计量经济学之-概率论和统计学知识复习
计量经济学复习笔记要点

计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
计量经济学2_概率论复习

协方差的性质
(2)对于任意常数a1 ,b1和a2 ,b2 , cov(a1 X + b1 ,a2 X + b2 )= a1a2 cov(X,Y) 该性质的含义在于,两个随机变量之间的协方差 会因为将两者或二者之一乘以一个常数倍数而变。 这意味着经济学中很多变量,若用不同的计量单位 来表示,并不改变其本质关系。
30
5
协方差
协方差是衡量两个变量同时变动程度的一个指标。X 和 Y 的协方差 为 ( X − μ x )(Y − μ y ) 的期望值。
协方差的性质
(1)若X 和Y 相互独立,则cov(X,Y)= 0. 注意:反命题并不成立:X 和Y的协方差为0并不意味着X 和Y 相互独立。 如:假设存在随机变量X 和Y = X 2,使得cov(X,Y)= 0. 然而若Y = X 2,则X 和Y 显然不独立。即知道了X ,则必知道Y。 X 和X 2之间可能有0方差。这说明,作为随机变量之间一般关系的度量, 协方差是有缺陷的。然而,当关系式至少近似于线性关系时,协方差 还是有用的。
11
σG =
p (1 − p )
12
2
方差的性质
随机变量线性函数的均值和方差
Y = a + bX
(1) 当k 为常数时,σ (kX ) = k σ ( X )
2 2 2
(2) 当X , Y 相互独立时,σ 2 ( X ± Y ) = σ 2 ( X ) + σ 2 (Y )
则Y 的期望和方差分别为 μY = a + bμ X
矩 Moment
Y的期望E(Y),称为Y的一阶矩,Y的平方的期 望E(Y2),称为Y的二阶矩。一般的期望称为随 机变量Y的r阶矩。 偏度是Y一阶距、二阶距、三阶距的函数。 峰度是Y一阶距、二阶距、三阶距、四阶距的 函数。
概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。
下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。
一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。
2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。
3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。
5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。
二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。
2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。
三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。
2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。
3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。
四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。
2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。
3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。
五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。
概率论与数理统计复习要点

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
概率论与数理统计知识点总结

概率论与数理统计知识点一、概率论知识点1.1 概率基本概念概率是研究事物变化规律的一门学科。
在概率学中,我们需要掌握一些基本概念:•随机试验:一种在相同条件下重复的可以观察到不同结果的试验。
•样本空间:随机试验所有可能结果的集合。
•事件:样本空间的子集。
•频率和概率:在大量重复实验中,某个事件出现的频率称为频率,其极限称为概率。
1.2 概率计算公式•加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)•乘法公式:P(A∩B) = P(A|B)P(B) = P(B|A)P(A)•条件概率公式:P(A|B) = P(A∩B)/P(B)•全概率公式:P(B) = Σi=1nP(Ai)P(B|Ai)•贝叶斯公式:P(Ai|B) = P(Ai)P(B|Ai)/Σj=1nP(Aj)P(B|Aj)1.3 随机变量和分布随机变量是用来描述随机试验结果的数学量。
离散型随机变量和连续型随机变量是概率论中两个重要的概念。
•离散型随机变量:在一个范围内,只有有限个或无限个可能值的随机变量。
•连续型随机变量:在一个范围内,有无限个可能值的随机变量。
概率分布是反映随机变量取值情况的概率规律,可分为离散型概率分布和连续型概率分布。
•离散型概率分布:包括伯努利分布、二项分布、泊松分布等。
•连续型概率分布:包括正态分布、指数分布、卡方分布等。
1.4 常用概率分布概率论涉及到很多的分布,其中一些常用的分布如下:•二项分布•泊松分布•正态分布•均匀分布•指数分布1.5 统计推断在概率论中,统计推断是指根据样本数据来对总体进行参数估计和假设检验的方法。
统计推断主要涉及以下两个方面:•点估计:使用样本数据来推断总体参数的值。
•区间估计:使用样本数据来推断总体参数的一个区间。
二、数理统计知识点2.1 统计数据的描述为了更准确地描述数据,我们需要使用以下几个参数:•平均数:所有数据的和除以数据个数。
•中位数:将数据按大小排序,位于中间位置的数。
计量经济学复习要点

计量经济学复习要点第一篇:计量经济学复习要点计量经济学复习要点第一章、概率论基础1.随机事件的概念P22.古典概行例题P5例1.1P2例1.2利用第一章的知识说明抽签的合理性如何利用第一章的知识估计一个池塘有多少鱼还有一个关于晚上紧急集合穿错鞋的题目,记不太清楚了3.期望与方差的概念,切比雪夫不等式,看例题1.4-例题1.8,不要求求出数4.变异系数的概念P175.大数定律和中心极限定律(具有独立同分布的随机变量序列的有限和近似地服从正态分布)的概念P24、P25第二章、矩阵代数1.矩阵的定义,加(page29)、减(page29)、乘(page30)、转置(page30)、逆(page31)知道怎么回事2.最小二乘法P39-P41(定义最小二乘解)3.第三节没有听,求听课学霸补充第三章、数据的分析方法和参数的统计推断1.数据的分析方法(算数平均、加权算数平均、几何平均、移动平均)(1)几种分析方法的定义(2)几中分析方法的不同(3)每种分析方法的具体作用(4)移动平均法中k的选择(5)指数平滑法的意义,α的选择,P552.t分布的概率密度函数3.矩估计法定义4.几大似然估计法P65,例题3.7例题3.85.贝叶斯估计和极大极小估计(应该是只看一下概念就可以了)6.假设检验(1)基本思想P75(2)双边假设检验(3)单边假设检验(4)参数检验P807.方差分析的思想、作用和模型第四章、一元线性回归(计算题)回归方程的求法,显著性检验,经济解释(各参数的解释),不显著的解释第六章、虚拟变量的回归模型1.虚拟变量的作用及模型2.应用虚拟变量改变回归直线的截距、斜率3.对稳定性的检验第二篇:2007计量经济学复习要点2007年计量经济学课程要点归纳1.十大经典假设的证明(关于两变量模型的性质检验)2.BLUE估计量的证明3.自相关检验方法(检验方法一定要记住)4.异方差检验方法(至少三种)5.孙老师讲过的附录要留意6.异方差与自相关的补救措施7.违反十大经典假设情况下的问题怎么解决(如多重共线性,异方差,自相关问题,虚拟变量的估计)注:以上重点均是提供参考,不做考试说明计量考察的重点是对计量模型的建立与估算,结果评价与补救思路的考察,没有大量的数学计算,请同学们放心!建议大家根据参考要点确定进度,并根据孙老师上课的重点决定自己的复习范围!希望同学们认真复习,考出好成绩!王琳第三篇:计量经济学复习笔记计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由大数定律,
1 n r p r X E ( X ), r 1,2,, k i n i 1
样本偏度和峰度收敛度总体偏度Skew学复习
参数估计:
总体
X ~ F ( x, )
θ为未知参数,用样本提供的信息估计出θ
(1)矩估计: 1 n p E ( X r ) r ( ), r 1,2, , k X ir n i 1
Ch2:概率统计复习
概率论复习 随机变量:取值和概率分布为其决定因素,分为离散和连续 例子:表示“抛一枚硬币”试验、“乘客候车时间”试验结果的变量 离散随机变量:取有限或者可列无限多值,用分布函数描述概率分布。如 例子:抛硬币时,结果有正面和反面,如果正面为1,反面为0,可引入随 机变量X,则X等于1或者0。 重要特例:二项分布(binomial distribution) 取值:0,1,2,……n, 概率: n=1时为两点分布(0-1分布) 取值:0,1 概率:
Ch2:概率统计复习
统计学复习
样本:
样本矩: 样本偏度和样本峰度:
1 n r X i , r 1,2, , k n i1
1 n 3 ( X X ) i n ˆ i 1 , 2 3/ 2 (S ) 1 n 4 ( X X ) i n ˆ i 1 2 2 (S )
偏度(Skewness):
峰度(Kurtosis):
正态分布的偏度为0、峰度为3
Ch2:概率统计复习
- 分布
概率论复习
Ch2:概率统计复习
概率论复习
Ch2:概率统计复习
概率论复习
Ch2:概率统计复习
概率论复习 随机向量: (1)联合分布 联合分布函数: 联合密度函数 (2)矩 数学期望向量: 方差-协方差矩阵:
Ch2:概率统计复习
概率论复习 随机向量: 协方差和相关系数:
相关系数等于0意味着什么?相关系数等于1呢?
(3)条件分布 条件概率分布函数: 条件概率密度函数: 乘法公式:
Ch2:概率统计复习
概率论复习 随机向量: (3)条件分布 条件矩: 条件数学期望:
条件方差:
条件数学期望和条件方差都是条件随机变量(ξ)的函数,是随机变量。
μ=0,σ=1
: 标准正态分布 随机变量标准化:
Ch2:概率统计复习
概率论复习 随机变量的统一定义:(1)取一切实数;(2)用概率函数描述概率分布 概率函数:
F ( x) P( x)
连续随机变量:
离散随机变量:
Ch2:概率统计复习
概率论复习 随机变量的数字特征: 数学期望(Expectation,mean)Ec:随机变量取值的概率加权平均。 方差(Variance) Var(c):随机变量的随机性。方差等于0? Var(c)=E(c-Ec)2= Ec2- E(c)2
(5)一个非参数检验的例子:正态分布检验(J-B检验)
ˆ 3) 2 n ˆ2 ( JB 6 4
Ch2:概率统计复习
概率论复习
极限定理:
(1)大数定律(LLN: Law of Large Number)
Ch2:概率统计复习
概率论复习
极限定理:
(2)中心极限定理(CLT: Central Limit Theory)
Ch2:概率统计复习
统计学复习
样本:
(1)样本是随机变量 (2)统计量是样本的函数 样本均值和样本方差:
令
1 n r ˆ), r 1,2, , k ˆ r ( ) r ( Xi n i1
从中解出估计量 ˆ
Ch2:概率统计复习
统计学复习
参数估计:
总体
X ~ F ( x, )
θ为未知参数,用样本提供的信息估计出θ
(2)极大似然估计: 样本似然函数 (i)离散总体 n L(1 , 1 , , n ; θ) P(i ) i 1 (ii)连续总体
Ch2:概率统计复习
概率论复习 连续随机变量:在连续的实数区间取值,用概率密度函数描述概率分布。 连续随机变量的取值均假设为一切实数,只取部分实数时,将不取值部分 对应的概率密度设为0。如候车时间范围为[0,5)时,变量的取值情况。 重要特例:正态分布(Normal distribution) 取值:(-∞,+∞) 概率密度:
L( x1 , x2 , , xn ; θ) f ( xi , θ)
i 1
n
对数似然函数
l ( x1, x2 ,, xn ; θ) ln L( x1, x2 ,, xn ; θ)
Ch2:概率统计复习
统计学复习
参数估计:
估计量的评价标准: (1)一致估计:
ˆ p limn
统计学复习
假设检验: 为什么进行假设检验?样本中的随机性(噪音)对判断的干扰 (1)假设检验的原理:小概率事件原理 (2)原假设和备择假设:双边检验和单边检验 (3)假设检验的关键:构造检验统计量,给定显著水平,计算小概率 事件(拒绝域)。 (4)假设检验方法的评价标准:两类错误和检验功效(Power)
ˆ) E (
ˆ ) Var( ˆ) Var( 1 2
(2)无偏估计:
ˆ , ˆ 都是 的无偏估计 (3)有效估计: 1 2
一致性是估计量的最低要求,也是最为重要的性质。一致性是在样本量无 限大时对估计量的评价,有效性则是在样本量有限时对估计量的比较。
Ch2:概率统计复习
如果是正态总体,
1 n 1 n 2 2 X Xi , S ( X X ) i n i1 n 1 i1
2 (n 1) S 2 2 X ~ N , , ~ (n 1) 2 n 如果是非正态总体,由中心极限定理
n 1(S 2 2 ) ~(a) N (0, ), E( x )4