一、线性变换的矩阵表示式.

合集下载

线性变换的矩阵表示与相似矩阵

线性变换的矩阵表示与相似矩阵

线性变换的矩阵表示与相似矩阵线性代数是数学中一个重要的分支,研究向量空间和线性变换的性质以及相应的代数结构。

在线性代数中,线性变换是其中一个重要的概念,它可以用矩阵表示,并且与相似矩阵有着密切的关系。

一、线性变换的矩阵表示线性变换是指保持向量空间中的线性结构不变的变换。

在二维或三维向量空间中,线性变换可以用一个矩阵来表示。

以二维向量空间为例,设有向量v=(v₁, v₂),线性变换v将其映射为向量v=(v₁, v₂),则可以使用矩阵v来表示v的线性变换,即:[v₁] [v₁₁, v₁₂] [v₁][v₂] = [v₂₁, v₂₂] × [v₂]其中,矩阵v=[v₁₁, v₁₂; v₂₁, v₂₂]表示线性变换v的矩阵表示。

这种矩阵表示的好处在于可以简化线性变换的计算,尤其是在高维向量空间中。

二、相似矩阵的定义相似矩阵是指具有相同特征值的矩阵。

设有两个v×v矩阵v和v,如果存在一个可逆矩阵v使得v=v⁻¹vv成立,则称矩阵v和v相似,矩阵v称为相似变换矩阵。

三、线性变换的矩阵表示与相似矩阵的联系线性变换的矩阵表示与相似矩阵有着密切的联系。

以二维向量空间为例,设有一个线性变换v的矩阵表示为v=[v₁₁, v₁₂; v₂₁, v₂₂],我们希望找到一个矩阵v使得v=v⁻¹vv中的矩阵v与v相似。

根据相似矩阵的定义,我们可以得到v=v⁻¹vv的形式。

对于二维向量空间来说,v为一个2×2的可逆矩阵,假设v=[v₁₁, v₁₂; v₂₁, v₂₂],则v可表示为:[v₁₁, v₁₂][v₂₁, v₂₂]若要使得v=v⁻¹vv成立,只需令v⁻¹=[v₁₁, v₁₂; v₂₁, v₂₂]即可。

则v的形式为:[v₁₁, v₁₂][v₂₁, v₂₂]通过矩阵相乘的运算可以得到:[v₁₁, v₁₂] [v₁₁, v₁₂][v₂₁, v₂₂] × [v₂₁, v₂₂]由此可以得到v=[v₁₁, v₁₂; v₂₁, v₂₂]与v=[v₁₁, v₁₂;v₂₁, v₂₂]相似的条件为:[v₁₁, v₁₂] [v₁₁, v₁₂][v₂₁, v₂₂] = [v₂₁, v₂₂]也就是说,要使得两个矩阵相似,只需保证其对应位置上的元素相等即可。

线性变换的相关知识点总结

线性变换的相关知识点总结

线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。

2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。

根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。

二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。

设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。

线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。

由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。

另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。

线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。

因此,矩阵表示是研究线性变换的重要工具。

三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。

设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。

这里的λ就是T的特征值,v就是T的特征向量。

线性变换的矩阵表示

线性变换的矩阵表示
对任意的Vn, 设 x i i , 则有
n
T ( ) T ( x i i ) x i T ( i )
n
n
i 1
x1 x (T ( 1 ), T ( 2 ), , T ( n )) 2 xn
i 1
i 1
x1 x ( 1 , 2 , , n ) A 2 , xn 即 x1 x1 x x T [( 1 , 2 , , n ) 2 ] ( 1 , 2 , , n ) A 2 , xn xn 上式唯一地确定了一个变换T, 并且, 所确定的变 换T是以A为矩阵的线性变换. 反之, 以A为矩阵的线性变换T由上式唯一确定. 结论: 在Vn中取定一个基后, 由线性变换T可唯一 地确定一个矩阵A; 反之, 由一个矩阵A也可唯一地确 定一个线性变换T.
0 1 0 0 0 0 2 0 . A 0 0 0 n 1 0 0 0 0 例3: 在R3中, T表示将向量投影到xoy平面的线性 变换, 即 T ( xi yj zk ) xi yj , (1) 取基为i , j , . k , 求T的矩阵 (2) 取基为 i , j , i j k , 求T的矩阵. 1 0 0 i 0 , j 1 , k 0 . 其中 0 0 1 1 0 0 解(1): Ti i 即 T ( i , j , k ) ( i , j , k ) 0 1 0 . j, Tj 0 0 0 T k 0
三、线性变换在不同基下的矩阵
上面的例子表明: 同一个线性变换在不同的基下 的矩阵不同. 那么, 这些矩阵之间有什么关系呢?

线性变换的矩阵表示

线性变换的矩阵表示

线性变换的矩阵表示线性变换是数学中的重要概念,它在许多领域都有广泛应用。

线性变换可以通过矩阵表示,这种表示形式方便计算和讨论线性变换的性质。

本文将介绍线性变换的矩阵表示以及相关概念和性质。

1. 线性变换的定义线性变换是指满足以下两个条件的映射:(1) 对于任意向量u和v以及实数a和b,线性变换T满足T(a*u +b*v) = a*T(u) + b*T(v)。

(2) 线性变换T对于向量的加法和数乘运算封闭,即T(u + v) = T(u) + T(v),T(k*u) = k*T(u)(k为实数)。

2. 矩阵表示的意义线性变换的矩阵表示可以将线性变换转化为矩阵的乘法运算,从而方便计算和分析线性变换的性质。

对于任意线性变换T,可以找到一个矩阵A,使得对于任意向量u,有T(u) = A*u。

矩阵A被称为线性变换T的矩阵表示。

3. 线性变换的矩阵表示方法线性变换的矩阵表示可以通过以下步骤得到:(1) 选择标准基下的基向量,分别记作e1, e2, ..., en。

(2) 对于每个基向量ei,计算线性变换T(ei)的坐标表示,得到矩阵A的第i列。

(3) 将所有计算得到的列向量排列起来,得到矩阵A。

4. 矩阵表示的性质线性变换的矩阵表示具有以下性质:(1) 线性变换的合成对应于矩阵的乘法。

对于线性变换T1和T2,它们的矩阵表示分别为A和B,则它们的合成线性变换对应的矩阵表示为A*B。

(2) 线性变换的逆对应于矩阵的逆。

若线性变换T存在逆变换,它们的矩阵表示分别为A和A^-1,则逆变换对应的矩阵表示为A^-1。

(3) 线性变换的像空间和核空间可以通过矩阵表示进行刻画。

像空间对应于矩阵的列空间,而核空间对应于矩阵的零空间。

5. 矩阵表示的例子考虑一个二维平面上的旋转变换,将向量绕原点逆时针旋转θ度。

选择标准基下的基向量为e1 = (1, 0)和e2 = (0, 1)。

对于基向量e1,旋转变换后的坐标表示为cosθ*e1 - sinθ*e2。

线性变换的矩阵表示式

线性变换的矩阵表示式

§5 线性变换的矩阵表示式上节例10中,关系式()T x Ax =()n x R ∈ 简单明了地表示出中的一个线性变换. 我们自然希望中任何一个线性变换都能用这样的关系式来表示. 为此,考虑到n n Ae Ae ==αα,,11 (n e e ,,1 为单位坐标向量),即()n i Ae i i ,,2,1 ==α,可见如果线性变换有关系式()Ax x T =,那么矩阵应以()i e T 为列向量. 反之,如果一贯个线性变换使()()n i e T i i ,,2,1 ==α,那么必有关系式()11122(),,()n n n T x T e e x T x e x e x e ==+++⎡⎤⎣⎦1122()()()n n x T e x T e x T e =+++()11(),,()(,,)n n T e T e x x Ax αα===总之,中任何线性变换,都能用关系式()()nR x Ax x T ∈=表示,其中1((),,())n A T e T e =.把上面的讨论推广到一般的线性空间,我们有定义7 设是线性空间中的线性变换,在中取定一个基n αα,,1 ,如果这个基在变换下的象(用这个基线性表示)为11112121212122221122(),(),(),n n n n n n n nn n T a a a T a a a T a a a αααααααααααα=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩记()()()()n n T T T αααα,,,,11 = ,上式可表示为11(,,)(,,)n n T A αααα=, (5)其中1111n n nn a a A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,那么,就称为线性变换在基n αα,,1 下的矩阵 .显然,矩阵由基的象()()n T T αα,,1 唯一确定.如果给出一个矩阵作为线性变换在基n αα,,1 下的矩阵,也就是给出了这个基在变换下的象,那么根据变换保持线性关系的特性,我们来推导变换必须满足的关系式:中的任意元素记为in i i x αα∑==1,有 11()()n n i i i i i i T x x T ααα====∑∑121((),,())n n x x T T x αα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭121(,,)n n x x A x αα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 即112211(,,)(,,)n n n n x x x x T A x x αααα⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪=⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (6)这个关系式唯一地确定一个变换,可以验证所确定的变换是以为矩阵的线性变换.总之。

线性变换的矩阵表示式

线性变换的矩阵表示式

0 1 0 0 0 2 A 0 0 0 0 0 0
0 0
n 1
0
例3 在 R3中,T表示将向量投影到xOy平面的线性
变换,即
(1)取基为Ti(,xji,
k,
yj zk) xi 求T的矩阵;
yj ,
(2)取基为
i ,
j,
i
j
k,
求T的矩阵.
解 即
Ti i ,
(1)
TTkj
j, 0,
1
T (i , j , k ) (i , j , k ) 0
0 1
0 0.
0 0ቤተ መጻሕፍቲ ባይዱ0
T i ,
(2)
T T
j ,
i j
,

1 0 1
T ( , , ) ( , , ) 0 1 1.
0 0 0
此例表明:同一个线性变换在不同的基下一般 有不同的矩阵.
i 1
i 1
x1
(T ( 1),T (
2),
,T (
n))
x2
xn
x1
( 1 , 2 , , n)A x2 ,
xn

T ( 1 , 2 ,
,
n)
x1 x2
( 1 , 2 ,
,
n) A
x1 x2 .
x
n
xn
上式唯一地确定了一个变换T ,并且所确定的 变换T是以A为矩阵的线性变换.
x
n
xn
可知 : 在基 1 , 2 , , n下,
的坐标为
x1
x2 ;
xn
T ( )的坐标为
x1
T ( ) A x2 .

线性变换的矩阵表示

线性变换的矩阵表示

线性变换的矩阵表⽰千⾥之⾏始于⾜下,重视基础才是本质。

在矩阵论中提到的线性变换是⼀个相对抽象的概念,先给出相关定义定义:设V 是数域K 上的线性空间,T 是V 到⾃⾝的⼀个映射,使对任意向量x ∈V ,V 中都有唯⼀的向量y 与之对应,则称T 是V 的⼀个变换或者算⼦,记Tx =y ,称y 为x 在T 下的象,⽽x 是y 的原象(象源)这个T 类似于数学分析中的函数y =f (x ),不过那⾥是数量函数,这⾥是向量函数。

如果变换T 满⾜⼀定的线性变换要求T (kx +ly )=kT (x )+lk (y ),则T 为V 的⼀个线性变换。

概念类⽐到数量函数,线性变换T 的也是很好理解的。

但是在具体计算过程中,我们怎么把抽象的概念具体化?这就涉及到线性变换的矩阵表⽰。

从定义⼊⼿的话,如果需要确定线性变换T ,则需要找到V 中所有向量在T 下的象。

事实上不需要这么⿇烦的。

V 中所有向量都可以由V 的基向量组(x 1,x 2,……,x n )线性表⽰,加上T 是V 的线性变换,则V 中所有象都可以由基象组(Tx_1,Tx_2,……,Tx_n)线性表⽰。

设T 是线性空间V n 的线性变换,x ∈V n ,且x 1,x 2,……,x n 是V n 的⼀个基,则x =a 1x 1+a 2x 2+……+a n x n Tx =a 1(Tx 1)+a 2(Tx 2)+……+a n T (x n )令Tx 1=a 11x 1+a 21x 2+……+a n 1x n Tx 2=a 12x 1+a 22x 2+……+a n 2x n ……Tx n =a 1n x 1+a 2n x 2+……+a nn x n 在处理具体问题时,采⽤矩阵乘法的形式表⽰上述公式组:T (x 1,x 2,……,x n )=(Tx 1,Tx 2,……,Tx n )=(x 1,x 2,……,x n )A 这个A 称为线性变换T 在V n 的基x 1,x 2,……,x n 下的矩阵,简称A 为T 的矩阵。

3线性变换及其矩阵表示

3线性变换及其矩阵表示

此公式在工程和物理中被称为 叠加原理。如果 u1 , u2 ,u p 分别是某个 系统或过程的输入信号向量,则 T (u1 ), T (u2 ),T (up ) 可 分别 视为 该系 统 或过程的输出信号向量。
判断一个系统是否为线性系统的判据 如果系统的输入为线性表达式
y k1u1 k 2 u2 k p u p ,则当系统的输
T (k1α k2 β) k1T (α) k2T ( β)
n u , u , u V 更一般地,若 1 2 ,反 p
复使用上面公式可得
T (k1u1 k2 u2 k p u p ) k1T (u1 ) k2T (u2 ) k pT (u p )
使 T1 1 , T 2 2 ,
则有 1 , 2 Vn ,
从而 1 2 T1 T 2 T 1 2 T Vn ,
因1 2 Vn ; k1 kT1 T k1 T Vn , 因k1 Vn ,
§3
线性变换及其矩阵表示
一、线性变换的引入
在技术科学、社会科学和数学的一些分支中,不
同向量空间之间的线性变换起着重要的作用。因此, 为了研究两个向量空间之间的关系,有必要考虑能够
从一个向量空间到另一个向量空间的转换关系的函数。 事实上,在我们的日常生活中,也经常遇到这种 转换。当我们欲将一幅图像变换为另一幅图像时,通 常会移动它的位置,或者旋转它。例如,函数就能够 将图像的坐பைடு நூலகம்和坐标改变尺度。根据和大于1还是小 于1,图像就能够被放大或者缩小。
在 Vn 中取定一个基 1 , 2 ,, n ,如果这个基 在变换T下的象为
定义 设T是线性空间 Vn 中的线性变换,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 0 2 0
[
I11,
I12
,
I21
,
I
22
]
0 4
1 0
0 3
2
0 1 0
0
ห้องสมุดไป่ตู้
0
2
[ f1, f2, , fn]
0
0
0
0 0 0
0
0
n 1 0
所以, D在R[x]n的自然基 f1, f2,…, fn下的矩阵为
0 1 0
0
0
0
2
0
0
0
0
n 1
0 0 0
0

例 在矩阵空间R2×2 上构造线性变换 : ( X )=AX, X R2×2
这里
A
, n ,则
a11 a12
A1
a21
a22
an1
an2
a1n 1
a2n
0
1
ann
0
a11
A 2
a21
an1
0
a12 a22
a1n a2n
1
0
2
an2
ann
0
a11 a12
A n
a21
a22
an1
an2
a1n 0
a2n
0
n
ann

( x1, x2 , x3) ( y1, y2 , y3) ( x1 y1, x2 y2 , x3 y3)
x3 y3, 0, ( x2 y2 ) 2( x1 y1)
( x3, 0, x2 2x1) ( y3, 0, y2 2y1)
( x1, x2, x3) ( y1, y2, y3)
其中
A (1), (2 ), , (n )
a11 a12
a21
a22
an1
an2
a1n
a2n
ann
而 1,2, ,n 是Fn的自然基 。
定义 设是线性空间Vn 中的线性变换,在 Vn 中取定一个基 1,2,,n ,如果这个基在变换
下的象为
1 a111 a212
2
a121
0 0
1
4
I12 4I22
(
I 21 )
AI21
1 4
20
3
1
0 0
2 3
0
0
2I11 3I21
( I22 )
AI22
1
4
20
3
0
0 1
0 0
2 3
2I12 3I22
所以,
[I11, I12 , I21, I22 ] [ ( I11), ( I12 ), ( I21), ( I22 )]
例 设D是多项式空间R[x]n上的求导变换,求D 在R[x]n的自然基下的矩阵。
解 取R[x]n的自然基 f1=1, f2=x, f3=x2,…, fn=xn-1
则由 D(f1)=0, D(f2)=1, D(f3)=2x,…, D(fn)=(n-1)xn-2
可得
D[ f1, f2, , fn] [D( f1), D( f2 ), , D( fn)]
1

i Ai (i ), i 1, 2, , n
因此,如果Fn上的一个线性变换具有形式
( ) A , F n
则矩阵A的各列应为
(i ), i 1, 2, , n
反之,如果Fn上的一个线性变换 使
(i ) i , i 1, 2, , n
则以 1,2, ,n 为列构造矩阵A,必有
一、线性变换的矩阵表示式
设数域F上的n阶方阵
a11 a12
A
a21
a22
an1
an2
a1n
a2n
[1 , 2
,
ann
,n]
其中
a1i
i
a2 i
,
i 1, 2,
,n
ani
构造向量空间Fn上的变换 :
( ) A , F n
则 是线性变换。取Fn的自然基 1,2,
k( x1, x2, x3) (kx1, kx2, kx3)
(kx3, 0, kx2 2kx1) k( x3, 0, x2 2x1)
k ( x1, x2, x3)
所以, 是线性变换。
(2)取R3的自然基
1 (1, 0, 0),2 (0,1, 0),3 (0, 0,1)

(1) (1, 0, 0) (0, 0, 2) 23 (2 ) (0,1, 0) (0, 0,1) 3 (3) (0, 0,1) (1, 0, 0) 1

[1,2,3] (1), (2 ), (3)
0 0 1
[1,
2
,
3]
0 2
0 1
0 0
即, 在R3的自然基 1,2,3 下的矩阵为
0 0 1
0 2
0 1
0 0

例 设是向量空间Fn上的一个线性变换,且
( ) A , F n
则 A是 在Fn的自然基 1,2 , ,n下的矩阵。
1 4
2 3
求 在R2×2的自然基下的矩阵。
解 取R2×2的自然基
1 0 0 1 0 0 0 0
I11
0
0 ,
I12
0
0
,
I 21
1
0
,
I 22
0
1
因为
( I11)
AI11
1
4
21
3
0
0 0
1 4
0 0
I11 4I21
( I12 )
AI12
1
4
20
3
0
1 0
a222
n a1n1 a2n2
an1n, an2n,
annn ,
记 1,2, ,n 1 , 2 , , n , 上式
可表示为
1,2, ,n [1,2, ,n]A
其中
a11
A
a21
a12
a22
a1n
a2n
,
an1 an2 ann
那末,A就称为线性变换在基 1,2 , ,n 下的
矩阵。
例 零变换 0*在任一组基下的矩阵都是零矩阵,恒 等变换 I*在任一组基下的矩阵都是单位矩阵。
注 取定数域F上的n维线性空间V 的一组基1,2,…, n,则V 的线性变换在基1,2,…,n下的矩阵是数域F
上的n阶方阵且唯一确定; 反之,对数域F上的任一n阶
方阵A,V上存在唯一一个线性变换 使其在基1,2,…, n下的矩阵是A。
即,在取定基后,线性变换与其矩阵一一对应。
例 在3维向量空间R3中,构造变换 :
[(x1,x2,x3)]= (x3,0, x2 -2x1), (x1,x2,x3)∈R3
(1)证明 是线性变换; (2)求在R3的自然基下的矩阵。
解 (1)任取 ( x1, x2 , x3), ( y1, y2, y3) R3, k R,
( ) a11 a22 ann
a1 (1) a2 (2 ) an (n)
a1
(1), (2 ),
,
(
n
)
a2
[1,2, ,n] A
an
这里, = (a1, a2,, an)T。
于是,向量空间Fn上的任意一个线性变换 均可
表示为
( ) A , F n
相关文档
最新文档