2021--2013学年高三数学寒假作业3含答案(最新编写)
[VIP专享]高三数学寒假作业(完整答案)
![[VIP专享]高三数学寒假作业(完整答案)](https://img.taocdn.com/s3/m/076f7350d5bbfd0a78567338.png)
答案 A
于是,该数列是周期为 6 的数列,a2 013=a3=a1=3.
a2
解析 由已知得 an+1=an-1,an+3=an+1= an ×an+1=an,故 an+6=an+3=an,
答案 C
D.729
C.243
B.81
A.27
则 a6=( )
4.已知等比数列{an}的前 n 项和为 Sn,若 S2n=4(a1+a3+a5+…+a2n-1),a1a2a3=27,
int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM
高三数学附加卷作业寒假作业参考答案

高三数学附加卷作业寒假作业参考答案暑假马上就要到了,同窗们不要忘了在抓紧的时分还有暑假作业在等着我们去完成,下面是2021高三数学附加卷作业暑假作业参考答案,供先生参考。
一、 A.(选修41:几何证明选讲)自圆O外一点引切线与圆切于点,为中点,过引割线交圆于 , 两点.求证: .
证明:∵ 与圆相切于,,
∵ 为中点,,
B. 解由题知,四边形ABCD是直角梯形,其的面积为S1=3。
hellip,高中语文;3分
A,B,C,D四点经矩阵M对应的变换后依次为
7分
由于A1D1与B1C1平行且距离为2,且四边形A1B1C1D1也是直角梯形,所以四边形A1B1C1D1的面积为综上所述,四边形ABCD与四边形A1B1C1D1的面积相等。
10分
C.解:两圆的普通方程为:所以的最大值为: .
D..证:由柯西不等式得,
记为的面积,那么ks5u ,
故不等式成立.
22. 解:(1)不能被4整除的数分为两类:
①4个数均为奇数,概率为;②有3个为奇数,1个为2,其概率为所以不能被4整除的概率为 .
(2)
X01234
P(X)
由于,所以 23. 解:(1)设点的坐标为,
由,得点是线段的中点,那么,,
又,w.w.w.k.s.5.u.c.o.m
由,得,???????????①
由,得t=y ????②
由①②消去,得即为所求点的轨迹的方程
(2)证明:设直线的斜率依次为,并记,,
那么设直线方程为,得,
,
成等差数列
2021高三数学附加卷作业暑假作业参考答案就分享到这里了,更多高三数学暑假作业请继续关注查字典数学网高中频道!。
高三年级数学寒假作业答案

高三年级数学寒假作业(5)答案(立体几何)1.①③④2..②3.②④4.①③④⇒②或②③④⇒①5. 86. 34π 7.3π 8.13 9.32 10.2 11.④ 12.)1,21( 13.310V 14.23c a 2-c 2-1二、解答题:15.【答案】(1)证:因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,PA BD ∴⊥又AC BD ⊥,,PA AC 是平面PAC 内的两条相交直线,BD ∴⊥平面PAC ,而BD ⊂平面PBD ,所以平面PBD ⊥平面PAC(2)证:AC BE ⊥Q ,AC BD ⊥,BE 和BD 为平面BED 内两相交直线,AC ∴⊥平面BED ,连接EO ,EO ⊂Q 平面BED ,AC EO ∴⊥,PA Q ⊥平面ABCD ,AC ⊂Q 平面ABCD ,AC PA ∴⊥,又,,AC PA EO 共面,//EO PA ∴,又PA ⊄Q 平面BED ,EO ⊂平面BED ,//PA ∴平面BED16【答案】证明:(1)因为点M ,N 分别是P A ,PB 的中点,所以MN ∥AB因为CD ∥AB ,所以MN ∥CD .又CD ⊂平面PCD , MN ⊄平面PCD ,所以MN ∥平面PCD(2)因为AD ⊥AB ,CD ∥AB ,所以CD ⊥AD ,又因为PD ⊥底面ABCD ,CD ⊂平面ABCD ,所以CD ⊥PD ,又AD PD D =I ,所以CD ⊥平面P AD因为MD ⊂平面P AD ,所以CD ⊥MD ,所以四边形MNCD 是直角梯形(3)因为PD ⊥底面ABCD ,所以∠P AD 就是直线P A 与底面ABCD 所成的角,从而∠P AD = 60o 在Rt △PDA 中,2AD =,6PD =,22PA =,2MD =. 在直角梯形MNCD 中,1MN =,3ND =,3CD =,22()6CN MD CD MN =+-=, 从而222DN CN CD +=,所以DN ⊥CN 在Rt △PDB 中,PD = DB 6, N 是PB 的中点,则DN ⊥PB 又因为PB CN N =I ,所以DN ⊥平面PCBABCD OE F17【答案】解(1)法一:ΘQA ⊥平面ABCD ,∴QA ⊥CD ,由四边形ABCD 为正方形知DC ⊥AD,又QA 、AD 为平面PDAQ 内两条相交直线,∴CD ⊥平面PDAQ,∴CD ⊥PQ, 在直角梯形PDAQ 中可得DQ=PQ=22PD,则P Q ⊥QD, 又CD 、QD 为平面ADCB 内两条相交直线, ∴PQ ⊥平面DCQ法二:ΘQA ⊥平面ABCD,QA ⊂平面PDAQ,∴平面PDAQ ⊥平面ABCD,交线为AD.又四边形ABCD 为正方形,DC ⊥AD,∴DC ⊥平面PDAQ,可得PQ ⊥DC. 在直角梯形PDAQ 中可得DQ=PQ=22PD,则PQ ⊥QD,又CD 、QD 为平面ADCB 内两条相交直线, ∴PQ ⊥平面DCQ.(2)存在CP 中点R,使QR ∥平面ABCD证:取CD 中点T,连接QR,RT,AT,则RT ∥DP,且RT=21DP, 又AQ ∥DP,且AQ=21DP,从而AQ ∥RT,且AQ=RT, ∴四边形AQRT 为平行四边形,所以AT ∥QR,ΘQR ⊄平面ABCD,AT ⊂平面ABCD,18【答案】⑴因为CE ⊥圆O 所在的平面,BC ⊂圆O 所在的平面,因为BC ⊂平面BCEF ,所以平面BCEF ⊥平面ACE⑵由⑴AC BC ⊥,又因为CD 为圆O 的直径,所以BD BC ⊥,因为,,AC BC BD 在同一平面内,所以AC//BD,因为BD ⊄平面ACE ,AC ⊂平面ACE ,所以BD //平面ACE因为BF//CE,同理可证BF //平面ACE ,因为BD BF B =I ,,BD BF ⊂平面BDF ,所以平面BDF //平面ACE ,因为DF ⊂平面BDF ,所以DF //平面ACE19【答案】.证明:(1)因为BC ⊥平面ABE ,AE ⊂平面ABE ,所以AE ⊥BC ,又BF ⊥平面ACE ,AE ⊂平面ACE ,所以AE ⊥BF ,又BF ∩BC =B ,所以AE ⊥平面BCE ,又BE ⊂平面BCE ,所以AE ⊥BE .(2)取DE 的中点P ,连结PA ,PN ,因为点N 为线段CE 的中点.所以PN ∥DC ,且PN =12DC ,又四边形ABCD 是矩形,点M 为线段AB 的中点,所以AM ∥DC ,且AM = 12DC ,所以PN ∥AM ,且PN =AM ,故四边形AMNP 是平行四边形,所以MN ∥AP , 而AP ⊂平面DAE ,MN ⊄平面DAE ,所以MN ∥平面DAE .20.【答案】(1)证明:在△ABC 中,∵AC =3,AB =2,BC =1,∴AC ⊥BC .又∵AC ⊥FB ,∴AC ⊥平面FBC .(2)解:∵AC ⊥平面FBC ,∴AC ⊥FC .∵CD ⊥FC ,∴FC ⊥平面ABCD .在等腰梯形ABCD 中可得CB =DC =1,∴FC =1.∴S △BCD =34,∴四面体FBCD 的体积为:V F -BCD =13S △BCD ·FC =312.(3)线段AC 上存在点M ,且M 为AC 中点时,有EA ∥平面FDM ,证明如下:连接CE ,与DF 交于点N ,连接MN .因为CDEF 为正方形,所以N 为CE 中点.所以EA ∥MN .因为MN ⊂平面FDM ,EA ⊄平面FDM ,所以EA ∥平面FDM .所以线段AC 上存在点M ,使得EA ∥平面FDM 成立.。
高三数学寒假作业(完整答案)

高三数学寒假作业—数列答案一、选择题:1.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=()A .5B .8C .10D .14解析 解法一:设等差数列的公差为d ,则a 3+a 5=2a 1+6d =4+6d =10,所以d =1,a 7=a 1+6d =2+6=8.解法二:由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 答案 B2.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63 D .64解析 在等比数列{a n }中,S 2,S 4-S 2,S 6-S 4也成等比数列,故(S 4-S 2)2=S 2(S 6-S 4),则(15-3)2=3(S 6-15),解得S 6=63. 答案 C3.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为( ) A .8 B .7 C .6 D .5解析 设等差数列的公差为d ,由等差数列的性质可得2d =a 3-a 1=4,得d =2,所以a n =1+2(n -1)=2n -1.S k +2-S k =a k +2+a k +1=2(k +2)-1+2(k +1)-1=4k +4=36,解得k =8.4.已知等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+a 5+…+a 2n -1),a 1a 2a 3=27,则a 6=( )A .27B .81C .243D .729 解析 设数列{a n }的公比为q ,∵S 2n =4×a 1-q 2n1-q2=a 1-q 2n1-q,∴q =3,又a 1a 2a 3=27,∴a 32=27,∴a 2=3,∴a 6=a 2q 4=35=243,故选C. 答案 C5.已知数列{a n }满足a 1=1,a 2=3,a n +1·a n -1=a n (n ≥2),则a 2 013的值等于( ) A .3 B .1 C.13 D .32 013解析 由已知得a n +1=a n a n -1,a n +3=a n +2a n +1=a n +1a n ×1a n +1=1a n ,故a n +6=1a n +3=a n , 于是,该数列是周期为6的数列,a 2 013=a 3=a 2a 1=3. 答案 A6.已知数列{a n }中a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15等于( )A .201B .210C .211D .212解析 由S n +1+S n -1=2(S n +S 1),得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),数列{a n }从第二项起构成等差数列,S 15=1+2+4+6+8+…+28=211. 答案 C7.在等比数列{a n }中,a 1+a n =34,a 2a n -1=64,且前n 项和S n =62,则项数n 等于( ) A .4 B .5 C .6 D .7解析 在等比数列中,a 2a n -1=a 1a n =64,又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 1-qn1-q=a 1-qa n 1-q =2-32q 1-q=62,解得q =2,又a n =a 1q n -1,所以2×2n -1=2n=32,解得n =5.同理当a 1=32,a n =2时,由S n =62解得q =12,由a n=a 1qn -1=32×⎝ ⎛⎭⎪⎫12n -1=2,得⎝ ⎛⎭⎪⎫12n -1=116=⎝ ⎛⎭⎪⎫124,即n -1=4,n =5,综上项数n 等于5,选B.答案 B8.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12. 答案 C9.设等差数列{a n }的前n 项和是S n ,若-a m <a 1<-a m +1(m ∈N *,且m ≥2),则必定有( ) A .S m >0,且S m +1<0 B .S m <0,且S m +1>0 C .S m >0,且S m +1>0 D .S m <0,且S m +1<0解析 由题意,得:-a m <a 1<-a m +1⇔⎩⎪⎨⎪⎧a 1+a m >0,a 1+a m +1<0.显然,易得S m =a 1+a m2·m >0,S m +1=a 1+a m +12·(m +1)<0.答案 A10.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=1,a 2=3,记S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A .a 2 014=-1,S 2 014=2 B .a 2 014=-3,S 2 014=5 C .a 2 014=-3,S 2 014=2D .a 2 014=-1,S 2 014=5解析 由已知数列{a n }满足a n +1=a n -a n -1(n ≥2),知a n +2=a n +1-a n ,a n +2=-a n -1(n ≥2),a n +3=-a n ,a n +6=a n ,又a 1=1,a 2=3,a 3=2,a 4=-1,a 5=-3,a 6=-2,所以当k ∈N时,a k +1+a k +2+a k +3+a k +4+a k +5+a k +6=a 1+a 2+a 3+a 4+a 5+a 6=0,a 2 014=a 4=-1,S 2 014=a 1+a 2+a 3+a 4=1+3+2+(-1)=5.答案 D10(理)已知定义在R 上的函数f(x)和g(x)满足g(x)≠0,f'(x)·g(x)<f(x)·g'(x),f(x)=a x ·g(x),+=.令a n =,则使数列{a n }的前n 项和S n 超过的最小自然数n 的值为二、填空题:13.(2014·江西卷)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取最大值,则d 的取值范围________.解析 当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.∴⎩⎪⎨⎪⎧7+7d >0,7+8d <0.∴-1<d <-78.答案 ⎝⎛⎭⎪⎫-1,-78 12.已知函数f (x )=x +sin x ,项数为19的等差数列{a n }满足a n ∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则当k =________时,f (a k )=0.解析 因为函数f (x )=x +sin x 是奇函数,所以图象关于原点对称,图象过原点.而(1)(1)f g (-1)(-1)f g 52()()f n g n 1516等差数列{a n }有19项,a n ∈⎝ ⎛⎭⎪⎫-π2,π2,若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则必有f (a 10)=0,所以k =10. 答案 1011.(2013·湖南)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则:(1)a 3=________;(2)S 1+S 2+…+S 100=________. 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1(n ≥2),∴a n =(-1)na n -(-1)n -1a n -1+12n (n ≥2).当n 为偶数时,a n -1=-12n (n ≥2),当n 为奇数时,2a n +a n -1=12n (n ≥2),∴当n =4时,a 3=-124=-116.根据以上{a n }的关系式及递推式可求.a 1=-122,a 3=-124,a 5=-126,a 7=-128,…, a 2=12,a 4=12,a 6=12,a 8=12,….∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝ ⎛⎭⎪⎫12+122+123+…+12100=⎝ ⎛⎭⎪⎫12+123+…+1299-⎝ ⎛⎭⎪⎫12+122+…+12100=13⎝ ⎛⎭⎪⎫12100-1.答案 (1)-116 (2)13⎝ ⎛⎭⎪⎫12100-114.已知对于任意的自然数n ,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴相交于A n ,B n 两点,则|A 1B 1|+|A 2B 2|+…+|A 2 014B 2 014|=________.解析 令(n 2+n )x 2-(2n +1)x +1=0,则x 1+x 2=2n +1n 2+n ,x 1x 2=1n 2+n ,由题意得|A n B n |=|x 2-x 1|,所以|A n B n |=x 1+x 22-4x 1x 2=⎝ ⎛⎭⎪⎫2n+1n 2+n 2-4·1n 2+n =1n 2+n =1n -1n +1,因此|A 1B 1|+|A 2B 2|+…+|A 2 014B 2 014|=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 014-12 015=1-12 015=2 0142 015. 答案2 0142 01515.(文) 设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”;若数列{c n }是首项为2,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,则d =________.解析 由题意可知,数列{c n }的前n 项和为S n =n c 1+c n2,前2n 项和为S 2n =2nc 1+c 2n2,所以S 2nS n =2nc 1+c 2n2n c 1+c n2=2+2nd 4+nd -d =2+21+4-d nd.因为数列{c n }是“和等比数列”,即S 2nS n为非零常数,所以d =4. 答案 415.(理)在正项等比数列{a n }中,a 5=12,a 6+a 7=3,则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 设正项等比数列{a n }的首项为a 1,公比为q (q >0),则由a 5=12得a 6+a 7=a 5q +a 5q 2=12(q +q 2)=3,即q +q 2=6,解得q =2,代入a 5=a 1q 4=a 124=12⇒a 1=125,式子a 1+a 2+…+a n >a 1a 2…a n 变为a 1-qn1-q>答案 12三、解答题:.16.(2014·北京卷)已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20且{b n -a n }是等比数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q , 由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. 所以b n -a n =(b 1-a 1)q n -1=2n -1,从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n1-2=2n-1.所以,数列{b n }的前n 项和为32n (n +1)+2n-1.17.(2014·安徽卷)数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *. (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n·a n ,求数列{b n }的前n 项和S n . 解 (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得a n n=1+(n -1)·1=n , 所以a n =n 2,从而b n =n ·3nS n =1×31+2×32+3×33+…+n ·3n ①3S n =1×32+2×33+3×34+…+(n -1)·3n +n ·3n +1②①-②得:-2S n =31+32+33+…+3n -n ·3n +1=-3n1-3-n ·3n +1=-2nn +1-32所以S n =n -n +1+3418.已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式a n ;(2)令b n =a n log 12 a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小的正整数n .解 (1)设{a n }的公比为q ,由已知, 得⎩⎪⎨⎪⎧a 2+a 3+a 4=28,a 3+=a 2+a 4,∴⎩⎪⎨⎪⎧a 3=8,a 2+a 4=20,即⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2q =2或⎩⎪⎨⎪⎧a 1=32q =12(舍去)∴a n =a 1qn -1=2n.(2)b n =2nlog 122n=-n ·2n , 设T n =1×2+2×22+3×23+…+n ×2n,① 则2T n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②①-②得-T n =(2+22+…+2n )-n ×2n +1=-(n -1)·2n +1-2,∴S n =-T n =-(n -1)×2n +1-2.由S n +n ·2n +1>50,得-(n -1)·2n +1-2+n ·2n +1>50,则2n>26,故满足不等式的最小的正整数n =5.19.(2014·山东)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意,得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n-14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1).当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)20.已知数列{a n }满足a 1=1,a 1+a 2+…+a n -1-a n =-1(n ≥2且n ∈N *). (1)求数列{a n }的通项公式a n ; (2)令d n =1+log aa 2n +1+a 2n +25(a >0,a ≠1),记数列{d n }的前n 项和为S n ,若S 2nS n恒为一个与n 无关的常数λ,试求常数a 和λ.解 (1)由题知a 1+a 2+…+a n -1-a n =-1(n ∈N *),① 所以a 1+a 2+…+a n -a n +1=-1,② 由①-②得:a n +1-2a n =0,即a n +1a n=2(n ≥2). 当n =2时,a 1-a 2=-1, 因为a 1=1,所以a 2=2,a 2a 1=2,所以,数列{a n }是首项为1,公比为2的等比数列. 故a n =2n -1(n ∈N *).(2)因为a n =2n -1,所以d n =1+log aa 2n +1+a 2n +25=1+2n log a 2.因为d n +1-d n =2log a 2,所以{d n }是以d 1=1+2log a 2为首项,以2log a 2为公差的等差数列,所以S 2nS n=2n +2log a +2n n -2×2log a 2n+2log a+nn -2×2log a 2=2+n +a21+n +a 2=λ ⇒(λ-4)n log a 2+(λ-2)(1+log a 2)=0, 因为S 2nS n恒为一个与n 无关的常数λ, 所以⎩⎪⎨⎪⎧λ-a2=0,λ-+log a=0,解得λ=4,a =12.21.(文)数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上.(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解(1)由题意,可得2a n +1+S n -2=0.① 当n ≥2时,2a n +S n -1-2=0.② ①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2). 因为a 1=1,2a 2+a 1=2,所以a 2=12.所以{a n }是首项为1,公比为12的等比数列.所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12.若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8,解得λ=2.又λ=2时,S n +2n +22n =2n +2,显然{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.21.(理)(2014·江苏卷)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0.若{a n }是“H 数列”,求d 的值; (3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.解 (1)证明:由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n.于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n=a m .所以{a n }是“H 数列”. (2)由已知,得S 2=2a 1+d =2+d . 因为{a n }是“H 数列”, 所以存在正整数m ,使得S 2=a m , 即2+d =1+(m -1)d ,于是(m -2)d =1. 因为d <0,所以m -2<0,故m =1.从而d =-1. 当d =-1时,a n =2-n ,S n =n-n 2是小于2的整数,n ∈N *.于是对任意的正整数n ,总存在正整数m =2-S n =2-n-n2,使得S n =2-m =a m , 所以{a n }是“H 数列”.因此d 的值为-1. (3)证明:设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *). 令b n =na 1,c n =(n -1)(d -a 1), 则a n =b n +c n (n ∈N *). 下证{b n }是“H 数列”. 设{b n }的前n 项和为T n ,则T n =n n +2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n n +2,使得T n =b m ,所以{b n }是“H 数列”. 同理可证{c n }也是“H 数列”. 所以,对任意的等差数列{a n },总存在两个“H 数列”{ b n }和{c n },使得a n =b n +c n (n ∈N *)成立.。
高三年级数学寒假作业答案参考

高三年级数学寒假作业答案参考高三年级数学寒假作业是不是在这欢乐的日子里为你带来了一丝苦闷呢?查字典数学网为你提供高三年级数学寒假作业答案,相信这个新年你会异常开心!一、填空题:1. .2. ;3.3 .4. .5. 6 .6. 2 .7. .8. ④ .9.__ __.10. .11. 2 ;12. 126 .13. .14. .二、解答题:15.解:(1) 又已知为,而,(2)若成立,即时,,[来源:][来源:Zxxk]由,解得即的取值范围是16. 解:(Ⅰ)在Rt△ABC中,AB=1,BAC=60,BC= ,AC=2.在Rt△ACD中,AC=2,CAD=60,CD=2 ,AD=4. SABCD= [来.则V= .(Ⅱ)∵PA=CA,F为PC的中点,AFPC.∵PA平面ABCD,PACD.∵ACCD,PAAC=A,CD平面PAC.CDPC.∵E为PD中点,F为PC中点,EF∥CD.则EFPC.∵AFEF=F,PC平面AEF.(Ⅲ) 证法一:取AD中点M,连EM,CM.则E M∥PA.∵EM 平面PAB,PA 平面PA B,EM∥平面PAB.在Rt△ACD中,CAD=60,AC=AM=2,ACM=60.而BAC=60,MC∥AB.∵MC 平面PAB,AB 平面PAB,MC∥平面PAB.∵EM MC=M,平面EMC∥平面PAB.∵EC 平面EMC,EC∥平面PAB.证法二:延长DC、AB,设它们交于点N,连PN.∵NAC=DAC=60,ACCD,C为N D的中点.∵E为PD中点,EC∥PN.∵EC 平面PAB,PN 平面PAB,[来源:Z。
xx。
k]EC∥平面PAB.17.解:(1)将整理得解方程组得直线所经过的定点(0,1),所以.由离心率得.B所以椭圆的标准方程为.--------------------6分(2)设,则.∵,. 点在以为圆心,2为半径的的圆上.即点在以为直径的圆上.又,直线的方程为.令,得.又,为的中点,..直线与圆相切.18 .(1)设比例系数为.由题知,有.又时,,所以,.所以与的关系是.4分(2)依据题意,可知工厂生产万件纪念品的生产成本为万元,促销费用为万元,则每件纪念品的定价为:元/件.于是,,进一步化简,得因此,工厂2019年的年利润万元.8分(3)由(2)知,,当且仅当,即时,取等号,所以,当2019年的促销费用投入7万元时,工厂的年利润最大,最大利润为42万元.14分19.【解析】(1)由已知得,则,从而,,。
高三数学寒假作业三

高三数学寒假作业三一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P={(x ,y)||x|+|y|=1},Q={(x ,y)|x 2+y 2≤1},则( )A.P ⊆QB.P=QC.P ⊇QD.P∩Q=Q2.若二项式23nx ⎛ ⎝*()n N ∈展开式中含有常数项,则n 的最小取值是( ) A .5 B .6C .7D .83.已知,22tan=α则)413tan(πα+的值是( )A 7-B 71- C 7 D 714.函数x x f 2log 1)(+=与12)(+-=x x g 在同一直角坐标系下的图象大致是( )5.不等式x x x x 22log log +<+的解集是( ) A ()1,0 B ()+∞,1 C ()+∞,0 D ()∞+∞-, 6.已知等差数列}{n a 的前n 项和为n S ,且,3184=S S 则=168S S( )A81 B 31 C 91 D 1037.若n m l ,,是互不相同的空间直线,,αβ是不重合的平面,则下列命题中是真命题的是A. 若βα//,α⊂l ,β⊂n ,则n l //B. 若βα⊥,α⊂l ,则β⊥lC. 若n m n l ⊥⊥,,则m l //D. 若βα//,l l ⊥,则βα⊥8. 四面体的一个顶点为A ,从其它顶点与棱的中点中任取3个点,使它们和点A 在同一平面上,不同的取法有A 、30种B 、33种C 、36种D 、39种9. P 是双曲线22221(0,0)x y a b a b-=>>左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则12PF F ∆的内切圆的圆心的横坐标为 ( )A .b -B .a -C .c -D .c b a -+10.如图110-,,,O A B 是平面上的三点,向量==,,设P为线段AB的垂直平分线CP 上任意一点,向量=,若,2||,4||==则=-⋅)(( )A1 B 3 C5 D 611.设b 3是a +1和a -1的等比中项,则b a 3+的最大值为( ) A 1B 2C 3D 412.若方程)0,,(012>∈=-+a R b a bx ax 有两个实数根,其中一个根在区间)2,1(,则b a -的取值范围是( )A ),1(+∞-B )1,(--∞C )1,(-∞D )1,1(- 二、填空题:本大题共4小题,每小题4分.13.霓红灯的一个部位由七个小灯泡组成,如图○○○○○○○,每个灯泡均可亮出红色或黄色,现设计每次变换只闪亮其中三个灯泡,且相邻两个不同时亮,则一共可呈现____________种不同的变换形式.(用数字作答.....) 14.已知点A(53,5),过点A 的直线l :x =my +n(n >0),若可行域⎩⎪⎨⎪⎧x ≤my +nx -3y ≥0y ≥0的外接圆的直径为20,则实数n 的值是____________.15.若曲线ax ax x x f 22)(23+-=上任意一点处的切线的倾斜角都是锐角,则实数a 的取值范围是 .16.已知函数⎩⎨⎧<>=0,20,log )(2x x x x f x ,则满足21)(<a f 的a 取值范围是 .A B CD110-图高三数学寒假作业三家长签字________三.解答题:本大题共6小题,共74分。
高三数学三模试题 理含解析 试题

2021届高三数学三模试题 理〔含解析〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日第一卷〔选择题 一共60分〕一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.假设复数z 满足(23)z i i +=,那么z 在复平面上对应的点位于〔 〕 A. 第一象限 B. 第二象限C. 第三象限D. 第四象限 【答案】D 【解析】 【分析】先求出复数z,再求复数z 即得解. 【详解】由题得(23)3223(23)(23)13i i i iz i i i -+===++-, 所以321313z i =-, 所以z 在复平面上对应的点为32)1313(,-, 应选:D【点睛】此题主要考察复数的除法运算和一共轭复数的求法,考察复数的几何意义,意在考察学生对这些知识的理解掌握程度和分析推理才能.2.集合(){}2|lg 1A x y x ==-,{}|2xB y y ==,那么AB =〔 〕A. (1,1)-B. (1,)-+∞C. [0,1]D. (0,1)【答案】D 【解析】 【分析】根据对数中真数大于0求出集合A ,根据指数函数的图像和性质得出集合B ,进而求出AB【详解】(){}2|lg 1A x y x ==-∴210x ->解得:11x -<<{}|11A x x ∴=-<< {}|2x B y y =={}|0B y y ∴=>{}|01A B x x ⋂=<<应选D【点睛】此题重点考察交集及其运算,易错题在于集合A 、B 分别代表对数函数的定义域和指数函数的值域。
3.假设命题p :0x ∃∈R ,20010x x -+≤,命题q :0x ∀<,x x >.那么以下命题中是真命题的是〔 〕 A. p q ∧B. ()p q ∧⌝C. ()p q ⌝∧D.()()p q ⌝∧⌝【答案】C 【解析】 【分析】先判断命题p 和q 的真假,再判断选项得解. 【详解】对于命题p,22000131=()024x x x -+-+>,所以命题p 是假命题,所以p ⌝是真命题;对于命题q, 0x ∀<,x x >,是真命题. 所以()p q ⌝∧是真命题. 应选:C【点睛】此题主要考察复合命题的真假的判断,考察全称命题和特称命题的真假的判断,意在考察学生对这些知识的理解掌握程度和分析推理才能.4.设110a e =,b =1lg c e=〔其中 2.71828e =是自然对数的底数〕,那么〔 〕A. c b a >>B. a b c >>C. a c b >>D.b ac >>【答案】B 【解析】 【分析】判断a,b,c 的范围即得a,b,c 的大小关系. 【详解】由题得10101a e e =>=,ln 1,b e ==且b>0.1lg lg10c e=<=,所以a b c >>. 应选:B【点睛】此题主要考察指数函数、对数函数的图像和性质,意在考察学生对这些知识的理解掌握程度和分析推理才能.5.函数()2ln f x x x =-+的图像在1x =处的切线方程为〔 〕 A. 210x y +-=B. 210x y -+=C. 10x y -+=D.10x y ++=【答案】D 【解析】 【分析】先确定函数的定义域,求出导函数'()f x ,欲求出切线方程,只须求出其斜率即可,故先利用导数求出1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率,进而求出切线方程。
新高考2021年高三数学高考三模试题卷三附答案解析

新高考2021年高三数学高考三模试题卷三第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,则( )A .B .C .D .2.已知复数z 满足,则z 的虚部是( ) A .B .1C .D .i3.“”是“函数在上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件 D .既不充分也不必要条件4.函数的最大值是( ) A .B .C .D .5.垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而转变成公共资源的一系列活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等几方面的效益.已知某种垃圾的分解率与时间(月)满足函数关系式(其中,为非零常数).若经过12个月,这种垃圾的分解率为,经过24个月,这种垃圾的分解率为,那么这种垃圾完全分解(分解率为)至少需要经过( )(参考数据) A .120个月B .64个月C .52个月D .48个月6.如图,是的直径,点、是半圆弧上的两个三等分点,,,则等于( )A .B .C .D .7.已知函数,且)的图象恒过定点,若点在椭圆上,则的最小值为( ) A .12B .10C .8D .98.,,,,五个人站成一排,则和分别站在的两边(可以相邻也可以不相邻)的概率为( ){}ln 1A x x =>{B x y ==()A B =R {}21x x -≤≤{}2x x e -≤≤{}21x x -<≤{}2x x e -<≤2i z z -=1-i -0m ≤()ln f x x mx =-(]0,122sin 2cos 3y x x =+-1-112-5-v t t v a b =⋅a b 10%20%100%lg 20.3≈AB O C D AB AB =a AC =bAD 12-a b 12-a b 12+a b 12+a b 2(0xy aa -=>1a ≠A A 221x y m n+=m n +A B C D E A C BA .B .C .D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设等比数列的公比为q ,其前n 项和为,前n 项积为,并满足条件,,,下列结论正确的是( )A .B .C .是数列中的最大值D .数列无最大值10.在中,如下判断正确的是( ) A .若,则为等腰三角形 B .若,则C .若为锐角三角形,则D .若,则11.在平面直角坐标系中,动点与两个定点和连线的斜率之积等于,记点的轨迹为曲线,直线与交于,两点,则( )A .的方程为B .C .的渐近线与圆相切D .满足的直线有2条12.已知函数,若函数有6个不同零点,则实数的可能取值是( ) A .0 B . C .D .第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.给出下列说法:①回归直线恒过样本点的中心; ②两个变量相关性越强,则相关系数就越接近1;③某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变;④在回归直线方程中,当变量x 增加一个单位时,平均减少个单位. 161331035{}n a n S n T 11a >201920201a a >20192020101a a -<-20192020S S <2019202110a a -<2020T {}n T {}n T ABC △sin 2sin 2A B =ABC △A B >sin sin A B >ABC △sin cos A B >sin sin A B >A B >xOy P ()1F )2F 13P E ():2l y k x =-E A B E 2213x y -=E E 2221x y AB =l ln ,0()1,x x f x x x ⎧>=⎨+≤⎩(())y f f x a =+a 12-1-13-ˆˆˆybx a =+(),x y r ˆ20.5yx =-ˆy 0.5其中说法正确的是__________. 14.若,则被4除得的余数为__________. 15.有以下四个条件:①的定义域是,且其图象是一条连续不断的曲线; ②是偶函数;③在上不是单调函数; ④恰有两个零点.若函数同时满足条件②④,请写出它的一个解析式_____________;若函数同时满足条件①②③④,请写出它的一个解析式_____________.16.设函数的定义域为,若对任意,存在,使得, 则称函数具有性质,给出下列四个结论: ①函数不具有性质;②函数具有性质;③若函数,具有性质,则; ④若函数具有性质,则. 其中,正确结论的序号是________.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在①,;②,,两个条件中选择一个,补充在下面的问题中,并解答该问题.已知数列为等差数列,数列为等比数列,数列前项和为,数列前项和为,,,______.(1)求,的通项公式;(2)求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.()20222202201220222x a a x a x a x +=++++0242022a a a a +++()f x R ()f x ()f x ()0,∞+()f x ()f x =()g x =()y f x =D 1x D ∈2x D ∈12()()1f x f x ⋅=()f x M 3y x x =-M 2x x e e y -+=M 8log (2)y x =+[0,]x t ∈M 510t =3sin 4x ay +=M 5a =226a b +=3311+=a b 312S =531T ={}n a {}n b {}n a n n S {}n b n n T 11a =11b ={}n a {}n b n n a b ⎧⎫⎨⎬⎩⎭n18.(12分)的内角,,的对边分别是,,. (1)求角的大小;(2)若,为边上一点,,且___________,求的面积.(从①为的平分线,②为的中点,这两个条件中任选一个补充在上面的横线上并作答)19.(12分)在年的新冠肺炎疫情影响下,国内国际经济形势呈现出前所未有的格局.某企业统计了年前个月份企业的利润,如下表所示:(1)根据所给的数据建立该企业所获得的利润(万元)关于月份的回归直线方程,并预测年月份该企业所获得的利润;(2)企业产品的质量是企业的生命,该企业为了生产优质的产品投放市场,对于生产的每一件产品必须要经过四个环节的质量检查,若每个环节中出现不合格产品立即进行修复,且每个环节是相互独立的,前三个环节中生产的产品合格的概率为,每个环节中不合格产品所需要的修复费用均为元,第四个环节中产品合格的概率为,不合格产品需要的修复费用为元,设每件产品修复的费用为元,写出的分布列,并求出每件产品需要修复的平均费用.参考公式:回归直线方程中斜率和截距的最小二乘估计公式分别为,,,为样本数据的平均值.20.(12分)图1是由正方形,,组成的一个等腰梯形,其中,将、分别沿折起使得E 与F 重合,如图2. (1)设平面平面,证明:;(2)若二面角的余弦值为,求长.ABC △A B C a b c sin cos c B C -=B 3b =D AC 2BD =ABC △BD B D AC 202020205ˆˆˆybx a =+202012121003450ξξˆˆˆybx a =+1221ˆni ii nii x y nxyb xnx==-=-∑∑ˆˆay bx =-x y ABCD ABE Rt △CDF Rt △2AB =ABE △CDF △,AB CD ABECDE l =//l CD A BE D --5AE21.(12分)已知函数,其中实数. (1)讨论的单调性;(2)当时,不等式恒成立,求的取值范围.22.(12分)已知椭圆的左焦点为F ,过F 的直线与椭圆在第一象限交于M 点,O 为坐标原点,三角形. (1)求椭圆的方程;(2)若的三个顶点A ,B ,C 都在椭圆上,且O 为的重心,判断的面积是否为定值,并说明理由. 答 案第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】依题意,,所以,因为,故,故选B .2.【答案】A【解析】设,因为,可得, 则,可得,所以复数的虚部是,故选A . 3.【答案】A【解析】由可得, 若在上为增函数,则在恒成立, 即在恒成立,则, ()axf x e ex =-0a ≠()f x 0x ≥()()21f x x ≥-a 22221(0)x y a b a b+=>>0x -=MFO ABC △ABC △ABC △{}{}ln 1A x x x x e =>=>{|}A x x e =≤R{{}2B x y x x ===≥-(){}2A B x x e =-≤≤R ()i ,z a b a b =+∈R 2i z z -=()i i 2i 2i z z a b a b b -=--+=-=22b -=1b =-z 1-()ln f x x mx =-1()f x m x'=-()ln f x x mx =-(]0,1()0f x '≥(]0,11m x≤(]0,11m,则可得“”是“函数在上为增函数”的充分而不必要条件,故选A . 4.【答案】C【解析】,因为,所以当时等号成立, 所以函数的最大值是,故选C . 5.【答案】C【解析】依题设有,解得,, 故.令,得,故,故选C . 6.【答案】D【解析】连接、、,如图.由于点、是半圆弧上的两个三等分点,则,,则、均为等边三角形,,,,同理可知,(](],0,1-∞-∞0m ≤()ln f x x mx =-(]0,1()222sin 2cos 321cos 2cos 3y x x x x =+-=-+-22112cos 2cos 12(cos )22x x x =-+-=---1cos 1x ≤≤-1cos 2x =22sin 2cos 3y x x =+-12-()()1224120.1240.2v ab v ab ⎧==⎪⎨==⎪⎩1122b =0.05a =()1120.052tv t ⎛⎫=⨯ ⎪⎝⎭()1v t =112220t⎛⎫= ⎪⎝⎭()11212121210.3lg 201lg 2log205210.3lg 2lg 212t ⨯++===≈=CD ODOC C D AB 60BOD COD AOC ∠=∠=∠=︒OA OC OD ==AOC △COD △60OAC OCD ∴∠=∠=︒OAC BOD ∴∠=∠//OD AC ∴//CD AB所以,四边形为平行四边形,所以,, 故选D . 7.【答案】D【解析】由于函数,且)向右平移两个单位得,且),即为函数,且),所以定点,由于点在椭圆,所以,且,, 所以, 当且仅当,即,时取等号,故选D . 8.【答案】B【解析】和分别站在的两边,则只能在中间3个位置,分类说明: (1)若站在左2位置,从,选一个排在左侧,剩余的3个人排在右侧, 故有种排法;(2)若站在3位置,从,选一个,从,选一个排在左侧,并排列,剩余的2个人排在右侧,故有种排法;(3)若站在右2位置,排法与(1)相同,即有12种排法; 所以和分别站在的两边的排法总共有种排法;,,,,五个人站成一排有种排法,故和分别站在的两边的概率,故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.【答案】AB【解析】当时,,不成立; 当时,,,不成立;故,且,,故,A 正确;AODC 12AD AO AC =+=+a b 1(0x y a a ⎛⎫=> ⎪⎝⎭1a ≠21(0x y a a -⎛⎫=> ⎪⎝⎭1a ≠2(0xy aa -=>1a ≠()2,1A A 221x y m n +=411m n +=0m >0n >()414559n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭4n mm n=6m =3n =A C B B B A C B B 1323C A 232112=⨯⨯⨯=B A C D E B B 11222222C C A A 222216=⨯⨯⨯=B A C B 12161240++=A B C D E 55A 54321120n ==⨯⨯⨯⨯=A C B 4011203P ==0q <22019202020190a a a q =<1q ≥20191a ≥20201a >20192020101a a -<-01q <<20191a >202001a <<20202019S S >,故B 正确;是数列中的最大值,C 、D 错误,故选AB . 10.【答案】BCD【解析】选项A .在中,若,则或, 所以或,所以为等腰或直角三角形,故A 不正确; 选项B .在中,若,则,由正弦定理可得,即,故B 正确; 选项C .若为锐角三角形,则, 所以,所以,故C 正确; 选项D .在中,若,由正弦定理可得, 即,所以,故D 正确, 故选BCD . 11.【答案】CD【解析】令,即得,∴A 错误;又,,即,故B 错误, 由E 的渐近线为,而圆心为,半径为1,∴到距离为,故的渐近线与圆相切,故C 正确;联立曲线E 与直线的方程,整理得,,∴,,而代入整理2201920212020110a a a -=-<2019T {}n T ABC △sin 2sin 2A B =22A B =22πA B +=A B =2πA B +=ABC △ABC △A B >a b >2sin 2sin R A R B >sin sin A B >ABC △π2A B +>ππ022A B >>->πsin sin cos 2A B B ⎛⎫>-= ⎪⎝⎭ABC △sin sin A B >22a bR R>a b >A B >(,)P x y 13=221,3x y x -=≠a =2c =3e =y x =2221x y (2,0)(2,0)y =1d ==E 2221xy l 2222(13)123(41)0k x k x k -+-+=210Δk =+>21221231k x x k +=-21223(41)31k x x k +=-12|AB x x =-=22)|||31|k AB k +==-即有或(由与),故,∴D 正确, 故选CD . 12.【答案】BD【解析】画出函数的图象:函数有零点,即方程有根的问题. 对于A :当时,,故,,故,,,, 故方程有4个不等实根; 对于B :当时,,故,当时,由图象可知,有1个根, 当时,由图象可知,有2个根, 当3个根, 故方程有6个不等实根; 对于C :当时,, 故,,, 当时,由图象可知,有2个根, 当时,由图象可知,有2个根,21k =20k =0y =221,3xy x -=≠1k =±ln ,0()1,0x x f x x x ⎧>=⎨+≤⎩(())y f f x a =+(())0f f x a +=0a =(())0f f x =()1f x =-()1f x =0x =2x =-1=x ex e =(())0f f x a +=12a =-1(())2f f x =1()2f x =-()f x =()f x =1()2f x =-()f x =()f x =(())0f f x a +=1a =-(())1f f x =()0f x =()f x e =1()f x e=()0f x =()f x e =当时,由图象可知,有3个根, 故方程有7个不等实根; 对于D :当时,, 故,当时,由图象可知,有1个根, 当时,由图象可知,有2个根, 当3个根, 故方程有6个不等实根, 故选BD .第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.【答案】①②④【解析】对于①中,回归直线恒过样本点的中心,所以正确; 对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1, 所以是正确的;对于③中,根据平均数的计算公式可得,根据方差的计算公式,所以是不正确的; 对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少个单位,所以是正确的, 故答案为①②④. 14.【答案】1【解析】由题知,时,①,时,②,由①+②,得, 1()f x e=(())0f f x a +=13a =-1(())3f f x =2()3f x =-()f x =()f x =2()3f x =-()f x =()f x =(())0f f x a +=ˆˆˆybx a =+(,)x y ||r 744471x ⨯+==+()2217244 1.7528s ⎡⎤=⨯+-=<⎣⎦ˆ20.5yx =-x ˆy0.51x =-0123202120221a a a a a a -+-+-+=1x =2022012320223a a a a a +++++=()2022024********a a a a ++++=+故, 所以被4除得的余数是1,故答案为1.15.【答案】(答案不唯一),(答案不唯一)【解析】根据条件②④可得(答案不唯一),根据函数同时满足条件①②③④,可得(答案不唯一).故答案为(答案不唯一),(答案不唯一).16.【答案】①③【解析】依题意,函数的定义域为,若对任意,存在,使得,则称函数具有性质.①函数,定义域是R ,当时,显然不存在,使得,故不具备性质,故①正确;②是单调增函数,定义域是R ,, 当且仅当时等号成立,即值域为.对任意的,,要使得,则需,而不存在,使,故不具备性质,故②错误;③函数在上是单调增函数,定义域是,其值域为. 要使得其具有性质,则对任意的,,总存在,, 即,即,即,202210110242022111()(31)(91)488a a a a ++++=+=+()()101101011110101010110111011101110111011C 118118C 8C 8C 188⎡⎤=++=+++++⎣⎦()010*******10101101110111011118C 8884C C =++++()22f x x =-+()22g x x x =-++()22f x x =-+()22g x x x =-++()22f x x =-+()22g x x x =-++()y f x =D 1x D ∈2x D ∈12()()1f x f x ⋅=()f x M 3y x x =-10x =∈R 2x ∈R ()()121f x f x =M 2x x e e y -+=12x xe e y -+=≥=0x =[)1,+∞1>0x ()11f x >()()121f x f x ⋅=()21f x <2x ∈R ()21f x <2x xe e y -+=M ()8log 2y x =+[]0,t []0,t ()88log 2,log 2t ⎡⎤+⎣⎦M []10,x t ∈()()188log 2,log 2f x t ⎡⎤∈+⎣⎦[]20,x t ∈()()()()288188111,log 2,log 2log 2log 2f x t f x t ⎡⎤⎡⎤=∈⊆+⎢⎥⎣⎦+⎢⎥⎣⎦88881log 2log (2)1log (2)log 2t t ⎧≥⎪+⎪⎨⎪≤+⎪⎩8888log 2log (2)1log 2log (2)1t t ⨯+≤⎧⎨⨯+≥⎩()88log 2log 21t ⨯+=故,即,故,故③正确; ④若函数具有性质,定义域是R ,使得, 一方面函数值不可能为零,也即对任意的恒成立,而, 故或,在此条件下, 另一方面,的值域是值域的子集.的值域为;的值域为, 要满足题意,只需,, 时,,即; 时,,即, 故,即, 即,即,故.故④错误, 故答案为①③.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1),;(2).【解析】选择①:(1)设等差数列的公差为,等比数列的公比为, 由,,,,得,解得, 所以,.(2)记;(1) 又,(2)()8821log 2log log 328t +===328t +=510t =3sin 4x ay +=M []sin 1,1x ∈-3sin 0x a +≠x []3sin 3,3x ∈-3a >3a <-43sin y x a =+3sin 4x ay +=3sin 4x a y +=33,44a a -+⎡⎤⎢⎥⎣⎦43sin y x a =+44,33a a ⎡⎤⎢⎥+-⎣⎦3434a a -≥+3434a a +≤-3a <-441,1334334a a a a ⋅≤⋅≥+-+-44133a a ⋅=+-3a >441,1334334a a a a ⋅≥⋅≤+-+-44133a a ⋅=+-44133a a ⋅=+-()()3316a a -+=2916a -=225a =5a =±32n a n =-12n nb -=()8682nn --+{}n a d {}n b ()0q q ≠11a =11b =226a b +=3311+=a b 2161211d q d q ++=⎧⎨++=⎩32d q =⎧⎨=⎩32n a n =-12n n b -=()121312123114272322n n n na a a a A nb b b b ---+=+++⋅⋅⋅+=⨯+⨯+⨯+⋅⋅⋅+-⨯()()112312124272352322n n n A n n -----+-=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯(1)(2),得, 所以, 所以,所以.选择②:(1)设等差数列的公差为,等比数列的公比为,且. 由,,,,得,解得, 所以,.(2)记;(1) 又,(2)(1)(2),得, 所以, 所以,所以.18.【答案】(1);(2)选择①:;选择②:. 【解析】(1,,,,则有, 又因为,所以. -()()12111322 (23222)n n n A n ---+-=++++--⋅()()121+12622 (2)322n n n A n ---+-=++++--⋅()()()1+11+111122263222612322112n n n n n A n n ---+-⎛⎫- ⎪⎝⎭=+--⋅=+---⋅-()8682nn A n -=-+{}n a d {}n b ()0q q ≠1q ≠11a =11b =312S =531T =()533121311d q q +=⎧⎨-=-⎩32d q =⎧⎨=⎩32n a n =-12n n b -=()121312123114272322n n n na a a a A nb b b b ---+=+++⋅⋅⋅+=⨯+⨯+⨯+⋅⋅⋅+-⨯()()112312124272352322n n n A n n -----+-=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯-()()12111322 (23222)n n n A n ---+-=++++--⋅()()121+12622 (2)322n n n A n ---+-=++++--⋅()()()1+11+111122263222612322112n n n n n A n n ---+-⎛⎫- ⎪⎝⎭=+--⋅=+---⋅-()8682nn A n -=-+π3B =2ABC S =△8ABC S =△sin cos c B C -()sin sin cos B C C B B C +-=sin sin sin B C C B =sin 0C ≠tan B =()0,πB ∈π3B =(2)选择条件①为的平分线,因为为的平分线,所以, 又因为, 所以, 又根据余弦定理得,即, 则有,即,解得或(舍), 所以. 选择②为的中点,则,,, 则有,可得, 又根据余弦定理得,解得, 则. 19.【答案】(1),万元;(2)分布列见解析,修复的平均费用为元. 【解析】(1)由表格数据知,,, 由回归直线经过样本点的中心可知:,,则回归直线方程为, BD B BDB π6ABD DBC ∠=∠=ABC ABD BDC S S S =+△△△1π1π1πsin 2sin 2sin 232626ac a c =⨯+⨯()2a c =+2222cos b a c ac B =+-()293a c ac =+-()23934ac ac =-()24120ac ac --=6ac =2ac =-1sin 2ABCSac B ==D AC 32AD DC ==πBDA BDC ∠=-∠cos cos BDA BDC ∠=-∠22222233222233222222c a ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭=-⨯⨯⨯⨯22252a c +=229a c ac +-=72ac =1sin 28ABC S ac B ==△9173ˆ22yx =+140.532521234535x ++++==90951051001101005y ++++==()()515222222221519029531054100511053100ˆ12345535i ii ii x y xy b x x==-⨯+⨯+⨯+⨯+⨯-⨯⨯∴==++++-⨯-∑∑459102==(),x y 9ˆ10032a =⨯+173ˆ2a ∴=9173ˆ22yx =+预测年月份该企业所获得的利润为(万元).(2)根据题意知所有可能取值为,,,,,,,,;;;;;;;,的分布列为:,即每件产品需要修复的平均费用为元.20.【答案】(1)证明见解析;(2.【解析】(1)因为,平面,平面,所以平面,又平面,平面平面,所以.(2)因为,,所以,又,,平面,平面,所以平面,因为平面,所以平面平面,过E作于点O,则O是的中点,因为平面平面,平面,所以平面,以O为原点,与平行的直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,202012917312140.522⨯+=ξ050100150200250300350 ()31332432Pξ⎛⎫∴==⨯=⎪⎝⎭()3111502432Pξ⎛⎫==⨯=⎪⎝⎭()2231139100C22432Pξ⎛⎫==⨯⨯=⎪⎝⎭()2231113150C22432Pξ⎛⎫==⨯⨯=⎪⎝⎭()2131139200C22432Pξ⎛⎫==⨯⨯=⎪⎝⎭()2131113250C22432Pξ⎛⎫==⨯⨯=⎪⎝⎭()31333002432Pξ⎛⎫==⨯=⎪⎝⎭()31113502432Pξ⎛⎫==⨯=⎪⎝⎭ξ∴()05010015020025030032323232323232Eξ∴=⨯+⨯+⨯+⨯+⨯+⨯+⨯+135032⨯3252=3252//CD AB AB ABE CD⊂/ABE//CD ABECD⊂ECD ABE ECD l=//l CD//AB CD CD DE⊥AB DE⊥AB AE⊥AE DE E=AE⊂ADE DE⊂ADEAB⊥ADEAB ABCD ABCD⊥AED⊥EO AD ADABCD AED AD=EO⊂ADEEO⊥ABCDAB OD OEO xyz-设,则,,,,,,,,设平面的法向量为,则,即,取,则,所以平面的一个法向量;,,设平面的法向量为,则,即,取,则,同理可求得平面的一个法向量为, 所以,解得,当时,,二面角的平面角为钝角,舍去, 所以,此时,所以.21.【答案】(1)见解析;(2). 【解析】(1),当时,,故在上单调递减;EO h =(0,1,0)A -(0,1,0)D (2,1,0)B -(0,0,)E h (2,0,0)AB =(0,1,)AE h =(0,1,)ED h =-(2,2,0)BD =-ABE 1(,,)x y z =n 1100AB AE ⎧⋅=⎪⎨⋅=⎪⎩n n 200x y hz =⎧⎨+=⎩0,x y h ==1z =-ABE 1(0,,1)h =-n (0,1,)ED h =-(2,2,0)BD =-BDE 2222(,,)x y z =n 220ED BD ⎧⋅=⎪⎨⋅=⎪⎩n n 22220220y hz x y -=⎧⎨-+=⎩2x h =22,1y h z ==BDE 2(,,1)h h =n 121212cos ,⋅===⋅n n n n n n 2h =3h =21212122cos ,0-⋅====<⋅n n n n n n A BE D --2h =(0,1,2)AE =5AE =AE [)1,+∞()axf x ae e '=-0a <()0f x '<()f x (),-∞+∞当时,令,解得. 即在区间上单调递减,在区间上单调递增. (2)当时,,则.下证:当时,不等式在上恒成立即可.当时,要证,即,又因为,即只需证.令,, 令,则,解得.故在区间上单调递减,在区间上单调递增,,,故.因此存在,使得.故在区间上单调递增,在区间上单调递减,在区间上单调递增.,,故成立.综上,的取值范围为.22.【答案】(1);(2,理由见解析.【解析】(1)直线过左焦点F,则有, 所以且右焦点, 又,得, 代入直线方程有,所以.∴为直角三角形且,由椭圆定义,知,即, ∴椭圆的方程为. (2)当直线的斜率不存在时,设直线的方程为,0a >()0f x '=1ln e x aa=()f x 1,ln e a a ⎛⎫-∞ ⎪⎝⎭1ln ,e a a ⎛⎫+∞ ⎪⎝⎭1x =0a e e -≥1a ≥1a ≥()2(1)f x x ≥-[)0,+∞1a ≥()()21f x x ≥-2(1)0axe x ex ---≥ax x e e ≥2(1)0x e x ex ---≥2()(1)(0)xg x e x ex x =---≥()22xg x e x e '=-+-()22xh x e x e =-+-()20xh x e '=-=ln 2x =()g x '()0,ln 2()ln 2,+∞(0)30g e '=->(1)0g '=()ln 20g <()00,ln 2x ∈()00g x '=()g x ()00,x ()0,1x ()1,+∞(0)0g =(1)0g =()0g x ≥a [)1,+∞2214x y +=0x -=(F c =F '124OMF M S y ==△12My =M x =12M ⎫⎪⎭FMF '△90MF F '∠=︒12||||42a MF MF '=+==2a =2214x y +=BC BC 1x x =若,则,∵O 为的重心,可知,代入椭圆方程,得,, 即有A 到BC 的距离为, ∴; 当直线的斜率存在时,设直线的方程为, 设,,由,得,显然, ∴,, 则,∵O 为的重心,可知, 由A 在椭圆上,得,化简得,∴,由重心的性质知:A 到直线的距离d 等于O 到直线距离的3倍,即,∴, 综上得,.()11,B x y ()11,C x y -ABC △()12,0A x -211x =2134y =1||2||BC y ==3d =11||322ABC S BC d =⋅==△BC BC y kx m =+()11,B x y ()22,C x y 2214x y y kx m ⎧+=⎪⎨⎪=+⎩()222148440k x kmx m +++-=0Δ>122841km x x k -+=+21224441m x x k -=+()121222241my y k x x m k +=++=+ABC △2282,4141km m A k k -⎛⎫⎪++⎝⎭2222182144141km m k k -⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭22441m k =+1222||||414BC x x k m =-===+BC BC d =1||2ABC S BC d =⋅=△ABC △。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在 Rt AEF 中, EG AE EF AF
3 ( 3)2
3 3 ( 3)2
3
30
.
10
………… 12 分
Q E 为 BC 中点,
点 C 到平面 ABD 的距离为 2EG
2 30
.
10
………… 14分
解法 2:(思路) 取 AB 中点 H ,连 CH 和 DH ,由 CA CB, DA DB ,易得平面 ABD
7.
若
( x 1)7 a 0 a1x a2 x 2
a7x 7
,
则
( a0 a2 a4 a 6 ) 2 (a1 a3 a5 a7 ) 2 =( )
A.1
B.0
C.-1
8.一水池有 2 个进水口, 1 个出水口,进出水速度如图甲、乙所示 池的蓄水量如图丙所示 .(至少打开一个水口)
D.2 . 某天 0 点到 6 点,该水
9.已知 i , j 为互相垂直的单位向量, a = i –2j, b = i + λj ,且 a 与 b 的夹角为锐角,则实数
的取值范围是
.
10.在直角坐标平面内, 由直线 x 1, x 0, y 0 和抛物线 y x2 2 所围成的平面区域的
面积是 .
11.在如下程序框图中,输入 f 0( x) cosx ,则输出的是 __________
B1
AE 侧面 BB1C1C .
EF
C1
连 ED ,则直线 AD 与侧面 BB1C1C 所成的角为
ADE
45o .
C
D
……………2 分
在 Rt AED 中, tan45o AE ED
3 ,解得 x x2 1 4
2 2.
…………3 分
此正三棱柱的侧棱长为 2 2 .
注:也可用向量法求侧棱长.
(Ⅱ)解法 1:过 E 作 EF BD 于 F ,连 AF ,
( A) 指针对的数为 x ,转盘 ( B) 指针对的数为 y .设 x y 的值为 ,每转动一次则得到奖励
分 分.
(Ⅰ)求 x <2 且 y >1 的概率;
(Ⅱ ) 某人玩 12 次,求他平均可以得到多少奖励分?
1 3
2
3 2
1
A
B
18.(本题满分 14 分)
如图, 已知正三棱柱 ABC — A1B1C1的底面边长是 与侧面 BB1C1C 所成的角为 45o .
3.在各项都为正数的等比数列 an 中 ,首项是 a1 3 ,前三项和为 21,则 a3 a4 a5 ( )
A. 33 B. 72 C. 84 D. 189
4.已知函数 f x lna ln x 在 1, 上为减函数,则实数 a 的取值范围是( ) x
1 A.0 a
e
B. 0 a e
C. a e
D. a e
分.2
3
2
6
则 P( x <2) = P( x =1) = 1 , P( y >1) = P( y =2)+ P( y =3) = 1 + 1 = 2
6
263
所以 P( x <2 且 y >1) = P( x <2)
1
P( y >1) = ……………………………………
分.6
9
(Ⅱ)由条件可知 的取值为: 2、3、 4、 5、 6. 则 的分布列为:
解: (1) f (x)=2sin( x + ) + a
6
由 2+a=1 得 a= 1
(2)由 f (x) ≥0得 sin( x + ) ≥1 ,
62
则 2k 6
x
5
66
2k ,k Z
∴ { x|2k ≤x≤2k + 2 , k ∈ Z}
3
……3分 ……4 分 ………5 分
………7 分 ……8 分
(3) x∈ [0, ] x 6
开始
输入 f 0 (x )
i: 0
i: i 1
fi (x): fi 1(x)
结束
x2 12.F1、F2 是椭圆 a 2
否
i =2007
是 输出 f i (x)
y 2 1 的左、右两焦点, P 为椭圆的一个顶点,若 △ PF1F2 是等边三 9
角形,则 a2=
.
13.不等式: 2|x -2| |x -4| 26 的解集为
2
3
4
5
6
P
1
7
13
11
1
18
36
36
36
12
…………………………………………………………………………………………………………
………………………………………………
.. ………分10
他平均一次得到的钱即为 的期望值:1源自71311
1 25
E2
3
4
5
6
18
36
36
36
12 6
所以给他玩 12 次,平均可以得到 12 E 50
1
则- ≤sin( x + ) ≤1
2
6
故值域 y [ 2, 1]
[ ,7 ] 66
………9 分
……… 11分 …… 12 分
17.(本小题满分 12 分)
解:(Ⅰ)由几何概率模型可知: P( x =1) = 1 、 P( x =2)= 1 、 P( x =3) = 1 ;
6
3
2
P( y =1) = 1 、 P( y =2) = 1 、P( y =3)= 1 ……………………………………………
平面 CHD ,且交线为 DH .过点 C 作 CI DH 于 I ,则 CI 的长为点 C 到平面 ABD 的距
离.
解法 3:(思路)等体积变换 :由 VC ABD VA BCD 可求.
解法 4:(向量法,见后)
题(Ⅱ)、(Ⅲ)的向量解法:
(Ⅱ)解法 2:如图,建立空间直角坐标系 o xyz.
z
A1
AE 侧面 BB1C1C, AF BD .
AFE 为二面角 A BD C 的平面角. 在 Rt BEF 中, EF BE sin EBF ,又
BE 1,sin EBF CD BD
2 22 ( 2) 2
3, 3
……………………4 分
……………………………6 分
3
EF
.
3
又 AE 3,
在 Rt AEF 中, tan AFE AE 3. EF
21.(本题满分 14 分)已知函数 f ( x)
x
t (t
0) 和点 P (1 , 0) ,过点 P 作曲线 y
x
两条切线 PM 、 PN ,切点分别为 M 、 N .
(Ⅰ)设 MN g(t ) ,试求函数 g(t) 的表达式;
f ( x) 的
(Ⅱ)是否存在 t ,使得 M 、 N 与 A(0 ,1) 三点共线.若存在,求出 t 的值;若不存在,请说
故二面角 A BD C 的大小为 arctan3.
解法 2:(向量法,见后)
(Ⅲ) 解法 1:由(Ⅱ) 可知, BD 平面 AEF , 过 E 作 EG AF 于 G ,则 EG 平面 ABD .
…………………………8 分 …………………………9 分
平面 AEF
平面 ABD ,且交线为 AF ,
………… 10分
OD B
16. (本题满分 12 分 )已知函数 f (x) = sin( x + ) +sin ( x ) + cosx + a 的最大值为 1.
6
6
(1) 求常数 a 的值; 值域.
(2) 求使 f ( x) ≥0成立的 x 的取值集合;
(3) 若 x∈ [0, ] ,求函数的
17. (本题满分 12 分 )如图所示 , 有两个独立的转盘 ( A) 、 (B) .两个图中三个扇形区域的圆心角 分别为 60 、 120 、 180 .用这两个转盘进行玩游戏,规则是:依次随机转动两个转盘再随 机停下(指针固定不会动 ,当指针恰好落在分界线时 ,则这次结果无效 ,重新开始) ,记转盘
给出以下 3 个论断:
①0 点到 3 点只进水不出水;② 3 点到 4 点不进水只出水;③
则一定能确定正确的论断是
()
4 点到 6 点不进水不出水 .
A .①
B .①②
C.①③
D .①②③
二.填空题:本大题共 9 个小题 ,分必做题和选做题,每小题 5 分,共 30 分.
必做题:考生必须作答第 9 至第 13 题.
(Ⅰ)求 a3 , a4 , a 5 , a6 的值及数列 { a n } 的通项公式;
(Ⅱ)设 bn a2n 1 a 2n ,求数列 { bn } 的前 n 项和 Sn ;
20.(本题满分 14 分) 已知焦点在 x 轴上的双曲线 C 的两条渐近线过坐标原点,且两条渐近 线与以点 A(0, 2) 为圆心, 1 为半径为圆相切,又知 C 的一个焦点与 A 关于直线 y= x 对 称.
分 .. …………………………………………………… ..12 分
18. (本小题满分 14 分)
解:(Ⅰ)设正三棱柱 ABC — A1B1C1的侧棱长为 x .取 BC 中点 E ,连 AE .
ABC 是正三角形, AE BC .
A
A1
又底面 ABC 侧面 BB1C1C ,且交线为 BC .
H
B
GI
则 A(0,0, 3), B(0, 1,0), C (0,1,0), D ( 2,1,0) .
A
r 设 n1 (x, y, z) 为平面 ABD 的法向量.