分子生物学笔记完全版

合集下载

(完整word版)分子生物学知识点归纳

(完整word版)分子生物学知识点归纳

分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。

2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。

3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。

4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。

甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。

真核生物中的DNA甲基化则在基因表达调控中有重要作用。

真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’.5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。

“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。

6.DNA双螺旋结构模型要点:(1)DNA是反向平行的互补双链结构。

(2)DNA双链是右手螺旋结构。

螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。

每个碱基旋转角度为36度。

DNA双螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。

(3)疏水力和氢键维系DNA双螺旋结构的稳定。

DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。

7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。

各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。

核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。

8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。

9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。

分子生物学笔记

分子生物学笔记

1.原核DNA复制特点1)复制起始在拓扑异构酶I的作用下解开DNA负超螺旋后,与解链酶共同作用,在复制起点处解开双链,解链过程中SSB蛋白稳定被解开的单链保证局部不恢复回双链。

解链过程中需要ATP提供能量。

解链后,由引发酶直接在DNA前导链模板上合成引物;由蛋白n、n`、n``、DnaB、C、I共同组成引发体在后随链上合成引物RNA。

2)复制延伸延伸过程中,前导链连续延伸;后随链上,引发体延5`→3`方向前进并合成RNA引物,再由DNA聚合酶Ⅲ断断续续合成小的DNA片段。

小片段上RNA引物被RNase H降解,DNA片段被DNA聚合酶I连接成完整DNA链。

3)复制终止当复制叉遇到由22个碱基组成的Ter序列时,Ter-Tus复合物使DnaB停止DNA解链,阻挡复制叉前移。

在反方向复制叉到达后,停止复制,其间50-100bp 未被复制的片段由DNA修复机制补齐。

然后两条链分开,并在拓扑异构酶Ⅳ作用下使复制叉解体,释放子链。

2.原核RNA转录1)模板识别原核RNA聚合酶可直接与启动子区结合,完成转录起始2)转录起始RNA聚合酶先与启动子可逆结合,形成封闭复合物。

之后DNA双链构象发生变化,封闭复合物转为开放复合物,使RNA聚合酶结合的DNA序列中有一小段双链被解开。

解链后,开放复合物与最初两个NTP 结合形成磷酸二酯键并转变为RNA 聚合酶-DNA- 新生RNA 链三元复合物。

之后,转录起始后直到形成 9个核苷酸短链是通过启动子阶段,此时RNA聚合酶一直处于启动子区,新生的 RNA链与 DNA模板链的结合不够牢固,很容易从DNA链上掉下来并导致转录重新开始。

一旦RNA聚合酶成功地合成 9个以上核苷酸并离开启动子区,转录就进入正常的延伸阶段。

3)转录延伸当RNA聚合酶催化新生RNA链长度超过9-10个核苷酸时,σ因子脱离转录复合物,RNA聚合酶离开启动子,核心酶延模板移动使新生RNA链不断延伸。

4)转录终止RNA聚合酶碰到终止信号后,与模板脱离并释放新生RNA。

医学分子生物学-整理笔记

医学分子生物学-整理笔记

第2章基因、基因组和基因组学基因(gene):携带有遗传信息的DNA或RNA序列,也称为遗传因子。

基因是合成有功能的蛋白质或RNA所必需的全部DNA,包括编码蛋白质或RNA的核酸序列,也包括为保证转录所必需的调控序列。

基因的功能:传递遗传信息,控制个体性状表现。

结构基因(structural genes):可被转录形成mRNA,并转译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。

调节基因(regulatory genes) :某些可调节控制结构基因表达的基因。

其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质(或酶)量的改变。

eg. miRNA, siRNA, piRNA核糖体RNA 基因(ribosomal RNA genes) 与转运RNA 基因(transfer RNA genes):只转录产生相应的RNA而不翻译成多肽链。

真核生物的RNA聚合酶( 3种):RNA 聚Array合酶I, II, III.开放阅读框架(open reading frame,ORF):在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码序列。

断裂基(split gene):真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质。

基因组(genome):一个细胞内的全部遗传信息,包括染色体基因组和染色体外基因组。

基因组中的DNA包括编码序列和非编码序列。

部分病毒基因组--RNA。

C值(C-value):一种生物体单倍体基因组DNA的总量,用以衡量基因组的大小。

通常,进化程度越高的生物其基因组越大,但从总体上说,生物基因组的大小同生物在进化上所处地位的高低无关。

存在C-value paradox (C值悖理)。

生物复杂性越高,其基因的密度越低。

病毒基因组的大小: 与细菌或真核细胞相比,病毒的基因组很小。

分子生物学考试整理笔记

分子生物学考试整理笔记

分⼦⽣物学考试整理笔记第⼀章1.请定义DNA重组技术和基因⼯程技术。

DNA重组技术:是将不同的DNA⽚段按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表的,产⽣影响受体细胞的新的遗传性状。

基因⼯程技术:是将不同的DNA⽚段按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表的,产⽣影响受体细胞的新的遗传性状。

还包括其他可能使⽣物细胞基因组结构得到改造的体系。

第⼆章2.什么是核⼩体?简述其形成过程。

由DNA和组蛋⽩组成的染⾊质纤维细丝是许多核⼩体连成的念珠状结构。

核⼩体是由H2A,H2B,H3,H4各两个分⼦⽣成的⼋聚体和由⼤约200bp的DNA组成的。

⼋聚体在中间,DNA分⼦盘绕在外,⽽H1则在核⼩体外⾯。

每个核⼩体只有⼀个H1。

所以,核⼩体中组蛋⽩和DNA的⽐例是每200bpDNA有H2A,H2B,H3,H4各两个,H1⼀个。

⽤核酸酶⽔解核⼩体后产⽣只含146bp核⼼颗粒,包括组蛋⽩⼋聚体及与其结合的146bpDNA,该序列绕在核⼼外⾯形成1.75圈,每圈约80bp。

由许多核⼩体构成了连续的染⾊质DNA细丝。

核⼩体的形成是染⾊体中DNA压缩的第⼀阶段。

在核⼩体中DNA盘绕组蛋⽩⼋聚体核⼼,从⽽使分⼦收缩⾄原尺⼨的1/7。

200bpDNA完全舒展时长约68nm,却被压缩在10nm的核⼩体中。

核⼩体只是DNA压缩的第⼀步。

核⼩体长链200bp→核酸酶初步处理→核⼩体单体200bp→核酸酶继续处理→核⼼颗粒146bp3. 简述DNA的⼀,⼆,三级结构的特征DNA⼀级结构:4种核苷酸的的连接及排列顺序,表⽰了该DNA分⼦的化学结构DNA⼆级结构:指两条多核苷酸链反向平⾏盘绕所⽣成的双螺旋结构DNA三级结构:指DNA双螺旋进⼀步扭曲盘绕所形成的特定空间结构4.原核⽣物DNA具有哪些不同于真核⽣物DNA的特征?(1)结构简练:原核DNA分⼦的绝⼤部分是⽤来编码蛋⽩质,只有⾮常⼩的⼀部分不转录,这与真核DNA的冗余现象不同。

分子生物学笔记

分子生物学笔记

分子生物学笔记中心法则(Central dogma)DNA的组成DNA的融解温度Tm,高GC含量使得DNA的Tm升高,以及GC的体积较小,使得测得密度较大DNA变性的条件:有机化合物,高pH,低盐浓度探针和DNA杂交基因组是一个生物体的所有遗传信息的集合。

染色体的组成:DNA、蛋白质、RNA组蛋白Histones:五种H1、H2A、H2B、H3、H4核小体核心由8个组蛋白组成H2A、H2B、H3、H4各两个(组蛋白八聚体)146bpDNA核小体核心+H1+linkerDNA组成了染色体组蛋白的修饰乙酰化:转录激活,结构变松散DNA复制半保留复制DNA聚合酶只能从5‘到3’合成DNA(前导链)2. 3‘到5’的DNA聚合酶移动是半不连续复制(后随链,也是从5’-3‘合成)冈崎片段(DNA+RNA引物),后随链绕DNA聚合酶一圈,使得两者的复制方向相同细菌的后随链片段约1000nt,真核细胞中约200nt3. 引物和模板依赖DNA聚合酶不能从头合成DNA,必须前面由10-12nt的RNA引物提供3’羟基引物酶在合成DNA前加上一小段RNA引物复制叉两条母链解开时形成复制叉(replication fork)拓扑异构酶(DNA旋转酶,gyrases):去除DNA的超螺旋结构DNA解旋酶(DNA helicase):DnaB作用以及DnaA、DnaC等其他蛋白质SSBP:单链结合蛋白,稳定解旋后的单链引物酶:合成RNA引物,需要引发体DNA聚合酶Ⅲ(原核):同时合成两条链,链伸长DNA聚合酶Ⅲ:从5‘-3’合成DNA片段,然后删去RNA引物(具有核酸外切酶5‘-3’活性),发生缺口平移(缺口出现在引物和冈崎片段之间)DNA连接酶:去除引物后,连接冈崎片段和之前合成的片段滑动夹:保持DNA聚合酶不从DNA上掉下来端粒酶(telomerase):DNA复制酶只能5‘-3’合成DNA片段,因此DNA两端5’的RNA引物去除后不能让DNA聚合酶Ⅲ生成替换RNA引物的DNA片段(末端隐缩)。

暨南大学分子生物学笔记汇总

暨南大学分子生物学笔记汇总

分子生物学分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

第一章绪论一、引言1.创世说与进化论:1859年达尔文发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。

指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。

达尔文第一个认识到生物世界的不连续性。

2.细胞学说:德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。

3.经典遗传学两条基本规律:①统一律:当两种不同植物杂交时,它们的下一代可能与亲本之一完全相同。

②分离规律:将不同植物品种杂交后的F1代种子再进行杂交或自交时,下一代就会按照一定的比例分离,因而具有不同的形式。

1865年发表《植物杂交试验》,1900年被人们重新发现。

孟德尔被公认为经典遗传学的奠基人。

4.现代遗传学:Morgan指出:种质必须由某些独立的要素组成,这些要素称为遗传因子或基因。

二、分子生物学发展简史1.准备和酝酿阶段(19世纪后期到20世纪50年代初)对生命本质的认识上的两点重大突破:①确定了蛋白质是生命的主要基础物质②确定了生物遗传的物质基础是DNA。

2.现代分子生物学的建立和发展阶段(20世纪50年代初到70年代初)以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑,主要进展包括:①遗传信息传递中心法则的建立②对蛋白质结构与功能的进一步认识。

DNA双螺旋发现的意义:①确立了核酸作为信息分子的结构基础。

②提出了碱基配对是核酸复制、遗传信息传递的基本方式。

③从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。

Crick于1954年所提出遗传信息传递的中心法则(Central Dogma )3.初步认识生命本质并开始改造生命的深入发展阶段(20世纪70年代后至今)基因工程技术的出现作为标志,重大成就包括:①重组DNA技术的建立和发展②基因组研究的发展③单克隆抗体及基因工程抗体的建立和发展④基因表达调控机理⑤细胞信号转导机理研究成为新的前沿领域。

分子生物学课堂笔记

分子生物学课堂笔记

分子生物学真核生物的基因1.真核生物基因组的一般特点真核生物的基因组一般比较庞大,远大于原核生物的基因组。

真核生物的DNA与蛋白质结合形成染色体,储存于细胞核内。

真核基因组存在着许多重复序列,重复次数可达几百万以上。

绝大多数真核生物编码蛋白质的基因为断裂基因,即结构基因是不连续排列的,中间由插入序列隔开。

真核生物基因组中不编码的区域多于编码区域。

真核生物不仅含有核内染色体DNA,还有核外细胞器DNA、核外细胞器有线立体DNA和叶绿体DNA。

`2.断裂基因(不连续基因)interrupted or discontinuous genesSV40A蛋白基因含有一段346NT的间隔区。

每个活性珠蛋白基因含有两个间隔区。

卵清蛋白基因含有7个插入序列被分成八段。

`3.基因家族与基因簇gene family & gene cluster定义:真核生物基因组中许多来源相同,结构相似,功能相关的基因在染色体上成串存在,这样的一组基因称为基因家族。

多基因家族是真核生物基因组织的一个重要特征。

多基因家族在基因组中的分布情况不同,有些基因成串排列集中在一条染色体上,集中成簇的一组基因形成基因簇。

也称串联重复基因(见后)。

如组蛋白基因, rRNA基因, tRNA基因等。

而有些基因家族成员不集中排列,而是分散在基因组的不同部位。

如干扰素,珠蛋白,生长激素,SOX 基因家族。

在多基因家族中,有些成员不具有任何功能,这类基因叫假基因(pseudogene)。

4.串联重复基因`特征:A. 各成员间有高度的序列一致性或完全相同。

B. 拷贝数高,几十个至几百个。

因其在细胞中的需要量很大。

C. 非转录的间隔区短而一致。

`组蛋白基因五种组蛋白基因彼此靠近构成一个重复单位。

许多这样的重复单位串联在一起,构成组蛋白基因簇。

`rRNA基因原核生物有三种rRNA:5S,16S,23S真核生物有四种rRNA:5.8S,18S,28S, 5S主体rRNA:三种主体rRNA基因组成重复单位,转录出一个45SrRNA,经转录后处理切除间隔区成为18S,5.8S,28S 三种rRNA。

分子生物学笔记

分子生物学笔记

1、分子生物学(狭义):即在核酸与蛋白质水平上研究基因的复制,基因的表达(包括RNA转录、蛋白质翻译),基因表达的调控以及基因的突变与交换的分子机制。

2、分子生物学(广义):即在分子水平上研究生命现象,或用分子的术语描述生物现象的学科。

3、克里克认为分子生物学基于两个基本原理:①序列假说:是指核酸片段的特异性完全由其碱基序列决定,而且这种序列是某一蛋白质氨基酸的密码。

②中心法则:是指DNA的遗传信息经RNA一旦进入蛋白质,也就不可能再行输出。

4、分子生物学作为所有生命物质的共性学科所遵循的三大原则:①构成生物大分子的单体是相同的。

共同的核酸语言,即构成核酸大分子的单体均是A、T(U)、C、G;共同的蛋白质语言,构成蛋白质大分子的单体均是20种基本氨基酸。

②生物大分子单体的排列(核苷酸,氨基酸)决定了生物性状的差异和个性特征。

③生物遗传信息的表达的中心法则相同。

5、生物学的三大发现:DNA 双螺旋结构的揭示、遗传密码子的破译、信使RNA的发现。

奠定了DNA-RNA-蛋白质三者之间关系的基础。

第二章:基因概念的演变与发展1、遗传学家摩尔根根据对果蝇的遗传试验提出了基因是:基因像念珠(bead)一样孤立地呈线状一样排列在染色体上,是具有特定功能、能独立发生突变和遗传交换的、“三位一体”的、最小的遗传单位。

2、等位基因:是指野生型基因(A)发生突变后形成的突变基因(a),它与野生型基因位于相同染色体的同一基因座位上。

当野生型基因(A)向不同方向发生突变形成不同状态的等位基因,又总称为复等位基因。

3、拟等位基因:将紧密连锁、控制同一性状的非等位基因定义为拟等位基因。

4、科学家们通过对噬菌体突变体与表型之间的关系的研究,提出了顺反子理论:顺反子是基因的同义词,认为基因是一个具有特定功能的、完整的、不可分割的最小遗传单位。

在一个基因内可以发生突变、重组(交换)。

该理论认为:基因(即顺反子)是染色体上的一个区段,在一个顺反子内有若干个交换单位,最小的交换单位称为交换子;在一个顺反子中有若干个突变单位,最小的突变单位被称为突变子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子生物学笔记第一章基因的结构第一节基因和基因组一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列.一个典型的真核基因包括①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene) ,外显子不连续。

二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。

人基因组3X1 09(30亿bp),共编码约10万个基因。

每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。

人类基因组计划( human genome project, HGP )基因组学( genomics ),结构基因组学( structural genomics )和功能基因组学( functional genomics )。

蛋白质组( proteome )和蛋白质组学( proteomics )第二节真核生物基因组一、真核生物基因组的特点:,①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中.②真核基因组中,编码序列只占整个基因组的很小部分(2 —>% ),三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因. 可能由某一共同祖先基因(ancestral gene) 经重复(duplication) 和突变产生。

基因家族的特点:①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生有功能的基因产物,这种基因称为假基因(Pseudogene) . ¥ a1表示与a1相似的假基因.四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同.第四节细菌和病毒基因组一、细菌基因组的特点。

1 .功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。

3 .细菌DNA大部分为编码序列。

二、病毒基因组的特点1 .每种病毒只有一种核酸,或者DNA,或者RNA ;2 .病毒核酸大小差别很大,3X103 一3X106bp ;3.除逆病毒外,所有病毒基因都是单拷贝的。

4 .大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成.5. 真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子.6. 有重叠基因.第五节染色质和染色体(二)组蛋白(histone): 一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力.(二).端粒(telomere) :真核生物线状染色体分子末端的DNA 区域端粒DNA的特点:1、由富含G的简单串联重复序列组成(长达数kb).人的端粒DNA重复序列:TTAGGC。

2、端粒的末端都有一条12-16碱基的单链3端突出。

端粒的作用:防止DNA末端降解,保证染色体的稳定性和功能(三)、复制原点第二章DNA的复制、修复和重组第一节DNA 的复制(DNA Replication)一、D NA复制的基本特性1. 半保留性(Semi-Conservative)2. 双向复制(一般)复制起始点(origin)+两侧复制叉=复制单位(复制子,Replicon)3. 半不连续性(Semi-discontinuous)前导链(leading strand)-连续合成,随从链(Lagging Strand)-不连续,由岗崎片段(okazaki fragment)连接而成.二、D NA复制必需的成份(真核生物)1. 染色体DNA复制必需三种核苷酸序列①复制起点②着丝粒③端粒2 . RNA 引物(RNA Primer) 一般8-14nt.带游离3'-0H 末端.3. 参加DNA复制的主要酶和蛋白质①DNA聚合酶(DNA Polymerase) 真核DNA复制的主要酶DNA Pol a/ 5 .功能:从5'-3'方向延伸与模板互补的子代链②引发酶(Primase)与其他多种蛋白组成多蛋白复合体-引发体(Primosome).催化RNA引物合成和复制起始.③DNA连接酶(DNA Ligase) 催化一个双链DNA的5'磷酸与另一双链DNA的3'-OH形成磷酸二酯键.④DNA解链酶(DNA Helicase),打开DNA双链.⑤增殖细胞核抗原(Proliferating cell nuclear antigen.PCNA) 辅助催化前导链合成.⑥端粒酶(Telomerase)末端复制问题。

端粒酶负责染色体末端(端粒)复制,是由RNA和蛋白质组成的核糖核蛋白.其中的RNA成分是端粒复制的模板.(因此端粒是逆转录酶)作用:维持端粒长度.端粒酶活性可用基于PCR 的TRAP ” (Telomerase repeat amplification protocol )法测定端粒与细胞寿命。

端粒、端粒酶与肿瘤的关系:绝大多数恶性肿瘤具有端粒酶活性但端粒缩短,但也有约5%的肿瘤无端粒酶活性且端粒较长。

端粒酶作为新的肿瘤标志和肿瘤治疗靶点.第二节DNA 修复(DNA repair )DNA修复是维持基因组完整性的重要机制,在保护基因组避免发生可能导致肿瘤或遗传疾病的突变中起关键的作用。

引起DNA损伤的因素:1、细胞内源性损伤因素:DNA复制错误;自发损伤包括碱基互变异构、碱基脱氨( C-U、A-I)和碱基丢失等;氧化代谢副产物如活性氧物质(Reactive oxygen species ,ROS ) 的攻击等。

2、环境中的损伤因素:辐射(含紫外线、X射线)产生胸腺嘧啶二聚体;化学致癌物(氧化脱氨,烷化剂或代谢活化物如苯并芘、黄曲霉素等产生碱基加合物)一、碱基切除修复(Base excision repair 、BER)该途径中最关键的是必须通过一种糖苷酶(glycosylase)先除去变异碱基(如被氧化、烷基化或脱氨的碱基),该糖苷酶催化连接损伤碱基与脱氧核糖之间的糖苷键水解,释放游离碱基并在DNA中产生一个去碱基位点,然后由去嘌呤/去嘧啶(AP)核酸内切酶、DNA聚合酶和DNA连接酶等利用相对的一条正常链为模板进行修补合成。

BER是修复内源性DNA损伤(自发水解、烷基化和活性氧攻击)的主要途径,因此对于降低自发突变的频率、防止肿瘤发生有重要作用。

二、核苷酸切除修复(Nucleotide excision repair , NER)首先由多聚体复合物识别损伤,再在损伤的两侧进行切除。

随着DNA链被解开,包含损伤的单链片段释放岀来,留下的缺口由DNA聚合酶填补,DNA连接酶封闭。

该途径包括20种以上蛋白,可以修复紫外辐射诱导的环丁烷嘧啶二聚体(CPD)和(6-4)光产物((6 -4)PPs),以及一些化学物质产生的大加合物。

NER可再分为二条子途径:(1)全基因组修复(Global Genomic repair ,GGR)途径:修复整个基因组内的损伤,其效率取决于损伤的化学特性、损伤部位的DNA序列和染色质结构。

⑵转录藕联修复仃rancsription -coupled repair ,TCR,):特异地修复基因组中具有转录活性(即表达)的基因的被转录DNA链上的损伤,该途径的特点是依赖RNA聚合酶II催化的转录,其中的一些蛋白是普通转录因子TFIIH的亚基。

三、错配修复(Mismatch repair) 负责修复DNA复制过程中由于错误掺入而产生的错配。

四、重组修复(Recomhinant repair) 修复DNA的两条链均受损伤的部位的双链断裂或链间交连。

第三节重组(recombination)重组的本质是基因的重排或交换.即2个DNA分子间或一个DNA分子的不同部位间,通过断裂和重接,交换DNA片段从而改变基因的组合和序列.一. 同源重组(Homologous recombination)指DNA同源序列间的重组,常发生于两个较长的同源DNA片段或同源染色体之间。

可通过同源重组将外源基因定位整合到细胞基因组中.二. 转座(transposition) 可移动的DNA 元件(mobile DNA elements)-转座元件仃ransposable element).它是指那些可在DNA分子内或DNA分子间转移的DNA片段.转座元件的转移过程-转座转座的特点:1. 转座后原来位置的转座元件序列仍然保留,但同时又把新合成的DNA复本插入到另外一个位点.2. 转座过程需要转座酶(transposase).它催化断裂和重接两步连续的过程(需要M2+)3. 转座元件插入位置的两茶有3-12bp的正向重复序列(靶序列),它是由于转座酶错位切割DNA造成的.这种短正向重复序列是存在转座元件的特征.转座元件的分类①转座子(transposon):通过DNA复制而转移的转座元件.②逆转座子(retroposon)或返座子,通过RNA阶段实现转移的转座元件(DNA - RNA - DNA -插入新位点)转座的遗传效应-导致基因重排、插入、缺失。

第三章基因表达的调控基因表达:DNA-mRNA -蛋白质的遗传信息传递过程第一节基因的活化基因的开关”染色质的活化一、活性染色质的结构二、活性染色质的结构特点(一) DNaseI敏感性转录活性(或有潜在转录活性)的染色质对DNase I更敏感.(二) 组蛋白H3的CyS110上巯基暴露,三、活性染色质结构的形成(二)、组蛋白修饰。

(三)HMG蛋白结合HMG ( high mobility group) 蛋白-高迁移率蛋白,如HMG14/HMG17.与核小体核心颗粒结合,有利转录。

四、D NA甲基化与基因表达 .(一)、真核生物基因组DNA的甲基化(Methylation)(二)DNA甲基化的转录抑制作用。

持家基因(housekeeping gene):是指对所有类型组织细胞在任何时候都需要其表达的基因,通常都是维持细胞基本生存所必须的基因,其表达常保持在固定的水平。

又称为组成性基因(Constitutive gene)。

(三)甲基化与基因组印迹基因组印迹(genomic imprinting):指基因表达活性只局限于来自双亲之一的基因版本。

相关文档
最新文档