物学相关学科的迅猛发展,极大地带动了人类疾病相关基因以及病原微生物基因的定位、克隆、结构与功能研究,基因芯片(gene chip)就是在这个背景下发展起来的一项分子生物学新技术[1]。 1.2基因芯片概念 基因芯片即DNA芯片或DNA微阵列,大小如指甲盖一般,每个芯片的基而上都可以划分出数万至数百万个小区,在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子。它是把大量己知序列探针集成在同一个基片(如玻片、膜)上[2-4],经过标记的若干靶核苷酸序列与芯片特定位点上的探针杂交,通过检测杂交信号,对生物细胞或组织中大量的基因信息进行分析。 1.3基因芯片特点 其突出特点在十高度并行性、多样性、微型化和自动化。高度的并行性不仅可以大大提高实验的进程,而且有利于DNA芯片技术所展示图谱的快速对照和阅读。多样性可以在单个芯片中同时一进行样品的多参数分析,从而避免因不同实验条件产生的误差,大大提高分析的精确性。微型化可以减少试剂用量和减小反应液体积,降低实验费用。高度自动化则可以降低制造芯片的成本和保证芯片的制造质量[5]。1995年Science杂志首次报道了Schena等人用DNA微阵列技术并行检测拟南芥多个基因的表达水平。1994年第一张商业化基因芯片由Affymetrix公司推出。 二.分类 基因芯片有不同的分类方法: ①按其片基不同可分为无机片基芯片和有机合成片基芯片; ②按其应用不同,可分为表达谱芯片、诊断芯片、检测芯片; ③按其制备方法不同可分为原位合成芯片和合成后交联芯片(合成后点样芯片); 最常用的还是按载体上所点探针的长度分为cDNA芯片和寡核苷酸芯片两种。

实验二 植物病原菌的组织分离

实验二植物病原菌的组织分离、培养和纯化 一、实验目的 通过本次实验学习植物病原菌分离培养及纯化的原理和常用的方法。 二、材料和用具 玉米大斑病叶、灰斑病叶、苹果果实轮纹病及霉心病、甘薯黑斑病等材料,5%次氯酸钠溶液(有效氯为5%,见光分解,尤其紫外光,现用现配),75%酒精,剪刀,镊子,无菌水,灭菌培养皿,保鲜膜封口膜,记号笔、解剖刀,75%酒精小喷壶、酒精灯,打火机、、无菌滤纸、酒精棉、培养皿 三、分离材料的选择 为减少腐生菌的污染,分离所用的病害材料应尽可能新鲜,并且最好在病、健交接处选材取样。病、健交接处,除材料新鲜,污染的可能性小外,病原菌的生活力强、比较活跃,容易分离成功。 四、植物病原菌的分离方法 病原菌分离的方法因材料不同而异,植病实验室最常见的方法有组织分离法和稀释分离法两种。 (一).组织分离法:这种方法适用于大部分病菌的分离,此法又分为小块组织分离和大块组织分离两种方法。 1、病斑类病原菌的分离(玉米大斑病病、灰斑病及苹果果实轮纹病的分离、甘薯黑斑病) (1)将无菌培养皿、镊子、无菌水、无菌滤纸、75%酒精小喷壶等放入无菌操作台,开紫外灯15分钟。期间融化培养基备用。 (2)在操作台外,用酒精消毒双手,晾干。在操作台内再次消毒双手,晾干,将融化并冷却到50℃左右的PDA以无菌操作倒入培养皿8—10ml,在桌面上轻轻摇动,敞开盖,制成平,凝固后待用。 (3)在操作台外,取分离材料,在病、健交界处剪取2—3毫米长的病组织。 (4)在无菌条件下,用5%的次氯酸钠溶液消毒3-5min,(时间长短依病组织不同而异,处理种子约5—10分钟)。 (5)用经过三次火焰灭菌的镊子将消毒的病叶移至无菌水中,漂洗3次,在滤纸上吸干水分,移至PDA平板培养基上,每皿可放均匀放3~4片,使材料与培养基紧密接触。倒置于25—28℃恒温箱内培养。 (6)3~4天后,待菌落长出后挑取前缘菌丝,回接于PDA培养基上,在25℃温箱中培养,待菌落颜色变深后,在无菌条件下镜检是否是玉米大斑病菌、灰斑病菌、黑斑病菌、轮纹病菌,若仅有这几种病原菌的分生孢子,则说明已获得了纯培养,否则,则需要继续转至斜面培养基上进行纯化,直至获得纯培养。在4℃冰箱中保存。 2、种子内部病原菌的分离(小麦根腐病菌的分离) 选择典型的小麦黑胚粒3—4个,在70%的酒精中浸2—3秒钟后,以镊子夹住投入0.1%升汞溶液中表面消毒2—3分钟,然后取出小麦粒,以灭菌水冲洗3次,再移至已倒好的马铃薯琼脂平板培养基上,注意要以小麦的黑胚部位着靠在培养基上,倒置在25℃温箱中培养,待菌落长出后,挑取前缘菌丝于马铃薯斜面培养基上培养,培养3-4天后,无菌条件下镜检是否获得纯培养。 3、病组织内部病原菌的分离(大豆枯萎病菌的分离) 取大豆枯萎病病根沾取70%酒精,用酒精火焰三次消毒后,以在灯焰灭过菌的解剖刀切去表皮,然后切取其中小块变色的病组织,移植于培养基表面培养,每皿放3—4块,倒置于25℃温箱中培养2—3天。菌丝长出后转至马铃薯琼脂斜面培养基上,培养3-4天后,无菌条件下镜检是否获得纯培养。 (二).稀释分离法:稀释分离法适用于细菌、土壤菌及产生孢子多的真菌等病原菌的分离,本次实验以白菜软腐病作为材料进行分类离。 白菜软腐病最易伴生腐生细菌,分离时需以病组织接种健康菜帮上,经数次转种予以纯化,其纯化方法是将菜帮经多次换水冲洗后,再用无菌水洗三次,切成适当大小,放在15厘米直径的培养皿中,菜帮下

基因芯片技术

基因芯片技术 2007-12-17 基因芯片技术及其研究现状和应用前 景 陈华友,崔振玲(上海200062华东师范大学生物系分子生物学实验室) 摘要:基因芯片技术是90年代中期以来快速进展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采纳光导原位合成或显微印刷等方法,将大量DNA 探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术目前国内外都取得了较大的进展,该技术可用于DNA测序,基因表达及基因组图的研究,基因诊断,新基因的发觉,药物选择,给药个性化等等,因此为二十一世纪生物医药铺平道路,将为整个人类社会带来深刻广泛的变革,促进人类早日进入生物信息时代。 关键词:基因芯片;微阵列;基因诊断;药物选择 生物芯片技术是随着"人类基因组打算"(human ge nome project, HGP)的进展而进展起来的,它是90年代中期以来阻碍最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、运算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。生物芯片技术包括基因芯片、蛋白质芯片、细胞芯片、组织芯片、以及元件型微阵列芯片、通道型微阵列芯片、生物传感芯片

等新型生物芯片(1)。本文要紧讨论基因芯片技术,它为"后基因组打算"时期基因功能的研究提供了强有力的工具,将会使基因诊断、药物选择、给药个性化等方面取得重大突破,该技术被评为1998年度世界十大科技进展之一。 1 差不多概念 基因芯片(gene chip)也叫DNA芯片、DNA微阵列(DNA microarray)、寡核苷酸阵列(oligonucleotide array),是指采纳原位合成(in situ synthesis)或显微打印手段,将数以万计的DNA探针固化于支持物表面上,产生二维DNA 探针阵列,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品快速、并行、高效地检测或医学诊断,由于常用硅芯片作为固相支持物,且在制备过程运用了运算机芯片的制备技术,因此称之为基因芯片技术。 2 技术差不多过程 2.1 DNA方阵的构建 选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采纳光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;(2)或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating de vice ARD),或阵列机(arrayer)及电脑操纵的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片(3)。

相关文档
最新文档