正余弦定理在日常生活中的应用

合集下载

余弦定理在日常生活中的应用

余弦定理在日常生活中的应用

余弦定理在日常生活中的应用
余弦定理是解决三角形中任意一边和其余两边的夹角之间关系的定理。

虽然在
日常生活中我们可能不经常直接使用余弦定理的公式,但是它的原理和概念却在我们的生活中随处可见。

首先,我们可以在日常生活中使用余弦定理来帮助我们解决一些实际问题。

比如,当我们需要测量一个无法直接测量的距离时,可以利用余弦定理来计算。

例如,当我们需要测量两个建筑物之间的距离时,可以利用余弦定理来计算出这个距离,而不需要直接测量。

这在建筑设计和土地测量中是非常有用的。

此外,余弦定理也可以帮助我们理解一些日常生活中的现象。

例如,当我们观
察到两个物体之间的夹角和它们之间的距离时,可以利用余弦定理来解释它们之间的关系。

这有助于我们更好地理解周围的世界。

除此之外,余弦定理也可以在日常生活中帮助我们解决一些实际问题。

比如,
在日常生活中我们可能会遇到需要计算力的大小和方向的问题,而余弦定理可以帮助我们计算出这些力的大小和方向。

这对于工程师和物理学家来说是非常有用的。

总的来说,余弦定理虽然在日常生活中可能不会直接用到其公式,但是它的原
理和概念却在我们的生活中随处可见。

它可以帮助我们解决一些实际问题,帮助我们理解周围的世界,以及帮助我们解决一些实际问题。

因此,余弦定理在日常生活中的应用是非常广泛的,它不仅仅是一个数学定理,更是我们理解世界的一种工具。

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。

正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用 正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考. 一、在不可到达物体高度测量中的应用 例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--.由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距3km的C 、D 两点高,测得∠ACB=750, ∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB. 解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴AC=CD=3.在∆BCD 中,∠CBD==600由正弦定理可得,BC=003sin 75sin 60=26)2+在∆ABC 中,由余弦定理,可得 2222AB AC BC AC BC COS ACB =+-••∠,22202626)(3)()2237522AB COS ++=+-⨯⨯⨯=5 ∴AB=5≈2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。

正余弦定理在实际生活中的应用

正余弦定理在实际生活中的应用

正余弦定理在实际生活中的应用正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题.求解此类问题的大概步骤为:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等; (2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答.1.测量中正、余弦定理的应用例1 某观测站C 在目标A 南偏西25︒方向,从A 出发有一条南偏东35︒走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ∆,求角B .再解ABC ∆,求出AC ,再求出AB ,从而求出AD (即为所求).解:由图知,60CAD ∠=︒.22222231202123cos 22312031BD BC CD B BC BD +-+-===⋅⨯⨯,sin B =. 在ABC ∆中,sin 24sin BC B AC A ⋅==.由余弦定理,得2222cos BC AC AB AC AB A =+-⋅⋅. 即2223124224cos60AB AB =+-⋅⋅⋅︒.整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米).答:此人所在D 处距A 还有15千米.评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理.2.航海中正、余弦定理的应用例2 在海岸A 处,发现北偏东45︒方向,距A 1海里的B 处有一艘走私船,在A 处北偏西75︒方向,距A 为2海里的C 处的缉私船奉命以/小时A C D 312120 35︒25︒ 东 北的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30︒方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间? 分析:注意到最快追上走私船,且两船所用时间相等,可画出示意图,需求CD 的方位角及由C 到D 所需的航行时间.解:设缉私船追上走私船所需时间为t 小时,则有CD =,10BD t =.在ABC △中,∵1AB =,2AC =,4575120BAC ∠=︒+︒=︒,根据余弦定理可得BC ==根据正弦定理可得2sin120sin 2AC ABC BC ︒∠===. ∴45ABC ∠=︒,易知CB 方向与正北方向垂直,从而9030120CBD ∠=︒+︒=︒. 在BCD △中,根据正弦定理可得:sin 1sin 2BD CBD BCD CD ∠∠===,∴30BCD =︒△,30BDC ∠=︒,∴BD BC ==则有10t =0.24510t ==小时14.7=分钟. 所以缉私船沿北偏东060方向,需14.7分钟才能追上走私船.评注:认真分析问题的构成,三角形中边角关系的分析,可为解题的方向提供依据.明确方位角是应用的前提,此题边角关系较复杂要注意正余弦定理的联用.3.航测中正、余弦定理的应用例3 飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m ,速度为180km/h ,飞行员先看到山顶的俯角为'1830︒,经过120秒后又看到山顶的俯角为81︒,求山顶的海拔高度(精确到1m ).分析:首先根据题意画出图形,如图,这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离,然后再根据航线的海拔高度求得山顶的海拔高度.解:设飞行员的两次观测点依次为A 和B ,山顶为M ,山顶到直线的距离为MD .如图,在ABM △中,由已知,得1830'A ∠=︒,99ABM ∠=︒,6230'AMB ∠=︒.又12018066060AB =⨯=⨯(km ), A B DM 45︒75︒ 30︒ ACDB根据正弦定理,可得6sin1830'sin 6230'BM ︒=︒,进而求得6sin1830'sin81sin 6230'MD ︒︒=︒,∴2120MD ≈(m ),可得山顶的海拔高度为20250212018130-=(m ).评注:解题中要认真分析与问题有关的三角形,正确运用正、余弦定理有序地解相关的三角形,从而得到问题的答案.4.炮兵观测中正、余弦定理的应用例4 我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知6000CD =米,45ACD ∠=︒,75ADC ∠=︒,目标出现于地面点B 处时,测得30BCD ∠=︒,15BDC ∠=︒(如图),求炮兵阵地到目标的距离(结果保留根号). 分析:根据题意画出图形,如图,题中的四点A 、B 、C 、D 可构成四个三角形.要求AB 的长,由于751590ADB ∠=︒+︒=︒,只需知道AD 和BD 的长,这样可选择在ACD ∆和BCD ∆中应用定理求解.解:在ACD △中,18060CAD ACD ADC ∠=︒-∠-∠=︒, 6000CD =,45ACD ∠=︒,根据正弦定理有sin 45sin 60CD AD ︒==︒, 同理,在BCD △中,180135CBD BCD BDC ∠=︒-∠-∠=︒,6000CD =,30BCD ∠=︒,根据正弦定理有sin 30sin1352CD BD CD ︒==︒. 又在ABD ∆中,90ADB ADC BDC ∠=∠+∠=︒,根据勾股定理有:AB ====所以炮兵阵地到目标的距离为米.评注:应用正、余弦定理求解问题时,要将实际问题转化为数学问题,而此类问题又可归结为解斜三角形问题,因此,解题的关键是正确寻求边、角关系,方能正确求解.5.下料中正余弦定理的应用例5 已知扇形铁板的半径为R ,圆心角为60︒,要从中截取一个面积最大的矩形,应怎样划线?分析:要使截取矩形面积最大,必须使矩形的四个顶点都在扇形的边界上,即为扇形的内接矩形,如图所示.30︒ 45︒ 75︒AC D 15︒解:在图(1)中,在AB 上取一点P ,过P 作PN OA ⊥于N ,过P 作PQ PN ⊥交OB 于Q ,再过Q 作QM OA ⊥于M .设AOP x ∠=,sin PN R x =.在POQ △中,由正弦定理,得sin(18060)sin(60)OP PQx =︒-︒︒-.∴sin(60)PQ R x =︒-.于是[]22sin sin(60)cos(260)cos 60S PN PQ R x x R x =⋅=⋅︒-=-︒-︒221(1)2≤-=. 当cos(260)1x -︒=即30x =︒时,S2. 在图(2)中,取AB 中点C ,连结OC ,在AB 上取一点P ,过P 作//PQ OC交OB 于Q ,过P 作PN PQ ⊥交AB 于N ,过Q 作QM PQ ⊥交CA 于M ,连结MN 得矩形MNPQ ,设POC x ∠=,则sin PD R x =.在POQ △中,由正弦定理得:sin(18030)sin(30)R Rx =︒-︒︒-,∴2sin(30)PQ R x =︒-.∴[]2224sin sin(30)2cos(230)cos30S PD PQ R x x R x =⋅=⋅︒-=-︒-︒222(1cos30)(2R R ≤-︒=(当15x =︒时取“=”).∴当15x =︒时,S取得最大值2(2R .∵22(26R R >, ∴作30AOP ∠=︒,按图(1)划线所截得的矩形面积最大.评注:此题属于探索性问题,需要我们自己寻求参数,建立目标函数,这需要有扎实的基本功,在平时学习中要有意识训练这方面的能力.综上,通过对以上例题的分析,要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地,灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.ABQ POxMN (1)ABQPOxMNED(2)。

正弦定理、余弦定理在生活中应用

正弦定理、余弦定理在生活中应用

正弦定理、余弦定理在生活中的应用正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程丈量中的重要应用,使高考考察的热门和要点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参照 .一、在不行抵达物体高度丈量中的应用例 1 如图,在河的对岸有一电线铁塔B 在同一水平面内的两个测量点 CAB ,某人在丈量河对岸的塔高与 D ,现测得AB时,选与塔底BCD,BDC, CD s ,并在点 C 测得塔顶A 的仰角为,求塔高AB .剖析:此题是一个高度丈量问题,在BCD中,先求出CBD ,用正弦定理求出BC,再在Rt△ ABC 中求出塔高 AB.分析:在△ BCD 中,CBD =π.由正弦定理得BC CD=sin.sin BDC CBD因此 BC =CD sinBDC =·s sin.sin CBD sin()在 Rt △ABC中,AB=BC tan ACB·. = s tan sinsin()评论:对不行抵达的物体的高度丈量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出此中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高 .二、在丈量不行抵达的两点间距离中的应用例 2 某工程队在修建公路时,碰到一个小山包,需要打一条地道,设山双侧地道口分别为 A 、B ,为了测得地道的长度,在小山的一侧选用相距3 km的C、D两点高,测得ACB=75 0,BCD=45 0, ADC=30 0,ADC=45 0( A 、B、C、D),试求地道的长度 .剖析:依据题意作出平面表示图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在ACD 和BCD 中,利用正弦定理可求得 AC 与 BC ,而后再在ABC 中,由余弦定理求出AB.分析:在 ACD 中,∵ADC=30 0,∠ACD=120 0,∴∠ CAD=30 0,∴ AC=CD= 3 .在BCD 中,∠ CBD=180 0-450-750=60 0由正弦定理可得,3 sin 75026) BC==sin 602在 ABC 中,由余弦定理,可得AB 2 AC 2 BC 2 2AC BC COSACB ,AB2(3)2(26 )2 2 2 322 6) COS 750 =52∴ AB=5 ≈ 2.236km, 即地道长为 2.236km.评论 :此题波及到解多个三角形问题,注意优化解题过程.如为求 AB 的长,能够在ABD 中,应用余弦定理求解,但一定先求出 AD 与 BD 长,但求 AD 不如求 AC 简单,此外。

正、余弦定理在实际生活中的应用

正、余弦定理在实际生活中的应用

正、余弦定理在实际生活中的应用正弦定理和余弦定理是三角学中重要的定理,它们不仅在数学领域有着重要的意义,而且在日常生活中也有着广泛的应用。

本文将通过几个实际生活中的例子,来说明正弦定理和余弦定理的应用。

我们来看一个生活中常见的例子,即测量高楼的高度。

假设有一栋高楼,我们无法通过直接测量得到其高度,但是我们可以通过测量某一点到高楼顶部的距离和测量这一点与高楼底部的夹角,利用正弦定理和余弦定理来计算高楼的高度。

设高楼的高度为h,某一点到高楼顶部的距离为d,某一点与高楼底部的夹角为θ,则根据正弦定理可得:\[ \frac{h}{\sin{\theta}} = \frac{d}{\sin{(90^\circ - \theta)}} \]根据余弦定理可得:\[ h^2 = d^2 + L^2 - 2dL\cos{\theta} \]通过这两个公式,我们可以根据已知的距离和夹角,计算出高楼的高度。

这就是正弦定理和余弦定理在测量高楼高度时的应用。

正弦定理和余弦定理也可以在航海领域中得到应用。

航海员在航海时需要测量两个位置之间的距离和方向角,而这正是正弦定理和余弦定理所擅长的。

假设航海员需要确定A点和B点之间的距离d和方向角θ,可以利用正弦定理和余弦定理来进行计算。

首先利用余弦定理计算A点和B点的距离:\[ d^2 = a^2 + b^2 - 2ab\cos{\theta} \]然后利用正弦定理计算出方向角θ:\[ \frac{\sin{\theta}}{a} = \frac{\sin{B}}{d} \]通过这些计算,航海员可以准确地确定A点和B点之间的距离和方向角,从而确保航行的安全和准确性。

在建筑领域中,正弦定理和余弦定理也有着重要的应用。

在设计桥梁和建筑物结构时,需要计算各种角度和距离,而这些计算中常常需要用到正弦定理和余弦定理。

在地质勘探和地震预测中,也需要利用正弦定理和余弦定理来计算地层的深度和角度,从而进行地质勘探和地震预测工作。

正余弦定理在生活中的运用

正余弦定理在生活中的运用

正余弦定理在生活中的运用正余弦定理在实际生活中的应用有:航海、地理、物理、建筑工程。

1、航海在航海中,正余弦定理被广泛用于计算方向角。

当航行在广阔的海域或天空时,确定目标的方向是至关重要的。

通过观测两个已知位置相对于自身的角度,利用正弦或余弦定理,航行者可以精确地计算出到达目标的航向角,确保安全、准确地到达目的地。

2、地理在地理中,正余弦定理被用于计算地球上两点之间的精确距离。

由于地球是一个球体,因此需要使用球面三角学来进行计算。

通过观测两个已知位置相对于第三个位置的角度,利用正弦定理或余弦定理,测量人员可以精确地计算出两点之间的实际距离,为地图绘制、导航等提供准确的数据支持。

3、物理在物理学中,正弦定理和余弦定理被广泛应用于波动和振动的研究。

例如,在声学和光学中,这些定理被用来描述波的传播和干涉现象。

通过测量波的振幅、频率和传播方向,可以使用正弦定理或余弦定理来计算波在不同介质中的传播速度、波长和相位差。

4、建筑工程在建筑工程中,正弦定理和余弦定理可用于解决与角度和距离相关的问题。

例如,在设计桥梁、隧道或高楼大厦时,工程师需要计算各种角度和距离以确保结构的稳定性和安全性。

通过使用正弦定理或余弦定理,工程师可以确定结构物的高度、长度、宽度和角度等参数。

正余弦定理介绍和区别一、正余弦定理介绍1、正弦定理在一个三角形中,各边和它所对角的正弦的比值相等。

即,a/sinA=b/sinB=c/sinC,其中a、b、c为三角形的三边,A、B、C为三角形的三个内角。

2、余弦定理在任意三角形中,一边的平方等于其他两边的平方和减去这两边与其夹角的余弦的积的两倍。

即,c²=a²+b²-2abcosC,其中a、b、c为三角形的三边,C为夹角。

正余弦定理在日常生活中的应用

正余弦定理在日常生活中的应用

当小丽用力将4 m长的跷跷板的一端压下并碰
到地面,此时另一端离地面1.5m.你能求出
此时跷跷板与地面的夹角吗?


T:“另一端离地面1.5m”如何理解?

S:就是过其端点向地面作垂线,垂线
段的长度就是1.5m。

S:(另一学生迫不及待地说)老师我
知道了,我已经
S:如果我们把“碰地”的一端端点看
作点A的话,“跷跷板”看作线段AB,那么过
B点向地面作垂线,垂足为点C,这样就出现
了△ABC。

T:接下来应该做什么呢?

S:只要解这个直角三角形,求出∠A
的大小就行了。

如图所示,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不
计)距地面0.5m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂 线的夹角)约为60°,那么秋千踏板与地面的最大距离为多少?
• 答:其实很简单,函数都是有规律的,三角函数就是周期函数,只要将图像画出来那么解决问题就 很简单了。
• 问:那么我们就可以进行应用的调查了嘛?
• 答:是的,其实三角函数的应用很广泛。
• 问:在我们的生活中哪些方面应用到三角函数呢?
• 答:在电学物理方面应用的比较广泛,比如电学方面,要利用三角函数解决它在枢纽带的静电量, 进行一定防治措施,否则会让人触电死亡。
勒密的遗著《天文集》中得到的.托勒密第一个采用了巴比伦人的60进位制,把圆周分为360等份,
但他并没给出“度”、“分”、“秒”的名词,而是用“第一小分”、“第二小分”等字样进行描 述.在1570年曲卡拉木起用了“°”的符号来表示“度”,以及“分”、“秒”等名称.书中又给 出了“托勒密定理”来推算弦、弧及圆心角的关系及公式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这一术语的由来.

早期人们把与已知角相加成90°角的正弦,叫做的附加正弦,它的拉丁文简写为sinusco或
cosinus,后来便缩写成cos.

公元八世纪阿拉伯的天文学家和数学家阿尔·巴坦尼,为了测量太阳的仰角,分别在地上和墙
上各置一直立与水平的杆子,求阴影长b,以测定太阳的仰角.阴影长b的拉丁文译文名叫“直阴
勒密的遗著《天文集》中得到的.托勒密第一个采用了巴比伦人的60进位制,把圆周分为360等份,
但他并没给出“度”、“分”、“秒”的名词,而是用“第一小分”、“第二小分”等字样进行描 述.在1570年曲卡拉木起用了“°”的符号来表示“度”,以及“分”、“秒”等名称.书中又给 出了“托勒密定理”来推算弦、弧及圆心角的关系及公式.

第一张正弦表由印度的数学家阿耶波多(约476-550年)造出来的.虽然他直接接触了正弦,
但他并没有给出名称.他称连接圆弧两端的直线为“弓弦”,后来印度著作被译成阿拉伯文.十二
世纪,当阿拉伯文被译成拉丁文时,这个字被译成sinus,这就是“正弦”这一术语的来历.1631
年邓玉函与汤若望等人编《大测》一书,将sinus译成“正半弦”,简称为正弦,这是我国“正弦”
当小丽用力将4 m长的跷跷板的一端压下并碰
到地面,此时另一端离地面1.5m.你能求出
此时跷跷板与地面的夹角吗?


T:“另一端离地面1.5m”如何理解?

S:就是过其端点向地面作垂线,垂线
段的长度就是1.5m。

S:(另一学生迫不及待地说)老师我
知道了,我已经看出有直角三角形了

T:是吗?说说看!

影”,水平插在墙上的杆的影长叫做“反阴影”,“直阴影”后来变成余切,“反阴影”叫做正
切.

大约半个世纪后,另一位中亚天文学家、数学家阿布尔·威发计算了每隔10°的正弦和正切表,
并首次引进了正割与余割。
三角函数的应用
• 在现实生活中,特别是普通老百姓把数学看似一个非常遥远的独立 的神秘王国,人们误解数学就是搞难题,没有什么实际用途。这与我 们在数学教学中不讲数学的意义,不讲数学与生活的联系,不讲数学 与其他学科的关系及其在实际社会生活中的应用价值,而是讲解题, 把数学教学变成了一种纯粹的演题训练,使学生看不见数学的本来面 目和它的真正意义,失却了对大自然的“好奇心”有着很大的关系。 在学生学完三角函数这部分内容以后,寻找三角函数在生活中的实例, 通过这些资料,培养学生把实际问题转化为数学问题的能力。
• 在我们的生活中,三角函数一般被用来:测量山高、测量树高、确 定航海行程问题、确定光照及房屋建造合理性、调整电网,比如两个 电网并接的时候、用于山的坡、TAN 平面所走的距离、上升的高度 。 同理还可以测量楼的高、塔的高、测量树高、确定航海行程问题、确 定光照及房屋建造合理性。

公园里,小明和小丽开心地玩跷跷板,
• 三角函数与我们的生活息息相关,因为人体是一个包含各种周期运动的生 物体,医学上把周期为24小时的生理运动称中周期运动,如血压、血糖浓度 的变化。而且声音中也包含着正弦函数,声音是由于物体的振动产生都能引 起听觉的音。每个音都是由纯音合成的。纯音数学模型是函数y=Asinwt。由 此可见三角函数在生命中起着重要的作用。
• 答:其实很简单,函数都是有规律的,三角函数就是周期函数,只要将图像画出来那么解决问题就 很简单了。
• 问:那么我们就可以进行应用的调查了嘛?
• 答:是的,其实三角函数的应用很广泛。
• 问:在我们的生活中哪些方面应用到三角函数呢?
• 答:在电学物理方面应用的比较广泛,比如电学方面,要利用三角函数解决它在枢纽带的静电量, 进行一定防治措施,否则会让人触电死亡。
专列了八个测量问题,详细介绍了利用直角三角形相似原理,进行测量的方法.以及后来的《海岛
算经》等都是进行三角测量的史料记载.可见我国对三角学研究开始的很早.

三角学的六个基本函数中,最早开始独立研究的是正弦函数.正弦概念的形成是从造弦表开始
的.公元前二世纪古希腊天文学家希帕克,为了天文观察的需要,着手造表工作.这些成果是从托
目录
• · 开题报告 • · 研究内容 • · 与三角函数相关的一些资料 • · 研究方法和手段 • · 与活动相关的 • · 相关举例 • · 课题组成员及指导老师
开题报告
• 说到三角函数就必须提及三角形的来历和起源、发展与天文学家密不可分,
他是天文观察结果推算的一种方法,它的出现不全是因为航海,历法推算以 及天文观测等人类实践活动的需要,而且也因为宇宙奥秘的巨大吸引力,这 种“量天的学问”确实很诱人。
研究内容
• 学而不思则罔,只有通过自己的独立思考,并掌握科学的思维方法才能真 正学会教学要善于利用数学内容之间的内在联系,特别是科学的思维方法, 学习类比、推广、特殊化、化归的数学思考的常用逻辑方法,不断提高数学 思维能力。
• 对于三角函数,自然而然是要画出它的图像,观察图像的形状,看看其特 殊点,并借助图像研究它的性质,如“值域”、“单调性”、“奇偶性”、 “最大值”、“最小值”。我们会明白三角函数具有“周而复始”的规律。
A



T:何时秋千踏板离地面最高?如何表示出秋千踏板与地面的最大高
度?
C
B

S:就是当秋千达到最大摆角时其踏板离地面的高度。

T:这个距离方便直接求吗?
• •
S:不方便。因为它不在某一个直角三角形中,需要构造直角三角形。 T:那该如何转化呢?
D
E

S:连接……

S:(另一学生脱口而出)不必这么麻烦。只需……得RtΔABC(如
图4)。

T:你还能有其它解决问题的办法吗?如果能,请构造成新的直角三
角形;如果不能,请你利用图4写出计算过程。

……
• 接下来,除如图4的方法外,学生还给出了多种转化的方法,下面实录3种:
60 º
图5
60
60
º
º
图6
图7
研究方法和手段

今天我们数学组带着问题走访了数学老师以及物理老师。
• 问:我们要研究三角函数,首先要学好它,可我们如何才能更好的掌握它呢?
三角函数的由来

“三角学”一词,是由希腊文三角形与测量二字构成的,原意是三角形的测量,也就是解三角
形.后来范围逐渐扩大,成为研究三角函数及其应用的一个数学分支.

三角测量在我国出现的很早.据《史记·夏本记》记载,早在公元前二千年,大禹就利用三角
形的边角关系,来进行对山川地势的测量.《周髀算经》讲得更详细.后来《九章算术》勾股章,
S:如果我们把“碰地”的一端端点看
作点A的话,“跷跷板”看作线段AB,那么过
B点向地面作垂线,垂足为点C,这样就出现
了△ABC。

T:接下来应该做什么呢?

S:只要解这个直角三角形,求出∠A
的大小就行了。

如图所示,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不
计)距地面0.5m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂 线的夹角)约为60°,那么秋千踏板与地面的最大距离为多少?
• 在欧洲,最早提出三角学的是德国数学家雷格蒙塔琼斯(1436-1476)并 完成了《论各种三角形》,可是他很有局限性,仅采用了正弦、余弦函数, 后来哥白尼的学生雷提库斯完善了三角函数,并采用了六个三角函数,大大 推动了三角函数学的发展。
• 现在利用三角函数可以计算出许多抽象的问题,三角函数虽然在生活中不 常常用到,可是科学家利用函数大大提高了人们的生活水平,生活中许多东 西都用到了三角函数的原理,并且学习三角函数也能使我们学会一些方法, 所以我们很有必要研究这门悠久而极具吸引力的文学。
• 因而我们小组选三角函数为课题。
三角函数是什么
• 三角函数是数学中属于初等函数中的超越函数的一类函 数。它们的本质是任意角的集合与一个比值的集合的变量 之间的映射。通常的三角函数是在平面直角坐标系中定义 的,其定义域为整个实数域。另一种定义是在直角三角形 中,但并不完全。现代数学把它们描述成无穷数列的极限 和微分方程的解,将其定义扩展到复数系。 由于三角函 数的周期性,它并不具有单值函数意义上的反函数。 三 角函数在复数中有较为重要的应用。在物理学中,三角函 数也是常用的工具。 它有六种基本函数: 函数名 正弦 余弦 正切 余切 正割 余割
• 问:那么三角函数怎样与各函数以及应用进行联系?
• 答:其实可以绘成一个图,如下:
指导老师:徐桂锦 组长:刘庄锋 组员:张培宇 郑陈斌 王子杰 黄志鑫
洛桑坦增 朗色坚赞 朱子贤 特别鸣谢:漳州三中
相关文档
最新文档