高考数学总复习含答案:定积分和微积分基本定理巩固练习
高中数学之定积分与微积分基本定理含答案

专题06 定积分与微积分基本定理1.由曲线,直线轴所围成的图形的面积为()A.B.4C.D.6【答案】A【解析】联立方程得到两曲线的交点(4,2),因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为:S.故选:A.2.设f(x)=|x﹣1|,则=()A.5 B.6 C.7 D.8【答案】A【解析】画出函数的图像如下图所示,根据定积分的几何意义可知,定积分等于阴影部分的面积,故定积分为,故选A.3.曲线与直线围成的封闭图形的面积是()A.B.C.D.【答案】D【解析】令,则,所以曲线围成的封闭图形面积为,故选D4.为函数图象上一点,当直线与函数的图象围成区域的面积等于时,的值为A.B.C.1D.【答案】C【解析】直线与函数的图象围成区域的面积S dx=∴故选:C5.由直线与曲线所围成的封闭图形的面积为( )A.B.1C.D.【答案】B【解析】题目所求封闭图形的面积为定积分,故选B.6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( )A.B.C.D.【答案】A【解析】依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A.7.()A.B.-1C.D.【答案】C【解析】解:.故选:C.8.,则T的值为A.B.C.D.1【答案】A【解析】由题意得表示单位圆面积的四分之一,且圆的面积为π,∴,∴.故选A.9.下列计算错误..的是()A.B.C.D.【答案】C【解析】在A中,,在B中,根据定积分的几何意义,,在C中,,根据定积分的运算法则与几何意义,易知,故选C.10.定积分的值为()A.B.C.D.【答案】A【解析】表示以为圆心,以为半径的圆,定积分等于该圆的面积的四分之一,定积分,故选A.11.如果曲线与直线所围成的封闭图形的面积为,则以下正确的一个值为()A.1 B.2 C.3 D.4【答案】D【解析】如图,如果,则所围面积为,故,代入,则,矛盾,故A错.如果,则,代入,则,矛盾,故B错.代入,则,矛盾,故C错.代入,则,符合,故D正确.综上,选D.12.一物体以速度v=3t2+2t(v的单位:m/s)做直线运动,则它在t=0 s到t=3 s时间段内的位移是() A.31 m B.36 mC.38 m D.40 m【答案】B【解析】由题意物体在t=0s到t=3s时间段内的位移是:.故选:B.13.由曲线与直线所围成图形的面积等于__________.【答案】【解析】根据定积分的几何意义得到,面积S=(e x+x)d x=故答案为:14.___________【答案】【解析】表示半圆夹在直线部分的面积S。
高考数学 考点15 定积分与微积分基本定理必刷题 理

考点15 定积分与微积分基本定理1.由曲线围成的封闭图形的面积为()A. B. C. D.【答案】A【解析】封闭图形的面积为.选A.2.如图所示,平面直角坐标系中,阴影部分是由抛物线及线段围成的封闭图形,现在在内随机的取一点,则点恰好落在阴影内的概率为A. B. C. D.【答案】D3.用表示,b两个数中的最大数,设,那么山函数的图象与X 轴、直线和直线所围成的封闭图形的面积是()A. B. C. D.【答案】A4.等于()A. B. C. D.【答案】D【解析】∵(x+sinx)′=1+cosx,∴.故选:D.5.如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为A. B. C. D.【答案】C【解析】根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为.则正方形OABC中任取一点P,点P取自阴影部分的概率为.故答案为:.6.一物体在变力F(x)=5-(F的单位:N,x的单位:m)的作用下,沿与力F成30°的方向作直线运动,则由x=1运动到x=2时力F(x)所做的功为()A. B. C. D.【答案】D7.如图所示,在椭圆内任取一个点,则恰好取自椭圆的两个端点连线与椭圆围成阴影部分的概率为()A. B.C. D.【答案】A【解析】先求椭圆面积的,由知,,而表示与围成的面积,即圆面积的概率,故选:A.8.设=,则的展开式中常数项是()A. 160 B.-160 C.-20 D. 20【答案】B9.设,则等于()A. B. C. 1 D.【答案】D【解析】由题故选:D.10.设,则二项式展开式的常数项是()A. 160 B. 20 C. -20 D. -160【答案】A11.已知实数满足不等式组其中则的最大值是A. B. 5 C. 20 D. 25【答案】D【解析】,画出表示的可行域如图,表示的可行域内的点到原点距离的平方,由图可知,点到原点距离最大,由,得,的最大值为,故选D.12.已知二项式的展开式中的系数为,则的值为()A. B. C. D.【答案】B13.设,则等于( )A. B. C. D. 0【答案】C【解析】,故选C. 14.曲线y=与直线y=2x-1及x轴所围成的封闭图形的面积为()A. B. C. D.【答案】A15.如图,在边长为2的正方形ABCD 中,M 是AB 的中点,则过三点的抛物线与CD 围成阴影部分的面积是A .B .C . 2D . 【答案】D16.=________.【答案】【解析】根据题意得 =.故答案为:.17.设,则=____________.【答案】【解析】. 18.由函数及轴围成的封闭图形的面积是________.【答案】19.若,则的展开式中常数项为______________.【答案】240【解析】展开式的通项公式为令,即.的展开式中,常数项是故答案为240.20.由,,,四条曲线所围成的封闭图形的面积为__________.【答案】【解析】根据余弦函数的对称性可得,直线,,y=0与曲线y=cosx所围成的封闭图形的面积为故答案为:.21.____________.【答案】22.设,则二项式的展开式中含项的系数为______.【答案】192【解析】的通项公式为令,故含项的系数为故答案为.23.已知函数在上可导,且,则与的大小关系为_______.【答案】24.已知函数f(x)=sin cos+cos2+m的图象过点(,0).(1)求实数m值以及函数f(x)的单调递减区间;(2)设y=f(x)的图象与x轴、y轴及直线x=t(0<t<)所围成的曲边四边形面积为S,求S关于t 的函数S(t)的解析式.【答案】(1),单调递减区间是,k∈Z;(2).【解析】(1)f(x)=sin cos+cos2+m==.∵f(x)的图象过点(,0),∴,解得.∴f(x)=,由,得,k∈Z.故f(x)的单调递减区间是,k∈Z;(2)由(1)得,f(x)=.∴===.∴().25.已知函数,.(1)求函数图象经过点的切线的方程.(2)求函数的图象与直线所围成的封闭图形的面积.【答案】(1) 切线方程为或(2)所以所求的面积为.。
定积分与微积分基本定理含答案版

定积分与微积分基本定理(理)基础巩固强化1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎜⎛01(x 2-x )d x B .S =⎠⎜⎛01(x -x 2)d x C .S =⎠⎜⎛01(y 2-y )d y D .S =⎠⎜⎛1(y -y )d y[答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎜⎛01(x -x 2)d x . 2.如图,阴影部分面积等于( )A .2 3B .2-3[答案] C[解析] 图中阴影部分面积为S =⎠⎜⎛-31(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=323. 4-x 2d x =( ) A .4π B .2π C .π[答案] C[解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S=14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v甲和v乙(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是( )A.在t1时刻,甲车在乙车前面B.在t1时刻,甲车在乙车后面C.在t0时刻,两车的位置相同D.t0时刻后,乙车在甲车前面[答案]A[解析]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t0,t1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v(t)的图象与t轴以及时间段围成区域的面积.从图象知:在t0时刻,v甲的图象与t轴和t=0,t=t0围成区域的面积大于v乙的图象与t轴和t=0,t=t0围成区域的面积,因此,在t0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C,D错误;同样,在t1时刻,v甲的图象与t轴和t=t1围成区域的面积,仍然大于v乙的图象与t轴和t=t1围成区域的面积,所以,可以断定:在t1时刻,甲车还是在乙车的前面.所以选A.5.向平面区域Ω={(x,y)|-π4≤x≤π4,0≤y≤1}内随机投掷一点,该点落在曲线y=cos2x下方的概率是( )-1[答案] D[解析] 平面区域Ω是矩形区域,其面积是π2,在这个区6.的值是( )A .0 C .2 D .-2 [答案] D[解析] 2(cos sin )2x x ππ---=2(cos sin )2x x ππ---=-2. 7.⎠⎜⎛2(2-|1-x |)d x =________.[答案] 3[解析] ∵y =⎩⎪⎨⎪⎧1+x 0≤x ≤13-x 1<x ≤2,∴⎠⎜⎛02(2-|1-x |)d x =⎠⎜⎛01(1+x )d x +⎠⎜⎛12(3-x )d x =(x +12x 2)|10+(3x -12x 2)|21=32+32=3.9.已知a =2(sin cos )x x dx π+⎰,则二项式(a x -1x)6的展开式中含x 2项的系数是________.[答案] -192 [解析] 由已知得a =20(sin cos )x x dx π+⎰=(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C r6×26-r ×x 3-r,令3-r =2得,r =1,故其系数为(-1)1×C 16×25=-192.10.有一条直线与抛物线y =x 2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解析] 设直线与抛物线的两个交点分别为A (a ,a 2),B (b ,b 2),不妨设a <b ,则直线AB 的方程为y -a 2=b 2-a2b -a(x -a ),即y =(a +b )x -ab .则直线AB 与抛物线围成图形的面积为S =⎠⎜⎛ab[(a +b )x -ab -x 2]d x =(a +b 2x 2-abx -x 33)|ba =16(b -a )3,∴16(b -a )3=43, 解得b -a =2.设线段AB 的中点坐标为P (x ,y ),其中⎩⎪⎨⎪⎧x =a +b2,y =a 2+b22.将b -a =2代入得⎩⎪⎨⎪⎧x =a +1,y =a 2+2a +2.消去a 得y =x 2+1.∴线段AB 的中点P 的轨迹方程为y =x 2+1.能力拓展提升11.等比数列{a n }中,a 3=6,前三项和S 3=⎠⎜⎛34x d x ,则公比q 的值为( )A .1B .-12C .1或-12D .-1或-12[答案] C[解析] 因为S 3=⎠⎜⎛34x d x =2x 2|30=18,所以6q +6q 2+6=18,化简得2q 2-q -1=0,解得q =1或q =-12,故选C.12.已知(x ln x )′=ln x +1,则⎠⎜⎛1eln x d x =( )A .1B .eC .e -1D .e +1 [答案] A[解析] 由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎜⎛1eln x d x =(x ln x -x )|e 1=(e ln e -e )-(1×ln1-1)=1.13.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.[答案] 18[解析] 由方程组⎩⎪⎨⎪⎧y 2=2x ,y =4-x ,解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y ,∴S =⎠⎜⎛-42[(4-y )-y 22]dy =(4y -y 22-y 36)|2-4=18. 14.已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t -1(t 为常数,且0≤t ≤1).直线l 1,l 2与函数f (x )的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S 2表示.直线l 2,y 轴与函数f (x )的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S 1表示.当t 变化时,阴影部分的面积的最小值为________.[答案] (e -1)2[解析] 由题意得S 1+S 2=⎠⎜⎛0t(e t -1-e x +1)d x +⎠⎜⎛t1(e x -1-e t +1)d x =⎠⎜⎛0t(e t -e x )d x +⎠⎜⎛t1(e x -e t )d x =(xe t -e x )|t 0+(e x -xe t )|1t =(2t -3)e t +e +1,令g (t )=(2t -3)e t +e +1(0≤t ≤1),则g ′(t )=2e t +(2t -3)e t=(2t -1)e t,令g ′(t )=0,得t =12,∴当t ∈[0,12)时,g ′(t )<0,g (t )是减函数,当t ∈(12,1]时,g ′(t )>0,g (t )是增函数,因此g (t )的最小值为g (12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分.(1)⎠⎛1-1|x |d x; (2)⎠⎜⎛0πcos 2x2d x ; (3)∫e +121x -1d x . [解析] (1)⎠⎛1-1|x |d x =2⎠⎜⎛1x d x =2×12x 2|10=1. (2)⎠⎜⎛0πcos 2x2d x =⎠⎜⎛0π1+cos x 2d x =12x |π0+12sin x |π0=π2.(3)∫e +121x -1d x =ln(x -1)|e +12=1. 16.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,求a 的值.[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0, ∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).∴S 阴影=⎠⎜⎛a[0-(-x 3+ax 2)]d x =(14x 4-13ax 3)|0a=112a 4=112, ∵a <0,∴a =-1.1.已知函数f (x )=sin 5x +1,根据函数的性质、积分的性质和积分的几何意义,探求22()f x dx ππ-⎰的值,结果是( )+π2 B .π C .1 D .0 [答案] B[解析] 22()f x dx ππ-⎰=22ππ-⎰sin 5x d x +22ππ-⎰1d x ,由于函数y =sin 5x是奇函数,所以22ππ-⎰sin 5x d x =0,而22ππ-⎰1d x =x |π2-π2=π,故选B.2.若函数f (x )=⎩⎪⎨⎪⎧-x - 1 -1≤x <0,cos x 0≤x <π2,的图象与坐标轴所围成的封闭图形的面积为a ,则a 的值为( )C .1[答案] D[解析] 由图可知a =12+⎠⎜⎜⎛0π2cos x d x =12+sin x |π20=32.3.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎜⎛πsin x d x =________.[答案] 22[解析] ∵⎠⎜⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎜⎛πsin x d x =2⊗2=2-12=22. 4.设函数f (x )=ax 2+c (a ≠0),若⎠⎜⎛1f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.[答案] 33[解析] ⎠⎜⎛01f (x )d x =⎠⎜⎛01(ax 2+c )d x =(ax 33+cx )|10=a 3+c ,故a3+c=ax 2+c ,即ax 20=a3,又a ≠0,所以x 20=13,又0≤x 0≤1,所以x 0=33.故填33. 5.设n =⎠⎜⎛12(3x 2-2)d x ,则(x -2x)n 展开式中含x 2项的系数是________.[答案] 40[解析] ∵(x 3-2x )′=3x 2-2,∴n =⎠⎜⎛12(3x 2-2)d x =(x 3-2x )|21 =(23-2×2)-(1-2)=5. ∴(x -2x)5的通项公式为T r +1=C r 5x 5-r(-2x)r=(-2)r C r 5x5-3r2 ,令5-3r 2=2,得r =2, ∴x 2项的系数是(-2)2C 25=40.。
高考数学总复习 课时作业(15)定积分与微积分基本定理

课时作业(十五)第15讲定积分与微积分基本定理基础热身1.(1-x)d x=()A.1B.-1C. D.-2.某物体从静止开始自由落下,若速度v(t)=gt(v的单位:m/s,t的单位:s,g为重力加速度),则经过t=10 s后下落的距离为 ()A.50g mB.100g mC.25g mD.75g m3.[2017·孝义质检]定义=ad-bc,如=1×4-2×3=-2,那么=()A.6B.3C. D.04.[2017·安徽宣城二模]|sin x|d x=()A.1B.2C.3D.45.一物体在力F(x)=4x-1(单位:N)的作用下,沿着与力F相同的方向,从x=1(单位:m)处运动到x=3处,则力F(x)所做的功为.能力提升6.[2017·江淮十校三模](sin x-a cos x)d x=-,则实数a等于()A.1B.C.-1D.-7.d x=()A. B.C.1D.28.已知+=2,若φ∈0,,则(x2-2x)d x=()A. B.-C. D.-9.[2017·辽宁实验中学模拟]如图K15-1所示,正弦曲线y=sin x、余弦曲线y=cos x与两直线x=0,x=π所围成的阴影部分的面积为()图K15-1A.1B.C.2D.210.[2018·齐齐哈尔八中月考]设函数f(x)=x m+ax的导函数f'(x)=2x+1,则f(-x)d x的值等于()A. B.C. D.11.[2017·石家庄三模](+x)d x= .12.[2018·郑州一中模拟]设函数f(x)=ax2+b(a≠0),若f(x)d x=3f(x0),x0>0,则x0= .13.[2017·吉林实验中学模拟]由直线x=e,y=x及曲线y=所围成的封闭图形的面积为.14.曲线y=2sin x(0≤x≤π)与直线y=1围成的封闭图形的面积为.难点突破15.(5分)[2017·青岛三模]已知函数f(x)在R上满足f(π-x)=f(x),若当0≤x≤时,f(x)=cos x-1,则当0≤x≤π时,f(x)的图像与x轴所围成图形的面积为()A.π-2B.2π-4C.3π-6D.4π-816.(5分)[2017·天津南开中学月考]函数f(x)=x3-x2+x+1的图像在点(1,2)处的切线与曲线y=x2围成的图形的面积等于.课时作业(十五)1.C[解析] (1-x)d x=x-x2=.2.A[解析] 下落的距离为gt d t=gt2=50g(m).3.D[解析] x d x=x2=,∴==×2-3×1=0.故选D.4.D[解析] |sin x|d x=2sin x d x=2(-cos x)=2×(1+1)=4.5.14 J[解析] W=(4x-1)d x=(2x2-x)=14(J).6.B[解析] (sin x-a cos x)d x=(-cos x-a sinx)=--a+1,∴--a+1=-,∴a=.7.A[解析] 令y=,则(x-1)2+y2=1(y≥0),表示的是以(1,0)为圆心,半径为1的圆在x 轴上方的半圆,所以d x=π×12=.8.C[解析] 由已知+=2,φ∈0,,得到sin φ=cos φ=,所以tan φ=1,所以(x2-2x)d x=(x2-2x)d x=x3-x2=.9.D[解析] 阴影部分的面积S=(cos x-sin x)d x+(sin x-cos x)d x=(sin x+cosx)+(-cos x-sin x)=-1+1+=2.10.A[解析] ∵f(x)=x m+ax的导函数f'(x)=2x+1,∴f(x)=x2+x,于是f(-x)d x=(x2-x)d x=x3-x2=,故选A.11.π+2[解析] (+x)d x=d x+x d x,令y=,得x2+y2=4(y≥0),圆x2+y2=4的面积为4π,由定积分的几何意义可得,d x=π,又x d x=x2=2,∴(+x)d x=π+2.12.[解析] ∵f(x)=ax2+b,f(x)d x=3f(x0),∴(ax2+b)d x=ax3+bx=9a+3b,则9a+3b=3a+3b,∴=3,又x0>0,∴x0=.13.[解析] 如图所示,图中阴影部分的面积S=x-d x=x2-ln x=.14.2-[解析] 令2sin x=1(0≤x≤π),即sin x=,可得x=或,∴曲线y=2sin x(0≤x≤π)与直线y=1交于点A,1和B,1,因此,围成的封闭图形的面积S=(2sinx-1)d x=(-2cos x-x)=-2cos---2cos-=2-.15.A[解析] ∵当0≤x≤时,f(x)=cos x-1,∴当<x≤π时,0≤π-x<,f(x)=f(π-x)=cos(π-x)-1=-cos x-1,∴f(x)=所以当0≤x≤π时,f(x)的图像与x轴所围成图形的面积S=-(cos x-1)d x-(-cos x-1)d x=(1-cosx)d x+(cos x+1)d x=(x-sin x)+(sin x+x)=π-2.16.[解析] 因为f(x)=x3-x2+x+1,所以f'(x)=3x2-2x+1,f'(1)=2,则函数f(x)=x3-x2+x+1的图像在点(1,2)处的切线方程为y-2=2(x-1),即y=2x.作出草图(如图所示),则所求阴影部分的面积S=(2x-x2)d x=x2-x3=.。
2024届高考数学复习:精选历年真题、好题专项(定积分与微积分基本定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(定积分与微积分基本定理)练习一、 基础小题练透篇1.若a =⎠⎛02 x 2d x ,b =⎠⎛02 x 3d x ,c =⎠⎛02 sin x d x ,则a ,b ,c 的大小关系是( )A .a<c<bB .a<b<cC .c<b<aD .c<a<b2.由曲线xy =1,直线y =x ,y =3所围成的平面图形的面积为( )A .329 B .2-ln 3 C .4+ln 3 D .4-ln 33.[2023ꞏ甘肃省兰州市第一次月考]求由抛物线y =2x 2与直线x =0,x =t(t >0),y =0所围成的曲边梯形的面积时,将区间[0,t]等分成n 个小区间,则第i -1个区间为( )A .⎣⎡⎦⎤i -1n ,i nB .⎣⎡⎦⎤i n ,i +1n C .⎣⎡t (i -1)n ,ti n D .⎣⎡t (i -2)n ,t (i -1)n4.若数列{a n }是公比不为1的等比数列,且a 2 018+a 2 020=⎠⎛024-x 2 d x ,则a 2 017(a 2 019+2a 2 021+a 2 023)=( )A .4π2B .2π2C .π2D .3π25.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t +251+t(t 的单位:s ,v 的单位:m /s )行驶至停止. 在此期间汽车继续行驶的距离(单位:m )是( )A .1+25ln 5B .8+25ln 113 C .4+25ln 5 D .4+50ln 26.已知分段函数f(x)=⎩⎪⎨⎪⎧1+x 2,x ≤0,e -x,x>0,则⎠⎛13 f(x -2)d x =( ) A .3+1e B .2-e C .73 -1e D .2-1e7.设函数f(x)=ax 2+b(a ≠0),若⎠⎛03 f(x)d x =3f(x 0),x 0>0,则x 0=________.8.[2023ꞏ河南省信阳考试]⎠⎛12 (1x +1-(x -2)2 )d x =________.二、能力小题提升篇1.[2023ꞏ兰州检测]曲线y =x 2和直线x =0,x =1,y =14 所围成的图形(如图中阴影部分所示)的面积为( )A .23B .13C .12D .142.[2023ꞏ河北唐山联考]曲线y =x -1x +1与其在点(0,-1)处的切线及直线x =1所围成的封闭图形的面积为( )A .1-ln 2B .2-2ln 2C .2ln 2-1D .ln 23.[2023ꞏ河南商丘检测]已知不等式1-3x +a <0的解集为(-1,2),则⎠⎛0a (2e 2x +x)d x=( )A .e +12B .e -12 C .e 2+12 D .e 2-124.[2023ꞏ河南省洛阳市考试]由抛物线y =-x 2+4x -3及其在点M(0,-3)和点N(3,0)处的两条切线所围成的图形的面积为( )A .94B .92C .74 D .25.[2023ꞏ江西省新余市第一中学考试]函数的图象f(x)=⎩⎪⎨⎪⎧x +4,-4≤x<0,4cos x ,0≤x ≤π2 与x 轴所围成的封闭图形的面积为________.6.[2023ꞏ吉林省东北师范大学模拟]设y =f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分⎠⎛01 f(x)d x ,先产生两组(每组n 个)区间[0,1]上的均匀随机数x 1,x 2,…,x n 和y 1,y 2,…,y n ,由此得到n 个点(x i ,y i )(i =1,2,…,n),再数出其中满足y i >f(x i )(i =1,2,…,n)的点有m 个,那么由随机模拟方法可得积分⎠⎛01f(x)d x 的近似值为________.7.[2023ꞏ吉林省实验中学检测]若f(x)=⎩⎪⎨⎪⎧f (x -4),x>0,2x+∫π60cos 3x d x ,x ≤0, 则f(2 018)=________.三、高考小题重现篇1.[湖南卷]由直线x =-π3 ,x =π3 ,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A .12B .1C .32 D .32.[湖北卷]若函数f (x ),g (x )满足⎠⎛-11f (x )g (x )d x =0,则称f(x),g(x)为区间[-1,1]上的一组正交函数.给出三组函数:①f(x)=sin 12 x ,g(x)=cos 12 x ②f(x)=x +1,g(x)=x -1 ③f(x)=x ,g(x)=x 2. 其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .33.[江西卷]若f(x)=x 2+2⎠⎛01 f(x)d x ,则⎠⎛01 f(x)d x =( )A .-1B .-13C .13 D .14.[湖北卷]已知二次函数y =f(x)的图象如图所示,则它与x 轴所围图形的面积为( )A .2π5 B .43 C .32 D .π2 5.[湖南卷]⎠⎛02 (x -1)d x =________.6.[福建卷]如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.四、经典大题强化篇1.[2023ꞏ四川绵阳模拟]A ,B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t ) m/s ,在B 站恰好停车,试求:(1)A ,C 间的距离; (2)B ,D 间的距离.2.[2023ꞏ江西省赣州市赣县月考]已知函数f (x )=ax +ln x (a ∈R ).(1)若a =2,求导函数曲线y =f ′(x )与直线x =1,x =e 及x 轴所围成的面积; (2)求f (x )的单调区间.参考答案一 基础小题练透篇1.答案:D答案解析:a =⎠⎛02x 2d x =⎝ ⎛⎭⎪⎫13x 3 ⎪⎪ 2 0=83 ,b=⎠⎛02 x 3d x=⎝ ⎛⎭⎪⎫14x 4 ⎪⎪20=4,c =⎠⎛02 sin x d x =(-cos x )⎪⎪20=1-cos 2.∵cos 2∈[-1,1],∴1-cos 2∈[0,2],∴1-cos 2<83<4,故c<a<b.2.答案:D答案解析:S ==4-ln 3. 3.答案:D答案解析:在[0,t]上等间隔插入(n -1)个分点,把区间[0,t]等分成n 个小区间,每个小区间长度均为t n ,故第i -1个区间为⎣⎢⎡⎦⎥⎤t ()i -2n ,t ()i -1n .本题选择D 选项. 4.答案:C答案解析:根据定积分的几何意义,⎠⎛02 4-x 2d x 表示以原点为圆心,以2为半径的四分之一圆的面积,所以⎠⎛02 4-x 2d x =π.所以a 2 018+a 2 020=π,设a 2 018=a ,公比为q ,则a +aq 2=π,所以a 2 017(a 2 019+2a 2 021+a 2 023)=a q(aq +2aq 3+aq 5)=a 2(1+2q 2+q 4)=a 2(1+q 2)2=[a (1+q 2)]2=π2.5.答案:C答案解析:令v (t )=7-3t +251+t =0,又t>0,则t =4,汽车刹车的距离是⎠⎛04 ⎝ ⎛⎭⎪⎫7-3t +251+t d t =4+25ln 5.6.答案:C答案解析:⎠⎛13 f (x -2)d x =⎠⎛12 f (x -2)d x +⎠⎛23 f (x -2)d x =⎠⎛12 (x 2-4x +5)d x+⎠⎛23 e-x +2d x=⎝ ⎛⎭⎪⎫13x 3-2x 2+5x ⎪⎪21+(-e -x +2)⎪⎪ 32=[⎝ ⎛⎭⎪⎫13×23-2×22+5×2 -⎝ ⎛⎭⎪⎫13×13-2×12+5×1 ]+[(-e -3+2)-(-e -2+2)]=73 -1e.7.答案: 3答案解析:依题意得⎝ ⎛⎭⎪⎫a 3x 3+bx ⎪⎪⎪3=3(ax 20 +b ),即3ax 20 =9a (a≠0),x 20 =3(x 0>0),由此解得x 0= 3 .8.答案:ln 2+π4答案解析:由题意得,⎠⎛12 ⎝ ⎛⎭⎪⎫1x +1-(x -2)2 d x =⎠⎛12 1x d x +⎠⎛12 1-(x -2)2 d x=ln x|21 +⎠⎛12 1-(x -2)2 d x =ln 2+⎠⎛12 1-(x -2)2d x .根据定积分的几何意义可知,⎠⎛121-(x -2)2 d x 表示圆(x -2)2+y 2=1满足1≤x≤2,y≥0的这一部分面积,即圆面积的14 ,故⎠⎛12 1-(x -2)2d x =π4 .因此⎠⎛12 ⎝ ⎛⎭⎪⎫1x +1-(x -2)2 d x =ln 2+⎠⎛12 1-(x -2)2 d x =ln 2+π4 .二 能力小题提升篇1.答案:D答案解析:令x 2=14 ,得x =12 或x =-12 (舍去),所以所求的阴影部分的面积为∫120⎝ ⎛⎭⎪⎫14-x 2 d x +∫112⎝ ⎛⎭⎪⎫x 2-14 d x =⎝ ⎛⎭⎪⎫14x -x 33 ⎪⎪⎪120 +⎝ ⎛⎭⎪⎫x 33-14x ⎪⎪⎪112 =14 .2.答案:C答案解析:因为y =x -1x +1 ,所以y′=⎝ ⎛⎭⎪⎫x -1x +1 ′=2(x +1)2 ,则曲线y =x -1x +1 在(0,-1)处的切线的斜率k =2,切线方程为y =2x -1,则曲线y =x -1x +1 与其在点(0,-1)处的切线及直线x =1所围成的封闭图形的面积S =⎠⎛01 ⎝ ⎛⎭⎪⎫2x -1-x -1x +1 d x =⎠⎛01 (2x -1-1+2x +1 )d x =[x 2-2x +2ln (x +1)]⎪⎪⎪1=2ln 2-1. 3.答案:D答案解析:∵不等式1-3x +a <0,∴x +a -3x +a<0,∴(x +a )(x +a -3)<0,∴-a<x<-a +3,由于1-3x +a <0的解集为(-1,2),∴⎩⎪⎨⎪⎧-a =-1-a +3=2,解得a =1,∴⎠⎛0a(2e 2x+x )d x =⎠⎛01(2e 2x+x )d x =⎝ ⎛⎭⎪⎫e 2x +x 22 ⎪⎪⎪10 =e 2-12 .4.答案:A答案解析:∵y =-x 2+4x -3,则y′=-2x +4,在点M (0,-3)的切线斜率k 1=y′|x =0=4,切线方程y =4x -3,在点N (3,0)的切线斜率k 2=y′|x =3=-2,切线方程y =-2()x -3 ,联立方程⎩⎨⎧y =4x -3y =-2()x -3 ,解得⎩⎪⎨⎪⎧x =32y =3, 即两切线的交点坐标为⎝ ⎛⎭⎪⎫32,3 , 所围成的图形的面积为S =∫32[]()4x -3-()-x 2+4x -3 d x +∫332[]-2()x -3-()-x 2+4x -3 d x=∫320x 2d x +∫332 ()x 2-6x +9 d x =13 x 3|32 0+(13 x 3-3x 2+9x )|332=94 .故选A .5.答案:12答案解析:由题意可得:围成的封闭图形的面积为:S =⎠⎛-4(x +4)d x +∫π2 04cos x d x =(12 x 2+4x )|0-4 +4sin x|π2 0=0-()8-16 +4sin π2-0=12.6.答案:1-mn答案解析:由题意得满足y i ≤f (x i )(i =1,2,…,n )的点有n -m 个,故n -m n ≈⎠⎛01f (x )d x 1 ,即⎠⎛01 f (x )d x≈1-mn ,故积分⎠⎛01 f (x )d x 的近似值为1-mn .7.答案:712答案解析:当x≤0时,f (x )=2x+∫π60cos 3x d x =2x+sin 3x 3⎪⎪⎪π6=2x+13,所以f (2 018)=f (2)=f (-2)=14 +13 =712.三 高考小题重现篇1.答案:D答案解析:如图可得,∫π3-π3 cos x d x =sin x|π3 -π3=2sin π3 = 3 .2.答案:C答案解析:由题意,要满足f (x ),g (x )是区间[-1,1]上的一组正交函数,即需满足⎠⎛-11 f (x )g (x )d x =0.①⎠⎛-11 f (x )g (x )d x =⎠⎛-11 sin 12 x cos 12 x d x =12 ⎠⎛-11 sin x d x=⎝ ⎛⎭⎪⎫-12cos x |1-1 =0,故第①组是区间[-1,1]上的正交函数;②⎠⎛-11 f (x )·g (x )d x =⎠⎛-11(x +1)(x -1)d x = ⎠⎛-11(x 2-1)d x =⎝ ⎛⎭⎪⎫x 33-x |1-1 =-43 ≠0,故第②组不是区间[-1,1]上的正交函数;③⎠⎛-11 f (x )g (x )d x =⎠⎛-11 x·x 2d x =⎠⎛-11 x 3d x =x 44 |1-1 =0,故第③组是区间[-1,1]上的正交函数.综上,其中为区间[-1,1]上的正交函数的组数是2.3.答案:B答案解析:不妨设⎠⎛01 f (x )d x =k ,则f (x )=x 2+2⎠⎛01 f (x )d x =x 2+2k ,所以⎠⎛01 f(x )d x =⎠⎛01 (x 2+2k )d x =⎝ ⎛⎭⎪⎫13x 3+2kx |10 =13 +2k =k ,得k =-13 ,即⎠⎛01 f (x )d x =-13. 4.答案:B答案解析:容易求得二次函数的答案解析式为f (x )=1-x 2,所以S =⎠⎛-11 (1-x 2)d x =⎝ ⎛⎭⎪⎫x -x 33 |1-1 =43 .5.答案:0答案解析:⎠⎛02 (x -1)d x =⎝ ⎛⎭⎪⎫12x 2-x |20 =12 ×22-2=0.6.答案:2e2答案解析:联立⎩⎪⎨⎪⎧y =e x,y =e , 解得x =1,因为y =e x与y =ln x 互为反函数,故所求阴影部分面积S =2⎠⎛01 (e -e x)d x =2,故所求概率P =2e2 .四 经典大题强化篇1.答案解析:(1)设A 到C 的时间为t 1 s ,则1.2t 1=24,解得:t 1=20,则AC =⎠⎛0201.2t d t =0.6t 2|200 =240(m ).即A 、C 间的距离为240 m . (2)设D 到B 的时间为t 2 s ,则24-1.2t 2=0,解得t 2=20,则BD =⎠⎛020 (24-1.2t )d t =(24t -0.6t 2)|200 =240(m ),即B 、D 间的距离为240 m . 2.答案解析:(1)由已知,当a =2时,f (x )=2x +ln x , ∴导函数曲线y =f′(x )与直线x =1,x =e 及坐标轴所围成的面积为:S =⎠⎛1e f′(x )d x =()2x +ln x |e1 =2e -1.(2)由题得f′(x )=a +1x=ax +1x (x>0), ①当a≥0时,由于x>0,则ax +1>0恒成立, 即f′(x )>0当x>0时恒成立,∴函数f (x )的单调递增区间为(0,+∞);②当a<0时,令f′(x )=0可得x =-1a>0,当x∈⎝ ⎛⎭⎪⎫0,-1a 时,f′(x )>0;当x∈⎝ ⎛⎭⎪⎫-1a ,+∞ 时,f′(x )<0, ∴函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞ . 综上,当a≥0时,函数f (x )的单调递增区间为()0,+∞ ;当a<0时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞ .。
(完整版)高中数学高考总复习定积分与微积分基本定理习题及详解

定积分与微积分基本定理习题一、选择题1. a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.由曲线y =x 2,y =x 3围成的封闭图形面积为( )练习、设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝⎛⎭⎫43,169B.⎝⎛⎭⎫45,169C.⎝⎛⎭⎫43,157 D.⎝⎛⎭⎫45,1373.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64. ⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2πB .3π C.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值 D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎫36,+∞ B .(0,e 21) C .(e -11,e ) D .(0,e 11) 8.如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.函数f (x )=⎩⎪⎨⎪⎧x +2(-2≤x <0)2cos x (0≤x ≤π2)的图象与x 轴所围成的图形面积S 为( ) A.32B .1C .4D.1210.设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12B.14C.13D.25二、填空题13.已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小.1、 [答案] D[解析] a =⎠⎛02x d x =12x 2|02=2,b =⎠⎛02e x d x =e x |02=e 2-1>2,c =⎠⎛02sin x d x =-cos x |02=1-cos2∈(1,2),∴c <a <b .A.112B.14C.13D.7122、[答案] A[解析] 由⎩⎪⎨⎪⎧y =x 2y =x 3得交点为(0,0),(1,1). ∴S =⎠⎛01(x 2-x 3)d x =⎪⎪⎝⎛⎭⎫13x 3-14x 401=112.练习; [答案] A[解析] 设P (t ,t 2)(0≤t ≤2),则直线OP :y =tx ,∴S 1=⎠⎛t (tx -x 2)d x =t 36;S 2=⎠⎛t2(x 2-tx )d x =83-2t +t 36,若S 1=S 2,则t =43,∴P ⎝⎛⎭⎫43,169. 3、[答案] A[解析] S =⎠⎛2x 3d x =⎪⎪x 4402=4.4、[答案] B[解析] ⎠⎛1(sin x +1)d x =(-cos x +x )|-11=(-cos1+1)-(-cos(-1)-1)=2.5、[答案] A[解析] 如右图,S =∫02π(1-cos x )d x =(x -sin x )|02π=2π.6、[答案] B[解析] F ′(x )=x (x -4),令F ′(x )=0,得x 1=0,x 2=4, ∵F (-1)=-73,F (0)=0,F (4)=-323,F (5)=-253.∴最大值为0,最小值为-323. 7、[答案] D ;[解析] f (x )=⎠⎛1x 1td t =ln t |1x =ln x ,a 3=S 3-S 2=21-10=11,由ln x <11得,0<x <e 11.8、[答案] A[解析] 由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得S =⎠⎛0πsin x d x=-cos x |0π=-(cosπ-cos0)=2,再根据几何概型的算法易知所求概率P =S S 矩形OABC =22π=1π.9、[答案] C[解析] 面积S =∫π2-2f (x )d x =⎠⎛0-2(x +2)d x +∫π202cos x d x =2+2=4.10、 [答案] A[解析] 由题意可得,当0<x <1时,[x ]=0,f (x )=x ,当1≤x <2时,[x ]=1,f (x )=x -1,所以当x ∈(0,2)时,函数f (x )有一个零点,由函数f (x )与g (x )的图象可知两个函数有4个交点,所以m =1,n =4,则⎠⎛mn g (x )d x =⎠⎛14⎝⎛⎭⎫-x 3d x =⎪⎪-x 2614=-52.11、[答案] A ;[解析] 方程x 2+2bx +c =0有实根的充要条件为Δ=4b 2-4c ≥0,即b 2≥c , 由题意知,每场比赛中甲获胜的概率为p =⎠⎛01b 2db 1×1=13.12、[答案] C ;[解析] 如图,正方形面积1,区域M 的面积为S =⎠⎛01x 2d x =13x 3|01=13,故所求概率p =13.13、 [答案] -1或13;[解析] ∵⎠⎛1-1f (x )d x =⎠⎛1-1(3x 2+2x +1)d x =(x 3+x 2+x )|-11=4,⎠⎛1-1f (x )d x =2f (a ),∴6a 2+4a +2=4,∴a =-1或13.14、 [答案] -192;[解析] 由已知得a =∫π20(sin x +cos x )d x =(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C 6r ×26-r ×x 3-r ,令3-r =2得,r =1,故其系数为(-1)1×C 61×25=-192.15、[答案] 18[解析] 由方程组⎩⎪⎨⎪⎧y 2=2x y =4-x解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y∴S =⎠⎛2-4[(4-y )-y 22]dy =(4y -y 22-y 36)|-42=18.16、 [答案] 16x -8y +1=0[解析] 由题意知⎠⎛01ax d x =23,∴a =1,设l :y =2x +b 代入y 2=x 中,消去y 得,4x 2+(4b -1)x +b 2=0,由Δ=0得,b =18,∴l 方程为16x -8y +1=0. 17、 [答案] -1[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0,∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,∴a =-1.18、 [解析] 由题意得S 1=t ·t 2-⎠⎛0t x 2d x =23t 3,S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13,所以S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).又S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -12,令S ′(t )=0,得t =12或t =0. 因为当0<t <12时,S ′(t )<0;当12<t ≤1时,S ′(t )>0.所以S (t )在区间⎣⎡⎦⎤0,12上单调递减,在区间⎣⎡⎦⎤12,1上单调递增.所以,当t =12时,S min =14.。
高中数学定积分与微积分基本定理练习题

定积分与微积分基本定理自我检测:1.设连续函数f(x)>0,则当a<b 时,定积分∫()ba f x dx 的符号( )A.一定是正的B.一定是负的C.当0<a<b 时是正的,当a<b<0时是负的D.以上结论都不对 2. ∫22ππ- (1+cosx)dx 等于( )A.πB.2C.π-2D.π+23.用S 表示图中阴影部分的面积,则S 的值是( )A. ∫()c a f x dxB.| ∫()c a f x dx|C. ∫()b a f x dx+∫()c b f x dxD. ∫()c b f x dx-∫()ba f x dx4.设函数()m f x x ax =+的导函数f′(x)=2x+1,则∫21()f x -dx 的值等于( )A.56 B.12 C.23 D.165.直线y=2x+3与抛物线2y x =所围成的图形面积为 .巩固练习:1. ∫412x dx 等于( )A.-2ln2B.2ln2C.-ln2D.ln22. ∫10(e 2)xx +dx 等于( )A.1B.e-1C.eD.e+13.已知f(x)= 210101x x x ⎧,-≤≤,⎨,<<,⎩则∫11()f x -dx 的值为 ( )A.32B.23-C.23 D.434.函数f(x)= 2110cosx 0x x x π+,-≤<,⎧⎨,≤≤⎩ 的图象与x 轴所围成的封闭图形的面积为( )A.32 B.1 C.2 D.125.函数y=∫(x x -cos 22)t t ++dt( )A.是奇函数B.是偶函数C.是非奇非偶函数D.以上都不正确6.由直线330x x y ππ=-,=,=与曲线y=cos x 所围成的封闭图形的面积为( )A.12 B.1 C.32 D.3 7.由曲线32y x y x =,=围成的封闭图形的面积为( )A.112B.14 C.13 D.7128.曲线1x y =与直线y=x,x=2所围成的图形面积为 .9.如果∫10()f x dx=1, ∫20()f x dx=-1,则∫21()f x dx= .10.由曲线2y x =和直线x=0,x=1,y=2(01)t t ,∈,所围成的图形(阴影部分)的面积的最小值为 .11.计算下列定积分.(1) ∫2211(2)x x -dx; (2) ∫3212()x x +dx; (3) ∫30π (sinx-sin2x)dx.12.已知f(x)为二次函数,且f(-1)=2,f′(0)=0,∫10()f x dx=-2.(1)求f(x)的解析式;(2)求f(x)在[-1,1]上的最大值与最小值.。
高中数学高考总复习计划定积分及微积分基本定理习题及详解

定积分与微积分根本定理习题一、选择题1.a=2xdx,b=2e x dx,c=2sinxdx,那么a、b、c的大小关系是()000 A.<<B.<<C.<<a D.<<acb abc cb cab2.由曲线y=x2,y=x3围成的封闭图形面积为()练习、设点P在曲线y=x2上从原点到A(2,4)移动,如果把由直线OP,直线y=x2及直线x=2所围成的面积分别记作1,2.如下列图,当1=2时,点P的坐标是()S S S S3.由三条直线x=0、x=2、y=0和曲线y=x3所围成的图形的面积为() A.4D.64.1-1(sin x+1)dx的值为()A.0B.2C .2+2cos1D.2-2cos15.曲线y=cosx(0≤x≤2π)与直线y=1所围成的图形面积是()A.2πB.3πD.π6.函数F(x)=x t(t-4)dt在[-1,5]上()32A.有最大值0,无最小值B.有最大值0和最小值-332C.有最小值-3,无最大值D.既无最大值也无最小值7.等差数列2+n,函数f(x)=x1{a}的前n项和S=2nt dt,假设f(x)<a,那么x的取值范围是()n n31B.(0,21)C.(-11,)D.(0,11)e e e e8.如下列图,在一个长为π,宽为2的矩形OABC内,曲线y=sinx(0≤x≤π)与x轴围成如下列图的阴影局部,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),那么所投的点落在阴影局部的概率是()x+2-2≤x<09.函数f(x)=π的图象与x轴所围成的图形面积S为()2cosx0≤x≤2B.1 C.410.设函数f(x)=x-[x],其中[x]表示不超过x的最大整数,如[-]=-2,[]=1,[1]=1.又函数x ng(x)=-3,f(x)在区间(0,2)上零点的个数记为m,f(x)与g(x)的图象交点的个数记为n,那么g(x)dx的m值是()54C.-57A.-B.-D.-234611.甲、乙两人进行一项游戏比赛,比赛规那么如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b,乙从区间[0,1]上随机等可能地抽取一个实数记为c(b、c可以相等),假设关于x的方程x2+2bx+c=0有实根,那么甲获胜,否那么乙获胜,那么在一场比赛中甲获胜的概率为()12.正方形四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1) ,曲线y=x2(x≥0)与x轴,直线x=1构成区域M,现将一个质点随机地投入正方形中,那么质点落在区域 M内的概率是( )二、填空题13.函数f(x)=3x2+2x+1,假设1-1f(x)dx=2f(a)成立,那么a=________.14.=∫π0(sinx+cos)dx,那么二项式(a x-1)6的展开式中含x2项的系数是________.a2xx15.抛物线y 2=2与直线y=4-x围成的平面图形的面积为________.x16.抛物线y 2=(>0)与直线x=1围成的封闭图形的面积为4,假设直线l与抛物线相切且平行于直线axa32x-y+6=0,那么l 的方程为______.17.函数f(x)=-x3+ax2+bx(a,b∈R)的图象如下列图,它与x轴在原点处相切,且x轴与函数1图象所围成区域(图中阴影局部)的面积为12,那么a的值为________.三、解答题18.如下列图,在区间[0,1]上给定曲线2,试在此区间内确定t的值,使图中阴影局部的面积1 y=x S+S2最小.122xx2221、[答案]D[解析]a=2xdx=2x|0=2,b=2edx=e|0=e-1>2,c=2sinxdx=-cosx|0=1000-cos2∈(1,2),∴c<a<b.y=x22、[答案]A[解析]由y=x3得交点为(0,0),(1,1).∴=1(23=131411 x-x)dxx-x0=.S3412 0练习;[答案]A[解析]设P(t,t2≤t≤2),那么直线OP:y=tx,∴S=t2t32 )(0(tx-x)dx=6;S=120t8t 34416212,(x -tx)dx=3-2t+6,假设S=S,那么t=3,∴P39.3x423、[答案]A[解析]S=2xdx=40=4.4、[答案]B[解析]1(sinx+1)dx=(-cosx+x)|-11=(-cos1+1)-(-cos(-1)-1)=2.5、[答案]A[解析]2π2π=2π.如右图,S=∫0(1-cosx)dx=(x-sinx)|06、[答案]B[解析]F′(x)=x(x-4),令F′(x)=0,得x1=0,x2=4,7322532∵F(-1)=-3,F(0)=0,F(4)=-3,F(5)=-3.∴最大值为0,最小值为-3.7、[答案]D;[解析]f(x)=x1|x=lnx,a=S-S=2111t dt=lnt1-10=11,由lnx<11得,0<x<e.33218、[答案]A[解析]由图可知阴影局部是曲边图形,考虑用定积分求出其面积.由题意得=πSsinxdx=-cosx|πP=S2=1.0=-(cosπ-cos0)=2,再根据几何概型的算法易知所求概率=πS矩形OABC2π9、[答案]C[解析]面积=∫πf()dx=0-2(x+2)dxπ02cosxd=2+2=4.-2+∫S2x2x10、[答案]A[解析]由题意可得,当0<x<1时,[x]=0,f(x)=x,当1≤x<2时,[x]=1,f(x)=x-1,所以当x∈(0,2)时,函数f(x)有一个零点,由函数f(x)与g(x)的图象可知两个函数有4个交点,n4x x245所以m=1,n=4,那么g(x)dx=-3dx=-61=-2.m111、[答案]A;[解析]方程x2+2bx+c=0有实根的充要条件为=4b2-4c≥0,即b2≥c,1b2db01由题意知,每场比赛中甲获胜的概率为p=1×1=3.12、[答案]C ;[解析]如图,正方形面积213|111 1,区域M的面积为S=1x dx=x=,故所求概率p=.3331232113、[答案]-1或3;[解析]∵1-1f(x)dx=1-1(3x +2x+1)dx=(x+x+x)|-1=4,1-211f(x)dx=2f(a),∴6a+4a+2=4,∴a=-1或.14、[答案]-192;[解析]由得aπ0(sinx+cos)dx=(-cosxπ0=(sinπ=∫+sin)|-2x x22π16的展开式中第r+1项是T =(-1)r r6-r×x3-r,令3-r=cos2)-(sin0-cos0)=2,(2x-x)×C×2r+162得,r=1,故其系数为115(-1)×C6×2=-192.15、[答案]18[解析]由方程组y2=2x 解得两交点(2,2)、(8,-4),选y作为积分变量x=y2、y=4-x A B2x=4-y∴S=y2y2y322-4[(4-y)-]dy=(4y--)|-4=18.22616、[答案]16-8y +1=0[解析]由题意知1x2axdx=3,∴a=1,2221设l:y=2x+b代入y =x中,消去y得,4x+(4b-1)x+b=0,由=0得,b=8,∴l方程为16x-8y+1=0.17、[答案]-1[解析]f′(x)=-3x2+2ax+b,∵f′(0)=0,∴b=0,∴f(x)=-x3+ax2,令f(x)=0,得x=0或x=a(a<0).S=-0(32141阴影-x+ax)dx=12a=12,∴a=-1.a2t22318、[解析]由题意得S1=t·t-xdx=3t,2=12d-t 2(1-)=23-t2+1,所以S x x t3t3t=1+2=43-21≤≤1).3t t+(0SSS3t又′(=4t 2-2t=4tt-1,令′(=,得t=1或t=.St)2St)021 1因为当0<t<2时,S′(t)<0;当2<t≤1时,S′(t)>0.所以()在区间,1上单调递减,在区间1t11,1上单调递增.所以,当=时,min=.St222S4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固练习】
1.如图所示,在边长为1的正方形OABC 中任取一点P,则点P 恰好取自阴影部分的概率为 ( )
A .
14
B .
15
C .
16
D .
17
2.若函数f (x ),g (x )满足1-1⎰f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:
①()1sin
2f x x =, ()1
cos 2
g x x =; ②f (x )=x +1,g (x )=x -1; ③f (x )=x ,g (x )=x 2.
其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .3
3.1
0x m e dx =
⎰与11
e
n dx x
=⎰
的大小关系是( ) A.m n > B.m n < C.m n = D.无法确定
4.下列结论中错误的是( ) A .[()()]b
a f x g x dx ±=
⎰()b
a
f x dx ⎰
±
()b
a
g x dx ⎰
B .()()b
b a a
kf x dx k f x dx =⎰⎰
C .
()b
a f x dx ⎰
=()c
a
f x dx ⎰+()b
c
f x dx ⎰(其中)a c b <<
D .[]2
()b
a f x dx ⎰=2
()b
a f x dx ⎡⎤⎢⎥⎣⎦
⎰
5.下列定积分值为0的有( ) A.
⎰
-2
2
sin xdx x B. ⎰-2
22cos xdx x
C.
⎰
-+2
2
52)(dx x x D. ⎰-++2
2
53)15(2dx x x
6.已知)(x f 为偶函数且
8)(6
=⎰
dx x f ,则=⎰-6
6
)(dx x f ( )
A.0
B.4
C.8
D.16
7.定积分=---⎰
dx x x 1
2))1(1(( )
A.
42
-π B.
12-π C.
41-π D. 2
1
-π 8.曲线]2
3
,0[,cos π∈=x x y 与坐标轴围成的面积( )
A .4 .2
B
C .2
5
D .3
9.一辆汽车以速度2
3t v =的速度行驶,这辆汽车从t=0到t=3这段时间内所行驶的路程为( ) A.
3
1
B.1
C.3
D.27 10.已知自由落体运动的速度gt v =,则落体运动从0=t 到0t t =所走的路程为( )
A .3
2
0gt 2
0.B gt
C .2
2
0gt
D .6
2
0gt
11.(2016 河北邯郸模拟)
2
1
1
(-)x dx x
=⎰
.
12.(2015合肥模拟)设函数f (x )=(x -1)x (x +1),则满足⎠⎛0a
f ′(x )d x =0的实数a =________.
13.设2,01()2,12
x x f x x x ⎧≤≤=⎨-<≤⎩,则20
()f x dx ⎰= ;
14.(2016 江西师大模拟)已知2
(sin cos )a x x dx π
=+⎰
,在(1+ax )6(1+y )4的展开式中,xy 2项
的系数为 .
15.求曲线x x x y 223++-=与x 轴所围成的图形的面积. 16.(2015春 长春校级月考)
已知由曲线y =
4y x =-以及x 轴所围成的图形的面积为
S .
(1)画出图象 (2)求面积S. 【参考答案与解析】
1.C
【解析】31
22
01211)(),1326
0S x dx x x S ==-==⎰Q 正阴影,故16P =, 2.【答案】C
【解析】 对于①,1-1⎰sin
12x cos 12x d x =1-1⎰1
2
sin x d x =0,所以①是一组正交函数;对于②,1-1⎰ (x +1)(x -1)d x =1-1⎰ (x 2-1)d x ≠0,所以②不是一组正交函数;对于③,1-1⎰x ·x 2d x =1-1⎰x 3d x =0,所以③是一
组正交函数.选C.
3.A 【解析】1
110
x x
m e dx e
e ===-⎰,1
1
ln 11e
e n dx x x
=
==⎰
4.D 5.D
【解析】设35
12()2(5),()2f x x x f x =+=
则3535
12()2(51)2(5)2()()f x x x x x f x f x =++=++=+
∵12(),()f x f x 在区间[]2,2-上是奇函数, ∴
2
22
35122
2
2
2(51)()()0x x dx f x dx f x dx ---++=+=⎰
⎰⎰
6. D
【解析】)(x f 为偶函数,则6
6
6
()2()16f x dx f x dx -==⎰
⎰
7. D
【解析】0
⎰
中的被积函数1)y x =≤≤恰是一个位于x 轴上方的半圆,
其面积为
2
π,故2π=⎰,又1012xdx =⎰
∴=---⎰dx x x 102
))1(1(2
1-π
8.D 9.D
【解析】这辆汽车从t=0到t=3这段时间内所行驶的路程为:3
3
23
33270
vdt t dt t
===⎰
⎰
10.C
11. 【答案】1﹣ln2 【解析】
2
2
11
1()(ln )2ln 21ln11ln 2x dx x x x
-=-=--+=-⎰
12.【答案】1 【解析】()()'0
0a f x dx f a ==⎰
,得a =0或1或-1,又由积分性质知a >0,故a =1.
13.
56
14.【答案】72 【解析】2
20
(sin cos )(cos sin )
112a x x dx x x π
π
=
+=-+=+=⎰
所以在(1+2x )6(1+y )4的展开式中,xy 2项为1222(2)726
4
C x C y xy =,所以系数为72.
15.【解析】首先求出函数x x x y 223++-=的零点:11-=x ,02=x ,23=x .
又易判断出在)0 , 1(-内,图形在x 轴下方,在)2 , 0(内,图形在x 轴上方, 所以所求面积为dx x x x A ⎰
-++--
=0
1
23)2(dx x x x ⎰
++-+
2
23)2(12
37=
16.【解析】(1)图象如图所示:
(2)曲线2y x =
4y x =-的交点坐标()2,2A ,
32
200
12214222|2233
S xdx x ∴=+⨯⨯=+=⎰。