初一数学整式计算题

合集下载

初一数学整式试题答案及解析

初一数学整式试题答案及解析

初一数学整式试题答案及解析1.下列计算中,正确的是A.3ab2·(-2a)=-6a2b2B.(-2x2y)3=-6x6y3C.a3·a4=a12D.(-5xy)2÷5x2y=5y2【答案】A.【解析】A、3ab2•(-2a)=-6a2b2,正确;B、(-2x2y)3=-8x6y3,故此选项错误;C、a3•a4=a7,故此选项错误;D、(-5xy)2÷5x2y=5y,故此选项错误;故选A.【考点】1.单项式乘单项式;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.整式的除法.2.若一多项式除以2x2-3,得到的商式为x+4,余式为3x+2,则此多项式为.【答案】2x3+8x2-10.【解析】根据“被除式=除式×商式+余式”进行计算即可求出结果.试题解析:A=(2x2-3)(x+4)+3x+2=2x3+8x2-3x-12+3x+2=2x3+8x2-10故此多项式为2x3+8x2-10.【考点】整式的除法.3.如图,从边长为a+1的正方形纸片中剪去一个边长为a-1的正方形(a>1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2B.2a C.4a D.a2-1【答案】C.【解析】矩形的面积是(a+1)2-(a-1)2=4a.故选C.【考点】平方差公式的几何背景.4.已知a(a-2)-(a2-2b)=-4.求代数式的值.【答案】2【解析】先把a(a-2)-(a2-2b)=-4进行整理,得出b-a=2,再把要求的式子进行通分,然后合并同类项,最后把b-a的值代入即可.试题解析:∵,∴即b-a=2,∴【考点】整式的混合运算5.若= .【答案】.【解析】:a2x﹣2y=a2x÷a2y=(a x)2÷(a y)2=8)2÷32=.故答案是.【考点】1.同底数幂的除法2.幂的乘方与积的乘方.6.因式分解(1)(2)(3)(4)【答案】(1);(2);(3);(4).【解析】按照提公因式的基本方法即可.试题解析:(1);(2);(3);(4).【考点】提公因式法与公式法的综合运用.7.计算:_____________;【答案】【解析】根据单项式除法法则和同底数幂相除法则即可得出答案单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.所以.注意:容易忽略负号和中a的指数为1.【考点】1.单项式除法;2.同底数幂相除.8.图a是一个长为2 m、宽为2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。

初一数学整式试题答案及解析

初一数学整式试题答案及解析

初一数学整式试题答案及解析1.若2m=4,2n=8,则2m+n=.【答案】32【解析】∵2m=4,2n=8,∴2m+n=2m×2n=4×8=32,故答案为:32.【考点】同底数幂的乘法2.(1)先化简,再求值:(x+2y)(x-2y)+(x+2y)2-4xy,其中x=-1,y=.(2)已知两个单项式a m+2n b与-2a4b k是同类项,求:2m·4n·8k的值.【答案】(1)2;(2)【解析】(1)利用平方差公式把因式展开再合并同类项,把x、y的值代入求解;(2)根据同类项的性质可把m+2n和k值求出来,最后代入求解.试题解析:(1)原式=,把x=-1代入得2;(2)∵a m+2n b与-2a4b k是同类项∴m+2n=4,k=1∴【考点】1.合并同类项;2.指数幂运算性质3.计算(﹣xy2)3,结果正确的是()A.x3y5B.﹣x3y6C.x3y6D.﹣x3y5【答案】B.【解析】根据积的乘方的性质进行计算,原式=(﹣1)3x3y6=﹣x3y6.故选B.【考点】积的乘方.4.先化简再求值其中是最小的正整数.【答案】92.【解析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.试题解析:原式=4(a2+4a+4)﹣7(a2﹣9)+3(a2﹣2a+1)=4a2+16a+16﹣7a2+63+3a2﹣6a+3=10a+82,最小的正整数是1,则a=1,原式=10+82=92.【考点】整式的混合运算—化简求值.5.请看下面的解题过程:“比较2100与375大小,解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375”.请你根据上面的解题过程,比较3100与560的大小。

【答案】3100>560.【解析】首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案.∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560.【考点】幂的乘方与积的乘方.6.下列各式去括号错误的是()A.B.C.D.【答案】C【解析】7.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是A.x(30-2x)平方厘米B.x(30-x)平方厘米C.x(15-x)平方厘米D.x(15+x)平方厘米【答案】C【解析】由题意先根据长方形的周长公式表示出另一边的长,再根据长方形的面积公式求解即可. 由题意得该长方形的面积是x(15-x)平方厘米,故选C.【考点】长方形的周长和面积公式点评:长方形的周长和面积公式是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.若(x-5)(x+2)=,则p、q的值是A.3,10B.-3,-10C.-3,10D.3,-10【答案】B【解析】多项式乘多项式法则:把两个多项式的各项分别相乘,再把所得的积相加.∵∴故选B.【考点】多项式乘多项式法则,等式的性质点评:本题属于基础应用题,只需学生熟练掌握多项式乘多项式法则,即可完成.9.化简求值:,其中【答案】【解析】先根据平方差公式去小括号,再合并同类项,然后算除法,最后代入求值.原式把代入得:原式【考点】整式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.10.先化简,再求值:,其中【答案】1【解析】先根据完全平方公式和平方差公式去括号,再合并同类项,最后代入求值即可.原式=x2+y2+2xy-( x2 -y2)= x2+y2+2xy- x2+y2=2y2+2xy当时,原式=2×2+2×1×=1.【考点】整式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.11.观察下列数据:, , , , ,它们是按一定规律排列的,依照此规律,第n个数据是________。

初一数学整式试题答案及解析

初一数学整式试题答案及解析

初一数学整式试题答案及解析1.二次三项式x2-(k+1)x+9是一个完全平方式,则k的值是_________.【答案】k=5,或k=-7.【解析】此题考查了配方法,一次项系数等于二次项系数与常数项的平方根的积的2倍,注意完全平方式有两个,所以一次项系数有两个且互为相反数.试题解析:∵k+1=±2×1×3=±6.∴k=5,或k=-7.【考点】完全平方式.2.计算:(1)x4÷x3·(-3x)2(2)2x(2y-x) + (x+y)(x-y)【答案】(1);(2).【解析】(1)先算乘方,再算乘除即可.(2)先算乘法,再合并同类项即可.试题解析:(1)原式=.(2)原式=.【考点】整式的混合运算.3.利用乘法公式简算:(1) 1102-109×111 (2)98(3)(x+3y+2)(x—3y+2)【答案】(1)1;(2)9604;(3)x2+4x+4-9y2.【解析】(1)原式变形后,利用平方差公式计算即可得到结果;(2)原式变形后,利用完全平方公式展开即可得到结果;(3)原式利用平方差公式变形,再利用完全平方公式展开即可得到结果.试题解析:(1)原式=1102-(110-1)×(110+1)=1102-1102+1=1;(2)原式=(100-2)2=10000-400+4=9604;(3)原式=(x+2)2-9y2=x2+4x+4-9y2.【考点】整式的混合运算.4.若a+b=2,a-b=3,则a2-b2= .【答案】6.【解析】a2﹣b2=(a+b)(a﹣b)=2×3=6.故答案是6.【考点】平方差公式.5.已知a2+b2=3,a-b=2,那么ab的值是( )A -0.5 B. 0.5 C.-2 D.2【答案】A.【解析】分析题干特点,注意到以及的出现,联想到完全平方公式,然后结合整体代换的思想即可得出答案.∵,∴两边平方可得:即,∵,代入得:∴【考点】1.完全平方公式;2.整体代换思想.6..【答案】.【解析】根据单项式乘法法则即可得出答案.单项式相乘,它们的系数、相同的字母分别相乘,只有一个单项式中含有的字母连同它的指数一起写在积中,所以,.【考点】单项式乘法法则.7.计算:(-m)5·m2= .【答案】-m7.【解析】利用指数幂的运算法则即可得出.试题解析:原式=-m5•m2=-m5+2=-m7.【考点】有理数指数幂的化简求值.8.当时,代数式的值是.【答案】【解析】因为,所以,故.9.若,则的值是______.【答案】-1【解析】根据任何数的绝对值与平方均为非负数,可判断m-3=0,n+2=0.解得m=3,n=-2.故m+2n=3-4=-1【考点】整式运算点评:本题难度较低,主要考查学生整式运算知识点的掌握。

初一数学整式的运算单元测试题及答案

初一数学整式的运算单元测试题及答案

初一数学整式的运算单元测试题及答案第七章整式的运算一、选择题。

1、以下判别中不正确的选项是( )①单项式m的次数是0 ②单项式y的系数是1③ ,-2a都是单项式④ +1是二次三项式2、假设一个多项式的次数是6次,那么这个多项式任何一项的次数( )A、都小于6B、都等于6C、都不小于6D、都不大于63、以下各式中,运算正确的选项是( )A、 B、C、 D、4、以下多项式的乘法中,可以用平方差公式计算的有 ( )A、 B、C、 D、5、在代数式中,以下结论正确的选项是( )A、有3个单项式,2个多项式B、有4个单项式,2个多项式C、有5个单项式,3个多项式D、有7个整式6、关于计算正确的选项是( )A、0B、1C、-1D、27、多项式中,最高次项的系数和常数项区分为( )A、2和8B、4和-8C、6和8D、-2和-88、假定关于的积中常数项为14,那么的值为( )A、2B、-2C、7D、-79、,那么的值是( )A、9B、49C、47D、110、假定,那么的值为( )A、-5B、5C、-2D、2二、填空题11、 =_________。

12、假定,那么。

13、假定是关于的完全平方式,那么。

14、多项多项式除以多项式A得商式为,余式为,那么多项式A为________________。

15、把代数式的共同点写在横线上_______________。

16、应用_____公式可以对停止简便运算,运算进程为:原式=_________________。

17、。

18、,那么P=______, =______。

三、解答题19、计算:(1)(2)(3)20、解方程:21、先化简后求值:,其中。

参考答案一、选择题1、B2、D3、D4、B5、A6、B7、D8、B9、C 10、C 二填空题11、 12、2;4 13、或7 14、15、(1)都是单项式 (2)都含有字母、 ;(3)次数相反16、平方差;17、 18、 ;三、解答题19、(1)1 (2) (3)20、21、34。

七年级数学专题训练:整式的加减计算题100题(含答案)

七年级数学专题训练:整式的加减计算题100题(含答案)

题减整式的加计算1、已知A =4x 2-4xy +y 2,B =x 2-xy -5y 2,求3A -B2、已知A=x 2+xy +y 2,B=-3xy -x 2,求2A-3B.3、已知1232+-=a a A ,2352+-=a a B ,求BA 32-4、已知325A x x =-,2116B x x =-+,求:⑴A+2B;⑵、当1x =-时,求A+5B 的值。

5、)(4)()(3222222y z z y y x ---+-6、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =27、-)32(3)32(2a b b a -+-8、21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.9、222213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭10、()()323712p p p p p +---+11、21x-3(2x-32y 2)+(-23x+y 2)12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]13、2237(43)2x x x x ⎡⎤----⎣⎦14、-22225(3)2(7)a b ab a b ab ---15、2(-a 3+2a 2)-(4a 2-3a+1)16、(4a 2-3a+1)-3(1-a 3+2a 2).17、3(a 2-4a+3)-5(5a 2-a+2)18、3x 2-[5x-2(14x -32)+2x 2]19、7a +(a 2-2a )-5(a -2a 2)20、-3(2a +3b )-31(6a -12b )21、222226284526x y xy x y x xy y x x y+---+-22、3(2)(3)3ab a a b ab -+--+;23、22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦;24、(a 3-2a 2+1)-2(3a 2-2a +21)25、x-2(1-2x+x 2)+3(-2+3x-x 2)26、)24()215(2222ab ba ab b a +-+-27、-4)142()346(22----+m m m m28、)5(3)8(2222xy y x y x xy ++--+-29、ba ab b a ab ab b a 222222]23)35(54[3--+--30、7xy+xy 3+4+6x-25xy 3-5xy-331、-2(3a 2-4)+(a 2-3a)-(2a 2-5a+5)32、-12a 2b-5ac-(-3a 2c-a 2b)+(3ac-4a 2c)33、2(-3x 2-xy)-3(-2x 2+3xy)-4[x 2-(2x 2-xy+y 2)]34、-2(4a-3b)+3(5b-3a)35、52a -[2a +(32a -2a)-2(52a -2a)]36、-5xy 2-4[3xy 2-(4xy 2-2x 2y)]+2x 2y-xy37、),23()2(342222c a ac b a c a ac b a +-+---38、(2)()xy y y yx ---+39、2237(43)2x x x x ⎡⎤----⎣⎦40、7-3x-4x 2+4x-8x 2-1541、2(2a 2-9b)-3(-4a 2+b)42、8x 2-[-3x-(2x 2-7x-5)+3]+4x43、)(2)(2b a b a a +-++;44、)32(2[)3(1yz x x xy +-+--]45、)32(3)23(4)(5b a b a b a -+--+;46、)377()5(322222a b ab b ab a a ---+--47、)45()54(3223--++-x x x x 48、)324(2)132(422+--+-x x x x49、)69()3(522x x x +--++-.50、)35()2143(3232a a a a a a ++--++-51、)(4)(2)(2n m n m n m -++-+52、]2)34(7[522x x x x ----53、(2)(3)x y y x ---54、()()()b a b a b a 4227523---+-55、()[]22222223ab b a ab b a ---56、2213[5(3)2]42a a a a ---++57、()()()xy y x xy y xy x -+---+-2222232258、-32ab +43a 2b +ab +(-43a 2b )-159、已知m+n =-3,mn=2,求116432n mn mn m ⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭的值;60、(2x 2-21+3x )-4(x -x 2+21);61、2x -(3x -2y +3)-(5y -2);62、已知()()()2222A=232B=231A 22x xy y x xy y B A B A -++-+--,,求;63、已知()()222222120522422a b a b a b ab a b ab ⎡⎤++-=-----⎣⎦,求;64、1-3(2ab +a )十[1-2(2a -3ab )].65、3x 2-[7x -(4x -3)-2x 2].66、已知323243253A a a a B a a a =--++=--,,当a =-2时,求A-2B 的值.67、已知xy=2,x+y=-3,求整式(4xy+10y)+[5x-(2xy+2y-3x)]的值.68、已知2222224132a ab b ab a b a ab b +=+=--++,,求及的值.69、221131222223233x y x y x y ⎛⎫⎛⎫--+-+=-= ⎪ ⎪⎝⎭⎝⎭,,70、()()232334821438361a a a a a a a -+---+-=-,其中71、已知()()()()23412043535712714m n m m n m n m n ++--=---+++-,求的值72、已知222232542A b a ab B ab b a =-+=--,,当a=1,b =-1,求3A-4B 的值.73、已知222A=23B=25C=1276x x x x x ----+,,,求A-(B-4C)的值.74、已知22A=23211x kx x B x kx +--=-+-,,且2A+4B 的值与x 无关,求k 的值.75、()()2221254322x x x x x x -----+=,其中.76、已知()()()222222120745223a a b a b a b ab a b ab -++=--+--,求的值.77、2222220A=3B=23A B C a b c a b c ++=+---+已知,且,,求C.78、()()22221532722a b ab a b ab a b ---==,且,79、(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y 80、若()0322=++-b a ,求3a 2b-[2ab 2-2(ab-1.5a 2b)+ab]+3ab 2的值;81、233(4333)(4),2;a a a a a a +----+=-其中82、22222222(22)[(33)(33)],1, 2.x y xy x y x y x y xy x y ---++-=-=其中83、()()()2222223224b ab a ab b a b ab a +-+-+----其中4.0,41=-=b a 84、3-2xy +2yx 2+6xy -4x 2y ,其中x =-1,y =-2.85、(-x 2+5+4x 3)+(-x 3+5x -4),其中x =-2;86、(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-3,b =-287、已知222244,5A x xy y B x xy y =-+=+-,其中1122x y ==-,,求3A -B88、已知A =x 2+xy +y 2,B =-3xy -x 2,其中,113x y =-=-,,求2A -3B .89、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.90、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;91、21x 2-2⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛-222231322331y x y x ,其中x =-2,y =-3492、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =293、()()233105223xy x y xy y x xy y x =-+=++-+-⎡⎤⎣⎦已知,,求的值94、已知()()22222322322A x xy y B x xy y A B B A =-+=+-+---⎡⎤⎣⎦,,求95、已知()222232232M a ab b N a ab b M N M M N =-+=+-----⎡⎤⎣⎦,,化简96、小美在计算某多项式减去2235a a +-的差时,误认为加上2235a a +-,得到答案是24a a +-,问正确答案是多少?97、已知2222113532A a b abB ab a b x y =-=+==-,,当,,求5A-3B 的值.98、已知2223226mx xy y x nxy y +--+-+的值与x 的取值无关,求22m n -的值99、已知231x x -=,求326752019x x x +-+的值100、()()11111111321014122m n n m m n x y y x x y m n +--++-⎛⎫+---- ⎪⎝⎭,其中为自然数,为大于的整数整式的加减计算100题答案1、2211118x xy y -+2、225112x xy y ++3、2954a a -+-4、()()3231322122553084x x x x x --+--+;,5、222325x y z +-6、322312ab ab -+,7、-13a+12b8、24369x y -+,9、22122a b ab -10、325797p p p +--11、273x y -+12、-2a+8b-6c13、2533x x --14、22729a b ab -+15、3231a a -+-16、323232a a a ---17、22271a a ---18、2932x x --19、211a 20、-8a-5b 21、2224382x xy x y y x ---+22、3a+b23、2592a ab -24、32524a a a --+25、25148x x -+-26、2232a b ab+27、2261213m m --+28、22272x xy y --29、2231532a b ab+30、332615y xy x +++31、2723a a -++32、22122a b ac a c --33、224154x xy y -+34、-17a+21b 35、2112a a -36、226xy x y xy ---37、22474a b ac a c--38、xy39、2533x x --40、2128x x -+-41、21621a b -42、2108x -43、a-b44、1-3x-3xy-6yz45、-a+4b 46、2266a ab b -+47、32341x x -+48、-8x-249、2534x x -++50、32941a a a --++51、4m+4n 52、2733x x --53、4x-3y 54、4a-b 55、22710a b ab -56、2912a a -+57、225x xy y -+58、113ab -59、2660、21622x x --61、-x-3y-162、2222424109x xy y x xy y ---+;63、221462a b ab -+;64、2-7a 65、2533x x --66、7967、-2068、5,269、24369x y -+;70、-5371、-1.7572、2221716a ab b --+;73、2473026x x -+74、2/575、-2.576、22710a b ab +-;77、222a c --78、221352a b ab -;79、-x-8y;1380、212ab ab +;81、327353a a a -++-;5582、222x y xy -+;83、22478150a ab b --;84、224315x y xy -++;--21---21-85、3235137x x x -++-;86、2224ab -;87、22111388x xy y -+;88、228511289x y y ++;89、A<B90、323668x x x +-+;91、2211226x y --;827-92、232223a b ab ab -+;4893、2294、224611x xy y +-95、2221614a ab b -+96、2356a a --+97、23-98、-899、2022100、118m n x y +--+。

初一数学上册综合算式专项练习题整式的加减乘除练习

初一数学上册综合算式专项练习题整式的加减乘除练习

初一数学上册综合算式专项练习题整式的加减乘除练习练习一:整式的加法1. 计算:$3a^2 - 4ab + 2b^2 + 5a - 3b + 1$ 与 $4a^2 + 2ab - 3b^2 - 2a + 4b - 5$ 的和。

解答:首先按照指数的大小顺序排列各项,然后按照相同项进行合并:$3a^2 - 4ab + 2b^2 + 5a - 3b + 1 + 4a^2 + 2ab - 3b^2 - 2a + 4b - 5$合并同类项得:$7a^2 - 2ab - b^2 + 3a + b - 4$所以,$3a^2 - 4ab + 2b^2 + 5a - 3b + 1$ 与 $4a^2 + 2ab - 3b^2 - 2a + 4b - 5$ 的和为 $7a^2 - 2ab - b^2 + 3a + b - 4$。

2. 计算:$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1$ 与 $-3x^3 + 4xy^2 - 2x - 5y + 1$ 的和。

解答:按照指数的大小顺序排列各项,然后按照相同项进行合并:$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1 + (-3x^3) + 4xy^2 + (-2x) + (-5y) + 1$合并同类项得:$2x^3 + 2x^2y + xy^2 + 2x - 3y$所以,$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1$ 与 $-3x^3 + 4xy^2 - 2x - 5y + 1$ 的和为 $2x^3 + 2x^2y + xy^2 + 2x - 3y$。

练习二:整式的减法1. 计算:$4x^2 - 3xy + 2y^2 - 5x + 2y - 1$ 减去 $2x^2 - xy + y^2 + 3x - 3y - 2$。

解答:首先按照指数的大小顺序排列各项,然后按照相同项进行合并:$4x^2 - 3xy + 2y^2 - 5x + 2y - 1 - (2x^2 - xy + y^2 + 3x - 3y - 2)$合并同类项得:$2x^2 - 2y^2 - 8x + 5y + 1$所以,$4x^2 - 3xy + 2y^2 - 5x + 2y - 1$ 减去 $2x^2 - xy + y^2 + 3x - 3y - 2$ 的差为 $2x^2 - 2y^2 - 8x + 5y + 1$。

初一数学整式试题

初一数学整式试题

初一数学整式试题1.若,则若则【答案】-4,18【解析】由得,则;由,.【考点】有理指数幂运算.2.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,正确.故选D.【考点】1.积的乘方与幂的乘方;2.完全平方公式;3.多项式除以单项式;4.单项式乘单项式.3.下列各式中,能用平方差公式计算的有()①;②;③;④.A.1个B.2个C.3个D.4个【答案】B.【解析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.①,故本选项错误;②符合平方差公式结构特征,故本选项正确;③,符合平方差公式结构特征,故本选项正确;④,不符合平方差公式结构特征,故本选项错误.正确的有2个,故选B.【考点】平方差公式.4.计算(1)(2)(3)【答案】(1);(2);(3).【解析】(1)分别计算单项式乘单项式、积的乘方,再合并同类项即可求出结果;(2)先算积的乘方,再算单项式除以单项式以及单项式乘以多项式,最后合并同类项即可;(3)先算乘方,再算乘除即可.试题解析:(1);(2)=;(3).【考点】整式的混合运算.5.计算:2xy2·(-3xy)2="___________" .【答案】18x3y4.【解析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.试题解析:2xy2•(-3xy)2=2xy2•(9x2y2)=18x3y4.【考点】单项式乘单项式.6.若x+2y-3=0,则2x·4y的值为__________.【答案】8.【解析】∵x+2y﹣3=0,∴x+2y=3,∴2x•4y=2x•22y=2x+2y=23=8.故答案是8.【考点】1.幂的乘方与积的乘方2.同底数幂的乘法.7.若,,则____________;【答案】7【解析】根据完全平方公式以及整体代换的思想即可得出答案观察题目,联想到完全平方公式.∵,∴两边平方得:(1),又∵,∴整体代入(1)式得:【考点】1.完全平方公式;2.整体代换思想.8.等于()A.B.C.D.【答案】C.【解析】根据同底数幂的除法法则即可求出结果.故选C.考点: 同底数幂的除法.9.化简并求值:(1),其中,,.(2),其中,.【答案】(1)0 (2)18【解析】解:(1)==.将,,代入得原式=.(2).将,代入得原式.10.若,则A、B各等于( )A、 B、 C、 D、【答案】C【解析】先根据完全平方公式去括号,再根据等式的性质即可求得结果.∵,∴故选C.【考点】完全平方公式点评:解题的关键是熟练掌握完全平方公式:.11.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式。

初一数学整式试题

初一数学整式试题

初一数学整式试题1.将正整数1,2,3,…,从小到大按下面规律排列.那么第i行第j列的数为()A.i+j B.in+j C.(n-1)i+j D.(i-1)n+j【答案】D.【解析】由表格数据=行数减1的差的n倍与列数的和可知,第i行第j列的数为:(i-1)n+j.故选D.【考点】规律型:数字的变化类.2.如图,正方形ABCD的边长为6,正方形EFGC的边长为a(点B、C、E在一条直线上),求△AEG的面积。

【答案】a2.【解析】有图可得S△AGE =S正方形ABCD+S正方形GCEF-S△ABE-S△ADG-S△GFE.分别求出个部分的面积即可求的△AEG的面积.试题解析:S△AGE =S正方形ABCD+S正方形GCEF-S△ABE-S△ADG-S△GFE=36+a2-6﹒(a+6)-6﹒(6-a) a﹒a=a2【考点】三角形面积3.先化简,再求值:,其中,.【答案】;.【解析】去括号后合并同类项,最后代入,求值.试题解析:原式=,当,时,:原式=【考点】整式的化简求值.4.用一张包装纸包一本长、宽、厚如图所示的书(单位:cm),如果将封面和封底每一边都包进去3cm.则需长方形的包装纸周长为______________cm.【答案】.【解析】所用的纸的周长为(cm).故答案为:.【考点】整式的加减.5.若(x+k)(x-4)的积中不含有x的一次项,则k的值为 .【答案】4【解析】先根据多项式乘多项式法则去括号,再根据积中不含有x的一次项即可求得结果. ∵,积中不含有x的一次项∴,解得.【考点】多项式乘多项式点评:本题属于基础应用题,只需学生熟练掌握多项式乘多项式法则,即可完成.6.设a=8,a=16,则a=()A.24B.32C.64D.128【答案】D【解析】逆用同底数幂的乘法公式可得,再整体代入求值即可.当,时,,故选D.【考点】代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.7.结果为a2的式子是()A.a6÷a3B.a• a C.(a--1)2D.a4-a2=a2【答案】B【解析】A.a6÷a3=a3;C.(a--1)2= a--2;D.a4-a2已经为最简式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档