2023年高三数学寒假作业16(Word含答案解析)

合集下载

高二数学寒假作业:(四)(Word版含答案)

高二数学寒假作业:(四)(Word版含答案)

高二数学寒假作业(四)一、选择题,每小题只有一项是正确的。

1.公比为2的等比数列{an)的各项都是正数,且=16,则a6等于A .1B .2C .4D .82.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )3.一个有11项的等差数列,奇数项之和为30,则它的中间项为( ) A .8 B .7 C .6D .54.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为A.26 B. 23 C. 36D. 335.在060,20,40===∆C c b ABC 中,已知,则此三角形的解为( ) A.有一解 B.有两解 C.无解 D.有解但解的个数不确定6.若n =(1,-2,2)是平面α的一个法向量,则下列向量能作为平面α法向量的是 A .(1,-2,0) B .(0,-2,2) C .(2,-4,4) D .(2,4, 4)7.已知点(3,1,4)A --,(3,5,10)B -则线段AB 的中点M 的坐标为 ( ) A. ()0,4,6-B. ()0,2,3-C. ()0,2,3D. ()0,2,6-8.已知椭圆12222=+b x a y ( a > b > 0) 的离心率为1e ,准线为1l 、2l ;双曲线132222=-b y a x 离心率为2e ,准线为3l 、4l ;;若1l 、2l 、3l 、4l 正好围成一个正方形,则21e e 等于( )A.33 B .36 C.22D. 2 9.下列命题是真命题的为 ( ) A .若11x y=,则x y = B .若21x =,则1x =C .若x y =,D .若x y <,则 22x y <二、填空题10.已知条件p :1≤x ,条件q :11<x,则p ⌝是q 的_____________________条件. 11.已知x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则y x z 42+=的最小值为 .12.设椭圆22162x y +=和双曲线2213x y -=的公共焦点为1F ,2F ,P 是两曲线的一个交点,12cos PF F ∠的值是 。

上海市2014届高三寒假作业 数学1Word版含答案

上海市2014届高三寒假作业 数学1Word版含答案

高三数学寒假作业满分150分,考试时间120分钟姓名____________ 班级_________学号__________一、填空题(每题4分,共56分): 1、已知i 2321+-=ω,则行列式=111222ωωωωωω2、函数2()43(3)f x x x x =-++≥的反函数是1()f x -,则1(9)f --的值是_______3、已知等差数列{}n a 的前n 项和为n S ,且111634a a a +=-,则11S = 。

4、已知向量a,b 夹角为60,2,1a b ==,则b a -=_________. 5、若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤,则B A =________ 6、如图是函数()sin(),(0,0,||)2f x A x A πωϕωϕ=+>><的图象,则其解析式是___.7、在集合{|,1,2,,10}6n M x x n π=== 中任取一个元素,所取元素恰好满足方程1cos 2x = 的概率是_________8、若行列式,021421=-x 则=x ▲. 9、阅读右面的程序框图,则输出的S = .10、设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =,则Γ的两个焦点之间的距离为________11、已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是_________. 12、设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)x f =______________ 13、在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________ 14、关于函数()(sin cos )cos f x x x x =+⋅,给出下列命题: ①()f x 的最小正周期为2π; ②()f x 在区间(0,)8π上为增函数;③直线38x π=-是函数()f x 图像的一条对称轴; ④对任意x R ∈,恒有()()14f x f x π-+-=。

山东省重点高中高三数学寒假作业10Word版含答案

山东省重点高中高三数学寒假作业10Word版含答案

新课标高三数学寒假作业10一、选择题.1.已知命题p :?x ∈R ,sinx ≤1,则¬p 为() A .?x ∈R ,sinx ≥1B .?x ∈R ,sinx ≥1C .?x ∈R ,sinx >1D .?x ∈R ,sinx >1 2.已知函数)(x f 是R 上的增函数,(0,2)A ,(3,2)B 是其图象上的两点,那么2|)1(|x f 的解集是()A .(1,4)B .(-1,2)C .),4[)1,(D .),2[)1,(3.若{a n }为等差数列,S n 是其前n 项和,且,则tana 6的值为() A .B .C .D .4.log 2sin +log 2sin +log 2sin π=( )A .﹣3B .﹣1C .1D .35.已知向量=(2,2),=(4,1),点P 在x 轴上,则?取最小值时P 点坐标是( )A .(﹣3,0)B .(1,0)C .(2,0)D .(3,0)6.若实数经,x ,y 满足,则z=y ﹣x 的最小值为()A . 0B . 1C . 2D . 37.某几何体的三视图如图,则该几何体的表面积为( )A .3+3B .8+3C .6+6D .8+68.(5分)执行如图所示的程序框图,则输出S 的值等于()A .B .C .D .9.(5分)已知O 为坐标原点,A 、B 为曲线y=上的两个不同点,若?=6,则直线AB 与圆x 2+y 2=的位置关系是() A .相交 B .相离 C .相交或相切 D .相切或相离10.双曲线221x ym 的离心率3e ,则以双曲线的两条渐近线与抛物线2y mx 的交点为顶点的三角形的面积为A .42B .122C .82D .162二.填空题.11.在数列n a 中,已知111,(1)cos(1)n n n a a a n ,记n S 为数列n a 的前n 项和,则2015S . 12.已知ABC 中,设三个内角C B A ,,所对的边长分别为c b a ,,,且6,3,1A b a , 则c =.13.点M(x ,y)是不等式组表示的平面区域Ω内的一动点,使z =y -2x 的值取得最小的点为A(x 0,y 0),则(O 为坐标原点)的取值范围是________.14.(5分)设变量x,y满足,则z=|x﹣3y|的最大值为.三、解答题.15.(13分)函数.(1)若f(x)在点(1,f(1))处的切线斜率为,求实数a的值;(2)若f(x)在x=1取得极值,求函数f(x)的单调区间.16.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,上顶点为B.Q为抛物线y2=12x 的焦点,且?=0,2+=0.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过定点P(0,2)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k (k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.17.(14分)(2007?天津)设函数f(x)=﹣x(x﹣a)2(x∈R),其中a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值;(Ⅲ)当a>3时,证明存在k∈,使得不等式f(k﹣cosx)≥f(k2﹣cos2x)对任意的x∈R恒成立.。

高三数学寒假作业十五(含答案)

高三数学寒假作业十五(含答案)

高三数学寒假作业十五一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程) 1.已知集合A ={}220x x x -≤,B ={﹣1,1,2},则AB = .2.设复数21iz =+(其中i 为虚数单位),则z = . 3.右图是一个算法的伪代码,则输出的结果是 .4.顶点在原点且以双曲线221124x y -=的右焦点为焦点的抛物 线方程是 . 第3题 5.已知在平面直角坐标系xOy 中,直线l 1:20x my m -+-=,l 2:(2)10mx m y +--=,若直线l 1∥l 2,则m = .6.从“1,2,3,4,5”这组数据中随机去掉两个不同的数,则剩余三个数能构成等差数列的概率是 .7.若实数x ,y 满足条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则32z x y =+的最大值为 .8.将函数()cos 2f x x =的图象向左平移6π个单位长度后,再将图象上各点的纵坐标变为原来的2倍,得到函数()y g x =的图象,则()4g π= .9.已知正方体ABCD —A 1B 1C 1D 1棱长为1,点E 是棱AD 上的任意一点,点F 是棱B 1C 1上的任意一点,则三棱锥B —ECF 的体积为 .10.等比数列{}n a 的前三项和342S =,若1a ,23a +,3a 成等差数列,则公比q = .11.记集合A =[a ,b ],当θ∈[6π-,4π]时,函数2()23sin cos 2cos f θθθθ=+的值域为B ,若“A x ∈”是“B x ∈”的必要条件,则b ﹣a 的最小值是 .12.已知函数331()0()220x x x x f x x x ⎧-+<⎪=⎨⎪--≥⎩,,,若对任意的x ∈[m ,m +1],不等式(1)f x -≤()f x m +恒成立,则实数m 的取值范围是 .13.过直线l :2y x =-上任意一点P 作圆C :221x y +=的一条切线,切点为A ,若存在定点B(0x ,0y ),使得PA =PB 恒成立,则0x ﹣0y = .14.在平面直角坐标系xOy 中,已知三个点A(2,1),B(1,﹣2),C(3,﹣1),点P(x ,y )满足(OP OA)(OP OB)1⋅⨯⋅=-,则2OP OC OP⋅的最大值为 .二、解答题(本大题共6小题,共计90分.解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)在四棱锥P —ABCD 中,底面ABCD 是平行四边形,E 是AP 的中点,AB ⊥BD, PB ⊥PD ,平面PBD ⊥底面ABCD .(1)求证:PC ∥平面BDE ; (2)求证:PD ⊥平面PAB .16.(本题满分14分)如图,在△ABC 中,点D 是边BC 上一点,AB =14,BD =6,BA BD 66⋅=.(1)若C >B ,且cos(C ﹣B)=1314,求角C ; (2)若△ACD 的面积为S ,且1CA CD 2S =⋅,求AC 的长度.17.(本题满分14分)在平面直角坐标系xOy中,椭圆E:22221x ya b+=(a>b>0)的长轴长为4,左准线l的方程为x=﹣4.(1)求椭圆的标准方程;(2)直线l1过椭圆E的左焦点F1,且与椭圆E交于A,B两点.①若AB=247,求直线l1的方程;②过A作左准线l的垂线,垂足为A1,点G(52-,0),求证:A1,B,G三点共线.18.(本题满分16分)某游乐场过山车轨道在同一竖直钢架平面内,如图所示,矩形PQRS的长PS为130米,宽RS为120米,圆弧形轨道所在圆的圆心为O,圆O与PS,SR,QR分别相切于点A,D,C,T为PQ的中点.现欲设计过山车轨道,轨道由五段连接而成.出发点N在线段PT 上(不含端点,游客从点Q处乘升降电梯至点N),轨道第一段NM与圆O相切于点M,再沿着圆弧轨道MA到达最高点A,然后在点A处沿垂直轨道急速下降至点O处,接着沿直线轨道OG滑行至地面点G处(设计要求M,O,G三点共线),最后通过制动装置减速沿水平轨道GR滑行到达终点R.记∠MOT为α,轨道总长度为l米.lα,并写出α的取值范围;(1)试将l表示为α的函数()(2)求l最小时cosα的值.19.(本题满分16分)已知函数2()ln ()f x x a x x =+-(a ∈R). (1)当a =0,证明:()1f x x <-;(2)如果函数()f x 有两个极值点1x ,2x (1x <2x ),且12()()f x f x k +<恒成立,求实数k 的取值范围;(3)当a <0时,求函数()f x 的零点个数.20.(本题满分16分)已知N n *∈,数列{}n a 的前n 项和为n S ,且11n n S a a +=-;数列{}n b 的前n 项和为n T ,且满足1(1)2n n n T b n n b +=++,且12a b =.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的通项公式; (3)设n n na cb =,问:数列{}n c 中是否存在不同两项i c ,j c (1≤i <j ,i ,j N *∈),使i c +j c 仍是数列{}n c 中的项?,j ;若不存在,请说明理由.高三数学寒假作业十五参考答案11.3 12.13.14.15.16.17.18.19.20.高三数学寒假作业十五(含答案)11。

高一寒假作业数学试题第十六天 Word版含答案

高一寒假作业数学试题第十六天 Word版含答案

第十六天.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为().某三棱锥的正视图与俯视图如图所示,则其侧视图的面积为().如图,三棱锥,⊥,⊥,∠∠°,若侧面⊥底面,则其正视图与侧视图面积之比为()::.: .:.如图,在透明塑料制成的长方体容器内灌进一些水,将容器底面一边固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形的面积不改变;③棱始终与水面平行;④当∈时,是定值.其中正确说法是().①②③ .①③.①②③④ .①③④.如图,三棱锥的底面为正三角形,侧面与底面垂直,且,以平面为正视图的投影面,其正视图的面积为,则其侧视图的面积为().....三棱柱的侧棱与底面垂直,且底面是边长为的等边三角形,其正视图(如图所示)的面积为,则侧视图的面积为()..多面体的底面为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则的长为(). . ..一个几何体的三视图如图所示,其中正视图和侧视图是腰长为的两个全等的等腰直角三角形. 用多少个这样的几何体可以拼成一个棱长为的正方体()个个个.个.如图,网格纸上正方形小格的边长为(表示),图中粗线画出的是某零件的三视图,该零件由一个底面半径为,高为的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为().....某空间几何体的三视图如图所示,则这个空间几何体的表面积是()ππππ.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.。

上海市2014届高三寒假作业 数学2Word版含答案

上海市2014届高三寒假作业 数学2Word版含答案

高三数学寒假作业满分150分,考试时间120分钟姓名____________ 班级_________学号__________一、填空题(每题4分,共56分): 1、若0)231(=-∞→nn x lin ,则实数x 的取值范围是____________; 2、函数)1(log )(2-=x x f )21(≤<x 的反函数=-)(1x f.3、数列{}n a 是公差不为0的等差数列,且862a a a =+,则=55a S . 4、已知向量2)(,6||,1||=-⋅==,则向量与向量的夹角是__________. 5、已知集合A ={x ||x -1|<2},B ={x | 02x bx -<+},若A ∩B ≠φ,则实数b 的取值范围是________.6、在ABC ∆中,内角,,A B C 的对边分别为,,c a b ,若22,sin a b C B -==,则A =__________.7、如右图,该程序运行后输出的结果为 .8、设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=9、已知直线1)13()2(--=-x a y a ,为使这条直线不经过第二象限,则实数a 的范围是 10、已知实数x 、y 满足方程()()22111x a y -++-=,当0y b ≤≤(b R ∈)时,由此方程可以确定一个偶函数()y f x =,则抛物线212y x =-的焦点F 到点(,)a b 的轨迹上点的距离最大值为____________.11、四棱锥P —ABCD ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为 .12、设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为 ▲ .13、函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为__________.14、下列五个命题中,正确的命题的序号是_____________. ①函数2tanxy =的图象的对称中心是Z k k ∈),0,(π; ②)(x f 在()b a ,上连续,()()0)()(0,,00<=∈b f a f x f b a x 则且; ③函数)32sin(3π+=x y 的图象可由函数x y 2sin 3=的图象向右平移3π个单位得到; ④)(x f 在R 上的导数)1(2)2(,0)()(),(f f x f x f x x f <<-''则且; ⑤函数)2cos 21ln(x y +=的递减区间是⎪⎭⎫⎢⎣⎡+4,πππk k ()Z k ∈. 二、选择题(每题5分,共20分): 15、已知函数1()ln 2(0),f x x x x=-+>则函数)(x f 的零点个数是( ) A.0 B.1 C.2 D.316、连掷两次骰子得到的点数分别为m 和n ,若记向量()m n,a =与向量(12)=- ,b 的夹角为θ,则θ为锐角的概率是 .17、已知1l 、2l 、3l 是空间三条不同的直线,下列命题中正确的是( ).A 如果21l l ⊥ ,32//l l .则31l l ⊥. .B 如果21//l l ,32//l l .则1l 、2l 、3l 共面. .C 如果21l l ⊥ ,32l l ⊥.则31l l ⊥. .D 如果1l 、2l 、3l 共点.则1l 、2l 、3l 共面.18、已知点F 1、F 2分别是椭圆22221x y a b+=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为 ( )(A )12 (B )(C )13(D三、解答题(本大题满分74分):19、(本题满分12分)已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”.(1)将函数32()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数22()log 4xh x x=- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对称图像”的充要条件为“存在实数a 和b,使得函数()y f x a b =+- 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).20、(本题满分14分)已知数列{}n a 的首项14a =,前n 项和为n S , 且+n+1n -3S -2n-4=0(n N )S ∈ (1)求数列{}n a 的通项公式;(2)设函数23121()n n n n f x a x a x a x a x --=++++ ,/()f x 是函数()f x 的导函数,令/(1)n b f =,求数列{}n b 的通项公式,并研究其单调性。

上海市2014届高三寒假作业 数学4Word版含答案

上海市2014届高三寒假作业 数学4Word版含答案

高三数学寒假作业满分150分,考试时间120分钟姓名____________ 班级_________学号__________一、填空题(每题4分,共56分):1、复数5i2i =+ . 2、已知,a b 均为单位向量,且它们的夹角为60°,当||()a b R λλ-∈取最小值时,λ=___________.3、已知集合⎭⎬⎫⎩⎨⎧∈==R x y y A x ,21|,{}R x x y y B ∈-==),1(log |2,则=⋂B A ▲ .4、求值:002cos10sin 20cos 20-= .5、在锐角ABC ∆中,1,2,BC B A ==则AC 的取值范围为 ______6、盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 (结果用最简分数表示).7、执行右面的程序框图,若输出的3132S =,则输入的整数p 的值为__________.8、设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。

9、不等式的解集是___________。

10、曲线y =x (3ln x +1)在点)1,1(处的切线方程为________11、给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈,是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定______条不同的直线.12、若22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰则123S S S 的大小关系为________________.13、已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1(,1)2B 、(1,0)C ,函数()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为14、已知数列,圆,圆,若圆C 2平分圆C 1的周长,则的所有项的和为 .二、选择题(每题5分,共20分):15、当210≤<x 时x a x log 4<,则a 的取值范围是( )A )22,0( B )1,22( C )2,1( D )2,2( 16、下列判断正确的是( )A .棱柱中只能有两个面可以互相平行B .底面是正方形的直四棱柱是正四棱柱C .底面是正六边形的棱台是正六棱台D .底面是正方形的四棱锥是正四棱锥17、双曲线22221124x y m m-=+-的焦距为( ) A.4B. C.8 D.与m 无关18、棱长为1的正三棱柱111C B A ABC -中,异面直线1AB 与BC 所成角的大小为 三、解答题(本大题满分74分): 19、(本题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知s i n (t a n t a n )t a n t aB AC A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .20、(本题满分14分)设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当时,求l 长度的最小值.21、(本题满分14分)如图,在三棱锥ABC S -中,平面⊥S A B 平面S B C ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.22、(本题满分16分)正项数列{}n a 的前n 项和n S 满足:222(1)()0n n S n n S n n -+--+=. (1)求数列{}n a 的通项公式n a ; (2)令221(2)n nn b n a +=+,数列{}n b 的前n 项和为n T ,证明:对于任意的*n N ∈,都有564n T <. 23、(本题满分18分)已知函数a ax x a x x f ---+=232131)(,x 其中a>0.(I )求函数)(x f 的单调区间;(II )若函数)(x f 在区间(-2,0)内恰有两个零点,求a 的取值范围;(III )当a=1时,设函数)(x f 在区间]3,[+t t 上的最大值为M (t ),最小值为m (t ),记g(t)=M(t)-m(t),求函数g(t)在区间]1,3[--上的最小值。

上海市2014届高三寒假作业 数学6Word版含答案

上海市2014届高三寒假作业 数学6Word版含答案

高三数学寒假作业满分150分,考试时间120分钟姓名____________ 班级_________学号__________一、填空题(每题4分,共56分):1、若2()(1)1f x x a x =+-+是定义在R 上的偶函数,则实数a=________. 2、设1111()1232f n n n n n=+++++++ ,则 2lim [(1)()]n n f n f n →∞+-=___________.3、设O 是ABC ∆的三边中垂线的交点,,,a b c 分别为角,,A B C对应的边,已知4、满足条件{0,1}∪A={0,1}的所有集合A 的个数是 个5、已知函数f(x)=R x x x ∈--+,12cos 3)4(sin 22π,若函数)()(a x f x h +=的图象关于点)0,3(π-对称,且),,0(π∈a 则a 的值为________.6、把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),则无空盒的概率为________.7x b =+有实根,则实数b 的取值范围是 .8、如图,过抛物线22(0)y px p =>的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC|=2|BF|,且|AF|=3,则抛物线的方程是 。

9、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是__________________.10、设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________.11、直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于__________. 12、设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[0,1]上的值域为[2,5]-,则()f x 在区间[0,3]上的值域为____________________. 13、已知函数()y =f x 满足(+1)=(-1)f x f x ,且[1,1]x ∈-时,2()=f x x ,则函数()y =f x 与3log y =|x |的图象的交点的个数是 .14、函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()f x =2x+1(x ∈R )是单函数.下列命题:①函数2()f x x =(x ∈R )是单函数;②若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ③若f :A→B 为单函数,则对于任意b B ∈,它至多有一个原象; ④函数()f x 在某区间上具有单调性,则()f x 一定是单函数. 其中的真命题是_________.(写出所有真命题的编号)二、选择题(每题5分,共20分):15、用数学归纳法证明4221232n n n ++++⋅⋅⋅+=,则当1n k =+时左端应在n=k 的基础上加上 A.21k + B.()21k +C.()()42112k k +++D.()()()()22221231k k k k ++++++⋅⋅⋅++16、设0a >且1a ≠,则“函数()x f x a =”在R 上是增函数”是“函数()ag x x =”“在(0,)+∞上是增函数”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 17、已知m ,n 是两条不同的直线,α为平面,则下列命题正确的是 (A) //,////m n m n αα若则 (B),,m n m n αα⊥⊥⊥若则 (C),//,m n m n αα⊥⊥若则(D)若m 与α相交,n 与α相交,则m,n 一定不相交18、已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A.4B1C.6-D三、解答题(本大题满分74分):19、(本题满分12分)()sin()f x A x ωϕ=+(其中0,0,A ωπϕπ>>-<< )在6x π=处取得最大值2,其图象与轴的相邻两个交点的距离为2π(I )求()f x 的解析式; (II )求函数426cos sin 1()()6x x g x f x π--=+的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】A
【解析】
【分析】分别求出导数,设出切点,得到切线方程,再由两点的斜率公式,结合切点满足曲线方程,运用导数求的单调区间、极值、最值即可得出a的取值范围.
【详解】设
切线: ,即
切线: ,即 ,

在 上单调递增,在 上单调递减,
所以
故选:A.
8.已知双曲线 ,若过点 能作该双曲线的两条切线,则该双曲线离心率 取值范围为()
1.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()
A. B. C. D.
【答案】C
【解析】
【分析】根据Venn图表示的集合运算作答.
【详解】阴影部分在集合 的公共部分,但不在集合 内,表示为 ,
故选:C.
2.若 ,则z=()
A. 1–iB. 1+iC. –iD.i
【答案】D
【解析】
(参考数据: )
A. B. C. D.
【答案】D
【解析】
【分析】根据给定条件,确定标准对数视力 从下到上的项数,再利用等比数列计算作答.
【详解】依题意,以标准对数视力 为左边数据组的等差数列的首项,其公差为-0.1,标准对数视力 为该数列第3项,
标准对数视力 对应的国际标准视力值1.0为右边数据组的等比数列的首项,其公比为 ,
A. B. C. D.
8.已知双曲线 ,若过点 能作该双曲线的两条切线,则该双曲线离心率 取值范围为()
A. B. C. D.以上选项均不正确
二、多选题
9.已知向量 ,则下列命题正确的是()
A.存在 ,使得 B.当 时, 与 垂直
C.对任意 ,都有 D.当 时,
10.一个质地均匀的正四面体表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件A为“第一次向下的数字为偶数”,事件B为“两次向下的数字之和为奇数”,则下列说法正确的是()
四、解答题
17.在△ABC中,角A,B,C的对边分别为a,b,c,已知 .
(1)求 的值;
(2)在边BC上取一点D,使得 ,求 的值.
18.已知数列 是公比为 的等比数列,前 项和为 ,且满足 , .
(1)求数列 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 .
高三寒假作业16答案解析
一、单选题
A. B. C. D.以上选项均不正确
【答案】D
高三寒假作业16
一、单选题
1.如图,I是全集,M、P、S是I 3个子集,则阴影部分所表示的集合是()
A. B. C. D.
2.若 ,则z=()
A. 1–iB. 1+iC. –iD.i
3.若直线 是圆 一条对称轴,则 ()
A. B. C.1D.
4.如图是标准对数远视力表的一部分.最左边一列“五分记录”为标准对数视力记录,这组数据从上至下为等差数列,公差为 ;最右边一列“小数记录”为国际标准视力记录的近似值,这组数据从上至下为等比数列,公比为 .已知标准对数视力 对应的国际标准视力准确值为 ,则标准对数视力 对应的国际标准视力精确到小数点后两位约为()
A. B.事件A和事件B互为对立事件
C. D.事件A和事件B相互独立
11.在正方体 中,点 满足 ,其中 , ,则()
A.当 时, 平面
B.当 时,三棱锥 的体积为定值
C.当 时, 面积为定值
D.当 时,直线 与 所成角的范围为
12.已知函数 恰有三个零点 ,则下列结论中正确的是()
A B.
C. D.
三、填空题
13. 的展开式中常数项是__________(用数字作答).
14.某大学一寝室4人参加疫情防控讲座,4人就坐在一排有13个空位的座位上,根据防疫要求,任意两人之间需间隔1米以上(两个空位),则不同的就坐方法有_______种.
15.已知 ,则 的最小值是_______.
16.在三棱锥 中,顶点P在底面 的投影为O,点O到侧面 ,侧面 ,侧面 的距离均为d,若 , . ,且 是锐角三角形,则三棱锥 体积的取值范围为________.
(参考数据: )
A. B. C. D.
5.在 中, .P为 所在平面内的动点,且 ,则 的取值范围是()
A. B. C. D.
6.已知函数 在区间 上是增函数,且在区间 上恰好取得一次最大值,则 的取值范围是()
A. B. C. D.
7.若两曲线y=x2-1与y=alnx-1存在公切线,则正实数a的取值范围为()
【分析】先利用除法运算求得 ,再利用共轭复数的概念得到 即可.
【详解】因 ,所以 .
故选:D
【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.
3.若直线 是圆 的一条对称轴,则 ()
A. B. C.1D.
【答案】A
【解析】
【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解.
【详解】由题可知圆心为 ,因为直线是圆的对称轴,所以圆心在直线上,即 ,解得 .
故选:A.
4.如图是标准对数远视力表的一部分.最左边一列“五分记录”为标准对数视力记录,这组数据从上至下为等差数列,公差为 ;最右边一列“小数记录”为国际标准视力记录的近似值,这组数据从上至下为等比数列,公比为 .已知标准对数视力 对应的国际标准视力准确值为 ,则标准对数视力 对应的国际标准视力精确到小数点后两位约为()
【分析】先化简函数 的解析式,再依据题意列出关于 的不等式组,即可求得 的取值范围.
【详解】
由 ,可得
由 在区间 上恰好取得一次最大值,可得 ,解之得
又 在区间 上是增函数,则 ,解之得
综上, 的取值范围是
故选:B
7.若两曲线y=x2-1与y=alnx-1存在公切线,则正实数a的取值范围为()
A. B. C. D.
【详解】解:依题意如图建立平面直角坐标系,则 , , ,
因为 ,所以 在以 为圆心, 为半径的圆上运动,
设 , ,
所以 , ,
所以
,其中 , ,
因为 ,所以 ,即 ;
故选:D
6.已知函数 在区间 上是增函数,且在区间 上恰好取得一次最大值,则 的取值范围是()
A. B. C标准对数视力 对应的国际标准视力值为该等比数列的第3项,其大小为 .
故选:D
5.在 中, .P为 所在平面内的动点,且 ,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】
【分析】依题意建立平面直角坐标系,设 ,表示出 , ,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;
相关文档
最新文档