基于单片机的智能温控风扇设计

合集下载

基于51单片机的智能温控风扇设计文献综述

基于51单片机的智能温控风扇设计文献综述

基于51单片机的智能温控风扇设计文献综述智能温控风扇一直以来是许多人在夏天必备的家居电器,而51单片机则作为一种常见的嵌入式应用领域的开发工具,正是在这样的基础上完成了智能温控风扇的智能化设计。

本文将对基于51单片机的智能温控风扇设计进行文章综述。

一、项目背景与概述基于51单片机的智能温控风扇设计项目旨在通过数字电子技术,实现风扇的自动温控和智能控制。

该设计采用了51单片机作为控制中心,具有温度检测和风扇控制的功能,可实现便捷的风扇控制和温度控制。

二、功能设计该智能温控风扇的功能设计主要包括以下方面:1. 温度检测功能设计采用了自带的ADC数模转换电路,通过温度传感器实时进行温度的检测和数据的采集。

2. 温度控制功能设计针对不同的温度范围设计了相应的风扇控制电路,可快速有效地调节风扇的转速,以达到最佳效果。

3. 智能控制功能设计采用了51单片机以及相关的软硬件技术,可实现智能控制模式,通过内部算法,自动识别风扇运行状态,调节控制风扇转速。

三、技术实现该智能温控风扇的实现技术主要包括以下方面:1. 传感器采集通过专用的温度传感器对环境温度进行实时采集并将数据反馈给控制系统。

2. 数据处理将采集到的温度数据进行处理并进行控制算法的优化,在系统内部根据温度调节风扇转速。

3. 控制回路设计中较为重要的一部分是控制回路,通过控制电路来实现智能温控风扇的控制。

四、应用前景基于51单片机的智能温控风扇设计可以广泛应用于各种家庭和办公场所,具有测量精度高、控制功能强以及智能化程度高的优点。

未来,智能温控风扇将会成为人们生活中必不可少的电器产品。

五、结论基于51单片机的智能温控风扇设计在实现自动温控和智能控制方面具有着良好的效果,并且具有较高的应用前景。

需要注意的是,在实现过程中,需要注重温度采集精度和控制算法的优化。

基于单片机的智能温控风扇系统设计

基于单片机的智能温控风扇系统设计

基于单片机的智能温控风扇系统设计一、本文概述随着科技的快速发展,智能家居系统在人们的日常生活中扮演着越来越重要的角色。

其中,智能温控风扇系统作为智能家居的重要组成部分,通过自动调节风速和温度,为用户提供舒适的室内环境。

本文旨在探讨基于单片机的智能温控风扇系统的设计与实现。

本文首先介绍了智能温控风扇系统的背景和意义,阐述了其在现代家居生活中的重要性和应用价值。

接着,文章详细分析了系统的总体设计方案,包括硬件平台的选择、软件编程的思路以及温度控制算法的实现。

在此基础上,文章还深入探讨了单片机在智能温控风扇系统中的应用,包括单片机的选型、外设接口的设计以及控制程序的编写。

文章还注重实际应用的可行性,对智能温控风扇系统的硬件电路和软件程序进行了详细的说明,包括电路原理图的设计、元器件的选择以及程序的调试过程。

文章对系统的性能和稳定性进行了测试和分析,验证了系统的有效性和可靠性。

通过本文的阐述,读者可以全面了解基于单片机的智能温控风扇系统的设计和实现过程,为相关领域的研究和应用提供参考和借鉴。

本文也为智能家居系统的发展提供了新的思路和方法。

二、系统总体设计智能温控风扇系统的设计旨在实现根据环境温度自动调节风扇转速的功能,从而提高使用的舒适性和能源效率。

整个系统以单片机为核心,辅以温度传感器、电机驱动模块、电源模块以及人机交互界面等组成部分。

在总体设计中,首先需要考虑的是硬件的选择与配置。

单片机作为系统的核心控制器,需要选择运算速度快、功耗低、稳定性高的型号。

温度传感器则选用能够精确测量环境温度、响应速度快、与单片机兼容的型号。

电机驱动模块负责驱动风扇电机,需要选择能够提供足够驱动电流、控制精度高的模块。

电源模块需要为整个系统提供稳定可靠的电源。

人机交互界面则用于显示当前温度和风扇转速,同时提供用户设置温度阈值的接口。

在软件设计上,系统需要实现温度数据的采集、处理与传输,风扇转速的控制,以及人机交互界面的管理等功能。

基于51单片机的智能温控风扇设计各部块的设计

基于51单片机的智能温控风扇设计各部块的设计

基于51单片机的智能温控风扇设计各部块的设计智能温控风扇是一种能够自动根据温度变化调节风扇转速的风扇,其应用广泛,如家庭、办公室、工业生产等。

本文主要介绍基于51单片机实现智能温控风扇的各部分设计。

一、传感器模块设计温度传感器是实现智能控制的重要模块。

常用的温度传感器有NTC、PTC、热电偶、DS18B20等。

这里选用DS18B20数字温度传感器。

其具有精度高、反应速度快、与单片机通信简单等优点。

将DS18B20以三线方式连接至单片机,通过调用它的相关函数来读取温度值。

二、风扇驱动模块设计风扇驱动模块是指控制风扇正反转的电路。

这里选用H桥驱动芯片L298N。

它可以控制直流电动机、步进电机等多种负载的正反转,具有过流保护、过温保护等功能。

将H桥驱动芯片通过引脚连接至单片机,通过编写控制程序,实现控制风扇的正反转及转速控制。

三、单片机模块设计单片机模块是整个系统的控制中心,它通过编写程序控制温度传感器和风扇驱动芯片实现智能控制。

这里选用常用的STC89C52单片机,具有较强的通用性和高性价比。

编写的程序主要实现以下功能:1. 读取温度值并进行比较,根据温度值控制风扇的启停及转速。

2. 设置风扇的最低速度和最高速度。

3. 实现温度设置功能,用户可通过按钮设置所需的温度值。

4. 实现显示屏幕功能,将当前温度值及系统状态等信息显示在屏幕上。

四、供电模块设计供电模块是系统的电源模块,它通过转换器将交流电转化为所需的直流电。

为保证系统稳定工作,供电模块应具有过载保护、过压保护、过流保护等功能。

五、外壳设计外壳设计是将控制模块和风扇固定在一起,并起到保护作用的模块。

可采用塑料或金属等材质制作外壳,将控制模块、风扇和电源线等固定在外壳内部。

外壳应符合美观、实用及安全的设计原则。

以上是基于51单片机的智能温控风扇设计各部块的相关参考内容,其中传感器模块、风扇驱动模块、单片机模块、供电模块及外壳设计五个部分是实现智能温控风扇的核心部分。

基于51单片机的智能温控风扇设计各部块的设计

基于51单片机的智能温控风扇设计各部块的设计

基于51单片机的智能温控风扇设计各部块的设计智能温控风扇是一种具备自动控制功能的风扇,可以根据环境温度智能调节风扇的转速,以保持室内的舒适温度。

本文将以基于51单片机的智能温控风扇的设计为例,介绍各部块的设计要点和相关参考内容。

1. 温度传感器温度传感器是智能温控风扇中用于感知环境温度的重要组成部分。

常见的温度传感器有NTC热敏电阻、DS18B20数字温度传感器等。

设计中需要选择合适的温度传感器,根据传感器的输出信号特性进行数据处理。

参考内容可参考温度传感器的数据手册以及相关应用资料。

2. 51单片机及外围电路设计51单片机作为核心控制器,负责采集温度传感器的信号并进行逻辑判断,控制风扇的转速。

在设计中,需要根据具体的应用需求选择合适的单片机型号,并设计对应的外围电路,包括电源部分、时钟电路、复位电路等。

参考内容可参考51单片机的数据手册、应用资料以及相关的电路设计手册。

3. 风扇驱动电路风扇驱动电路是控制风扇转速的关键部分。

常用的风扇驱动电路有PWM调速电路、三极管驱动电路等。

设计时需要根据风扇的工作电压和额定电流选择合适的驱动电路,并进行合理的电路设计,以保证风扇的转速调节精度和可靠性。

参考内容可参考相关驱动电路设计手册以及应用资料。

4. 显示模块设计智能温控风扇中常常需要添加显示模块,用于显示当前的温度、风速等信息,便于用户查看。

常用的显示模块有液晶显示屏、数码管等。

设计时需要根据需要选择合适的显示模块,并编写相应的程序驱动显示模块显示所需信息。

参考内容可参考显示模块的数据手册以及相关的驱动程序设计参考资料。

5. 控制算法设计控制算法设计是智能温控风扇中的关键部分,它决定了风扇转速与温度之间的关系。

常见的控制算法有比例控制、PID控制等。

在设计过程中需要根据实际的控制要求和环境特点选择合适的控制算法,并进行相应的参数调整和验证。

参考内容可参考相关的控制算法设计手册、应用资料以及实际的控制案例。

基于51单片机的智能温控风扇设计项目

基于51单片机的智能温控风扇设计项目

基于51单片机的智能温控风扇设计项目基于51单片机的智能温控风扇设计项目1. 引言:随着科技的不断发展,智能家居成为人们生活中越来越重要的组成部分。

其中,智能温控风扇作为一个常见且实用的设备,可以根据环境温度自动调节风速和摇摆角度,提供舒适的空气流通,为人们带来更好的生活体验。

本文将介绍一种基于51单片机的智能温控风扇设计项目。

2. 项目概述:2.1 智能温控风扇的原理和功能智能温控风扇通过感温传感器获取环境温度,并根据预设的温度阈值来控制风扇的运行状态,实现自动调节功能。

具体功能包括:- 根据温度变化自动调节风速,保持室内舒适温度;- 通过摇摆功能,使空气更均匀地散布到室内;- 可以手动设置风速和摇摆角度;- 提供显示屏,显示当前温度和设置参数。

2.2 项目所需硬件和软件:硬件:- 51单片机- 温度传感器- 高性能直流无刷风扇- 电机驱动模块- 显示屏软件:- Keil C编译器- Proteus电路仿真软件3. 项目实现步骤:3.1 硬件连接:- 将温度传感器连接到单片机的模拟输入引脚;- 将电机驱动模块连接到单片机的IO引脚;- 将显示屏连接到单片机的串口引脚。

3.2 软件编程:- 使用Keil C编译器编写单片机的控制程序,包括读取温度传感器数值、根据温度调节风扇速度和摇摆角度,并将数据传输给显示屏; - 在Proteus中进行电路仿真,验证单片机程序的功能和稳定性。

3.3 测试与调试:- 将硬件连接完成后,将单片机程序下载到51单片机上;- 对温度传感器进行校准,确保准确读取环境温度;- 通过手动设置和调节温度阈值,测试风扇的自动调节功能和摇摆功能;- 检查显示屏是否正确显示当前温度和设置参数。

4. 项目总结:4.1 项目成果:通过基于51单片机的智能温控风扇设计项目,成功实现了自动调节风速和摇摆角度,提供舒适的空气流通。

项目具有以下优点:- 简单易用,通过设置温度阈值即可实现智能控制;- 实时显示当前温度和设置参数,方便用户了解状态;- 在舒适度和能耗之间取得良好平衡。

设计题目基于单片机智能温控风扇的设计

设计题目基于单片机智能温控风扇的设计

基于单片机的智能温控风扇设计
简介:本设计旨在利用单片机技术实现智能温控风扇系统,通过测量环境温度并根据预设的温度阈值自动调节风扇的转速,以达到舒适的室内温度。

设计要求:
1. 硬件设计:选择适当的单片机开发板和传感器,能够测量环境温度并输出相应的控制信号给风扇。

2. 温度检测:使用温度传感器实时测量环境温度,并将数据传输给单片机进行处理。

3. 控制逻辑:设计合理的控制算法,通过单片机对温度数据进行处理,判断是否需要调节风扇的转速。

4. 风扇控制:根据控制逻辑的结果,通过单片机控制风扇的转速,可以采用PWM(脉宽调制)技术控制风扇速度。

5. 用户界面:设计友好的用户界面,使用户能够设定温度阈值和其他参数,同时显示当前温度和风扇状态等信息。

拓展要求:
1. 温度补偿:考虑环境温度对传感器的影响,设计温度补偿算法提高测量准确性。

2. 风扇速度调节:根据温度差异的大小,设计风扇转速的连续调节策略,以避免频繁启停。

3. 报警功能:当环境温度超过设定的安全范围时,通过警报或其他方式提醒用户。

4. 能耗优化:设计合理的功耗管理策略,尽可能降低系统的能耗。

5. 远程监控:通过无线通信模块(如Wi-Fi或蓝牙)实现远程监控和控制功能,使用户能够通过手机或电脑远程操作风扇系统。

注意事项:
1. 设计应考虑系统的稳定性、可靠性和安全性。

2. 设计过程中需考虑电路设计、软件编程和用户界面设计等方面的问题。

3. 设计完成后,应进行测试和验证,确保系统功能正常并满足设计要求。

基于51单片机的智能温控风扇设计各部块的设计

基于51单片机的智能温控风扇设计各部块的设计

基于51单片机的智能温控风扇设计各部块的设计智能温控风扇是一种能够根据环境温度自动调节风速的风扇。

它可以通过内置的温度传感器来检测环境温度,并根据预设的温度阈值来自动调节风速,以达到舒适的温度控制效果。

在这篇文章中,我将介绍基于51单片机的智能温控风扇设计中的各部块的设计原理和功能。

1. 电源电路设计:智能温控风扇的电源电路设计需要保证稳定的电压供应,并提供足够的电流输出。

一般来说,我们可以使用稳压芯片来实现稳定的电压输出,并使用大功率三极管或MOSFET来提供足够的电流。

2. 温度传感器设计:温度传感器是智能温控风扇的核心部件之一。

常见的温度传感器有DS18B20、LM35等。

通过将温度传感器与51单片机相连,可以实时获取环境温度数据,并根据设定的温度阈值进行风速调节。

3. 显示屏设计:为了方便用户查看当前的环境温度和风速情况,智能温控风扇通常配备了显示屏。

可以选择液晶显示屏或者数码管来显示温度和风速信息。

通过51单片机的IO 口和显示屏进行连接,可以将温度和风速数据显示在屏幕上。

4. 按键设计:为了方便用户设置温度阈值和控制风速,智能温控风扇通常配备了按键。

通过51单片机的IO口和按键进行连接,可以实现对温度和风速的调节。

按键可以设置上下调节温度的按钮,还可以设置开关风扇的按钮等。

5. 控制逻辑设计:智能温控风扇的控制逻辑设计非常重要。

根据温度传感器采集到的环境温度数据,通过与预设的温度阈值进行比较,可以确定风扇应该以何种速度工作。

通过51单片机控制风扇的速度,可以实现智能的温控功能。

6. 风扇驱动电路设计:智能温控风扇设计中,需要使用风扇驱动电路将单片机的输出信号转换为足够的电流驱动风扇。

常见的风扇驱动电路设计包括三极管驱动电路和MOSFET驱动电路。

7. 通信模块设计:为了实现智能化控制,可以考虑在智能温控风扇中添加通信模块,如WiFi模块或蓝牙模块。

通过与手机或其他智能设备的连接,可以实现远程控制和监控。

《2024年基于单片机的多功能自动调温风扇系统设计》范文

《2024年基于单片机的多功能自动调温风扇系统设计》范文

《基于单片机的多功能自动调温风扇系统设计》篇一一、引言随着科技的发展和人们生活品质的提高,自动调温风扇已成为现代家庭和办公环境中不可或缺的电器设备。

为了满足用户对舒适环境的需求,本文提出了一种基于单片机的多功能自动调温风扇系统设计。

该系统集成了温度检测、自动调温、风速调节、定时开关等多项功能,通过单片机控制,实现了智能化、人性化的操作体验。

二、系统设计概述本系统以单片机为核心控制器,通过温度传感器实时检测环境温度,根据预设的温度范围自动调节风扇的转速和风向,以达到调节室内温度的目的。

同时,系统还具备风速调节、定时开关、遥控控制等功能,以满足不同用户的需求。

三、硬件设计1. 单片机:本系统采用高性能的单片机作为核心控制器,负责接收传感器信号、控制风扇电机、定时器等模块的工作。

2. 温度传感器:用于实时检测环境温度,将温度信号转换为电信号,传输给单片机进行处理。

3. 风扇电机:根据单片机的控制信号,驱动风扇转动,实现调温、风速调节等功能。

4. 定时器:用于设置风扇的定时开关功能,方便用户根据需求进行设置。

5. 遥控模块:实现远程控制风扇的功能,方便用户在不同场景下操作。

四、软件设计1. 主程序:负责初始化系统参数、读取传感器数据、控制风扇电机等工作。

2. 温度检测程序:通过温度传感器实时检测环境温度,将数据传输给单片机进行处理。

3. 自动调温程序:根据预设的温度范围,通过控制风扇电机的转速和风向,实现自动调温功能。

4. 风速调节程序:根据用户需求,通过控制风扇电机的转速,实现风速调节功能。

5. 定时开关程序:根据用户设置的定时时间,控制风扇的开关功能。

6. 遥控控制程序:接收用户通过遥控模块发送的控制指令,实现远程控制风扇的功能。

五、系统实现1. 温度检测与自动调温:系统通过温度传感器实时检测环境温度,当温度高于或低于预设范围时,单片机通过控制风扇电机的转速和风向,实现自动调温功能。

2. 风速调节:用户可以通过按键或遥控模块设置所需的风速,单片机根据用户需求控制风扇电机的转速,实现风速调节功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要本设计为智能温控风扇系统,该系统可以实现风扇随实时环境温度而智能变速功能。

系统主要选用STC89C52单片机作为控制中心,DS18B20数字温度传感器采集实时温度,再经单片机处理后通过三极管放大信号后驱动直流风扇的电机。

用户可以预设上限、下限温度值,当测得环境温度值在预设上下限值区间中时,此时风扇以半速转动;当温度升高并大于预设上限温度值时,风扇会自动调速,以全速转动;当温度降低并低于预设的下限温度值时,这时风扇电机自动停止转动。

全程实现风扇转速随外界温度而智能自变。

关键词:温控风扇,STC89C52单片机,DS18B20数字温度传感器,智能自变AbstractThis design for the intelligent temperature control fan system, the system can realize the fan intelligent variable speed function according to the real-time environmental temperature.STC89C52 single-chip microcomputer system is mainly used as the control center, DS18B20 digital temperature sensor to collect real-time temperature, then through single chip through triode amplifier signal after drive dc fan ers can preset upper limit and lower limit temperature, when the environment temperature measurement in the preset upper and lower limit range, the fan rotates at half speed;When the temperature is greater than the preset limit temperature, fan speed automatically, with full rotation.When the lower limit of temperature is lower and lower than the preset value, the fan motor automatically stop running.The entire implementation and intelligence from change fan speed varies with temperature.Key words:temperature control fan, STC89C52 Single chip microcomputer and DS18B20 digital temperature sensor, smart since the change目录摘要 (I)Abstract (II)1绪论 (1)1.1 本设计的背景及意义 (1)1.2 发展现状 (1)1.3 本设计的主要内容 (1)2 系统整体设计 (2)2.1 系统整体设计框图 (2)2.2 系统各模块选用方案论证 (2)2.2.1 温度传感器的选用 (2)2.2.2 主控机的选用 (4)2.2.3 显示电路的选用 (4)2.2.4 调速方式的选用 (4)3 系统硬件设计 (6)3.1 系统硬件原理图 (6)3.2 主控芯片介绍 (6)3.2.1 STC89C52简介 (6)3.2.2 STC89C52主要性能参数 (7)3.2.3 STC89C52单片机引脚说明 (8)3.2.4 STC89C52单片机最小系统 (8)3.3 DS18B20温度采集电路 (10)3.3.1 DS18B20引脚功能介绍 (10)3.3.2 DS18B20主要性能参数 (11)3.3.3 DS18B20的工作原理及时序 (11)3.4 数码管显示电路 (12)3.5 风扇驱动电路 (13)3.6 按键模块 (13)4 系统软件设计 (15)4.1 主程序流程图 (15)4.2 DS18B20子程序流程图 (16)4.3 按键子程序流程图 (16)4.4 数码管显示子程序流程图 (18)5 系统调试 (19)5.1 系统功能 (19)5.1.1 系统实现的功能 (19)5.1.2 系统功能分析 (19)5.2 软硬件调试 (19)5.2.1 系统硬件实物介绍 (19)5.2.2 按键显示部分的调试 (20)5.2.3 温度传感器DS18B20温度采集部分调试 (20)5.2.4 风扇调速电路部分调试 (21)结论 (22)致谢 (23)参考文献 (24)附录 (25)1绪论1.1 本设计的背景及意义随着社会水平的高速发展,家用电器已经越来越智能化,紧随着物价也自然会因为设计成本的提高而上涨。

单单从夏季我们用来降温的电器来看,尽管很多城市家庭如今已经用上了空调,但大多数的中国农村家庭仍还在利用电扇降温防暑。

电扇虽有调节档位的功能,但仍然离不开人工手换档,灵活性太差。

比如在深夜里,温度下降后风扇的风速应该降低,可是这时人已经入睡并不能及时手动换挡,就很容易感冒。

为了避免这种不便情况,我们一般都会给风扇定时,让风扇定时关闭,但这依旧不是很智能化。

因为如果当风扇定时时间到后,气温依旧没有明显的下降,但是这时风扇已经关闭,人就很容易会再次被热醒,而不得不起床重新打开风扇,这样人根本得不到充足的休息时间。

因此,智能温控风扇是当今市场迫切需求的产品。

1.2 发展现状截止目前,可以说社会已经完全步入了现代化电子时代,由于温度控制器能够实时监控环境温度,并能及时对机器做出调整,它被广泛的运用到各行各业。

它的普及带给人们极大的方便。

温控风扇正是基于温度控制器下的一种产物。

目前,这种系统在很多国内家庭都得到运用,尤其是家用电器里的自动散热。

系统效率越来越高。

1.3 本设计的主要内容本系统采用STC89C52单片机作为主控芯片,结合温度传感器DS18B20,12V直流风扇以及4个共阴极的LED数码管,可做到显示实时环境温度值和预设温度值,一旦当系统检测到当前环境温度,则会对比预设温度值,自动改变风扇的状态,动作准确。

本篇论文主要以以下思路撰写:首先介绍该设计的意义并简要说明设计中主要涉及到的一些元器件;其次对每个模块进行选择最合适的元件并论证;然后从硬件方面,依次详细介绍每个元件的性能及在本系统中的功能;紧随着再从软件设计方面,对每个模块的子程序进行说明;最后便是对整个系统软硬件的调试,发现问题并解决问题。

2 系统整体设计2.1 系统整体设计框图系统的整体设计框图结构如下图2-1所示:图2-1系统整体框图2.2 系统各模块选用方案论证2.2.1 温度传感器的选用温度传感器主要有以下两种方案可供选用:方案一:选用热敏电阻作为温度传感器的核心元件。

由于热敏电阻的电阻会跟着温度的变化而变化,如此就会产生模拟信号,随后再将模拟信号转换成数字信号,最终发送给单片机IN-0口进行处理。

具体热敏温度采集电路如图2-2所示:苏州市职业大学电子信息工程学院毕业设计图2-2 热敏温度采集电路方案二:选用温度传感器DS18B20作为温度传感器的核心元件。

通过其传感温度,然后直接输出数字温度信号并传给单片机处理。

具体DS18B20采集电路如图2-3所示:图2-3 DS18B20温度采集电路对于方案一,热敏电阻的最大特点就是它的价廉而且很多市场上都有这种元件,但热敏电阻对温度并不敏感,在温度采集时很容易产生误差。

虽然这种误差可以通过减小,但并不会避免。

故本方案不适合本系统。

对于方案二,因为DS18B20是单总线,且其集成度极高,所以该传感器可以大幅度降低外部误差。

其次由于其感测温度与热敏电阻的方法并不一样,使其具有较强的温度识别能力。

所测到的温度直接就可以转换成具体数字值并发送给单片机。

因此,本方案比较适合该系统。

U2ADC0809R82.2.2 主控机的选用方案一:选用凌阳系列单片机来控制系统,这类单片机可以实现不同的复杂逻辑功能,它将所有元器件都集成在一块芯片上,集成度十分高,提高了稳定性。

凌阳单片机的系统处理速度很快,适合用于大规模实时系统的控制。

方案二:采用ST89C52单片机控制整个系统的运行。

主要通过编程的方式对测得的温度进行判断,然后输出对应的控制信号。

进而实现对系统实时控制。

由于ST89C52单片机要比凌阳系列单片机的价格低得多,且本设计不需要很高的处理速度,从经济和方便使用角度考虑,本设计更倾向于选择了方案二。

其次,通过单片机可以直接将测得温度在显示器上显示出来。

综合来看,本系统更适合采用方案二。

2.2.3 显示电路的选用方案一:采用数码管作为系统的显示器。

尽管数码管显示的内容有限,但是对于本设计,只要显示一些基本的数字和字母就已经足够了。

并且价格低廉。

方案二:采用液晶字符式显示屏作为系统的显示器。

能够用软件达到很好的控制,元件器简单。

对于方案一,该方案具有成本低,功耗低的特点,显示驱动程序编写是比较简单的,唯一不足之处是其采用的是动态扫描显示方式,因此在这过程中会有短暂的闪烁,但我们可以通过增加扫描频率来避免闪烁。

对于方案二,液晶显示屏不仅可以显示字符,甚至还能够显示图形,这是LED数码管远远做不到的。

但也正是因为它强大的显示功能,使得液晶显示屏的驱动程序复杂,价格相对而言比较昂贵。

从实用以及价格多角度来看,方案一更适合该系统。

2.2.4 调速方式的选用方案一:采用变压器调节方式,运用电磁感应原理进行变压,当风扇电机接到不同电压值的线圈上,电机的转速也会转变,如此就可控制风扇风力大小。

方案二:采用三极管驱动PWM控制。

对于方案一,变压器主要是调节电压,那么在变压过程中就会不可避免的存在损耗,效率不高。

还有可能会发热过度起火,带来一些不必要的麻烦。

对于方案二,三极管PWM的最大长处便是无需数模转换,从处理器到被控系统信号一概都是数字形式的。

而数字信号正可以在极大程度上降低噪声影响。

PWM的第二大特点是它相对于模拟控制有更高的抗干扰能力,正因为如此,在特定情况下亦可以将其用于通信。

当模拟信号转向PWM 时会延长通讯的距离。

故本系统采用方案二。

3 系统硬件设计3.1 系统硬件原理图本系统主要由温度传感器DS18B20、STC89C52单片机、LED共阴数码管、三极管驱动电路及一些其他外围器件电阻、电容、晶振、电源、按键、开关和风扇组成。

相关文档
最新文档