(完整word版)超声波流量计原理分类及详细说明
超声波流量计原理详细说明

三、优点:超声波流量计非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。
一、超声波流ห้องสมุดไป่ตู้计工作原理: 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。
五:前四步骤完成后可确认使用何种传感器安装
六:开始向表体输入参数以确定安装距离。
七:非常重要:精确测量出安装距离。
(1) 外夹式可选安装传感器大概距离,然后不断调试活动传感器以达到信号和传输比
最好的匹配
(2) 插入使用专用工具测量管道上安装点距离,这个距离很重要,它直接影响表的
超声波流量计的原理和构造

超声波流量计的原理和构造原理:超声波是指频率超过20kHz的声波。
在超声波流量计中,通常使用的是频率为1MHz~10MHz的超声波。
超声波在流体中传播时,会受到介质的密度和流速等因素的影响,这些因素会引起超声波在介质中传播速度的变化。
构造:1.发射器(传感器):负责发射超声波信号。
发射器一般是由一个或多个压电陶瓷片组成,当施加电压时,会产生机械振动,从而产生超声波信号。
2.接收器(传感器):负责接收经过流体传播回来的超声波信号。
接收器和发射器一样,通常也是由压电陶瓷片组成。
当接收到超声波信号时,压电陶瓷片会产生电压信号。
3.转化电路:负责将接收到的压电陶瓷片产生的电压信号转换成数字信号,并传输给处理器进行处理。
4.信号处理器:负责对接收到的数字信号进行处理,包括滤波、放大、波形分析等。
同时,信号处理器还可以计算流体流速、流量等参数,并将结果显示在显示器上。
5.显示器:用于显示流体的流速、流量等参数。
一般采用LCD或LED显示器。
根据不同的应用需求,超声波流量计的结构和形状可能会有所不同。
一般有直入式、插入式和便携式等不同类型。
直入式超声波流量计适用于直管道,插入式超声波流量计适用于需要测量流体的管道,便携式超声波流量计则可以携带方便进行不同位置的流量测量。
总之,超声波流量计通过发射和接收超声波信号来测量流体的流速和流量。
它的原理是基于超声波在介质中传播速度的变化特性,通过计算不同路径下超声波的传播时间和传播距离的关系,进而得出流体的流速和流量。
同时,超声波流量计的构造通常包括发射器、接收器、转化电路、信号处理器和显示器等组成部分。
超声波流量计工作原理及分类和选型应用

超声波流量计工作原理及分类和选型应用2022年12月13日05:05生意社生意社12月13日讯一、CCS超声波流量计的工作原理及分类超声波流量计是一种利用超声波脉冲来测量流体流量的速度式流量仪表,如果在现场配以温度、压力仪表,经过密度补偿,还可以求得质量流量。
当超声波在流动的介质中传播的时候,相对于固定的坐标系统而言(如管道中的管壁),其声波的某些声学特性与静止介质中的声特性是不同的,在其基础上又叠加上了流体的流速信息,因而根据超声波某些声学特性随流速的变化就可以求出介质的流速。
超声波流量计根据测量原理的不同,种类较多,大致可以分为以下几类:1.传播速度法(时差法、相位差法和频差法)2.多普勒法3.相关法4.波束偏移法等。
但是目前最常采用的测量方法主要有两类:时差法和多普勒效应法。
同时,根据超声波流量计使用场合不同,可以分为固定式超声波流量计和便携式超声波流量计二、超声波流量计的选型应用根据原理不同:1、多谱勒式超声波流量计的选型多普勒法超声波流量计依靠水中杂质的反射来测量水的流速,因此适用于杂质含量较多的脏水和浆体,如城市污水、污泥、工厂排放液、杂质含量稳定的工厂过程液等,而且可以测量连续混入气泡的液体。
但是根据测量原理,被测介质中必须含有一定数量的散射体(颗粒或气泡),否则仪表就不能正常工作。
2、时差式超声波流量计的选型目前生产最多、应用范围最广泛的是时差式超声波流量计。
它主要用来测量洁净的流体流量,在自来水公司和工业用水及江河水、回用水领域,得到广泛应用。
时差式超声波流量计此外可以测量杂技含量不高(杂质含量小于10g/L,粒径小于1mm)的均匀流体,如污水等介质的流量,但不能测量含有影响超声波传播的连续混入气泡或体积较大固体物的液体。
在这种情况下应用,应在换能器的上游进行消气、沉淀或过滤。
在悬浮颗粒含量过多或因管道条件致使超声信号严重衰减而不能测量时,有时可以试降低换能器频率,予以解决。
而且精度可达±1%。
超声波流量计的测量原理介绍 流量计工作原理

超声波流量计的测量原理介绍流量计工作原理超声波流量计是一种耐用的、非接触式测量污水的超声波流量计,便携式多普勒超声波流量计紧要应用于城市污水处理厂、排水泵站环保检测及矿山、油田、冶金、化工、炼油、造纸、食品等行业的循环水、纸浆、矿浆、泥浆、酸碱液、化学原材料、海水、城市排水、工业废水、生活污水、油水混合液等流量计量。
测量原理便携式超声波流量计探头随仪表成对供应,实流标定后出厂。
全部标定数据、零偏及探头参数全部储存在探头内存里,与主机连接后,探头将数据发送给主机,主机会自动识别并优化工作。
便携式超声波流量计匹配所连接的探头后,用户只需输入管道和介质参数即可。
同时,仪表内置的数据库供应了大多数常用管材和介质的选项,测量时,用户还可依据状态显示了解应用情况。
全密封探头及一体式电缆确保长期牢靠的工作,探头及电缆铠装层均为不锈钢材质,适用于苛刻的工业环境。
便携式超声波流量计接受独特的双uP技术,高速采样和自适应信号处理技术,即使在苛刻的测量工况下,也能牢靠而稳定的工作。
应用指南便携式超声波流量计在石油化工行业、核电行业、导热油领域有着独特的应用,并且接受了能量计算功能,可以在测量流量的同时,引入温度信号,从而取得能量参数。
旋进旋涡气体流量计表头故障解决方法旋进旋涡气体流量计接受较新微处理技术,具有功能强、流量范围宽、操作维护和修理简单,安装使用便利等优点,紧要技术指标达到国外同类产品先进水平。
广泛应用于石油、化工、电力、冶金煤炭等行业各种气体计量。
一、旋进漩涡流量计表头显示瞬时流量、压力正常,温度显示与工作现场温度不符1.温度示值为“—75C”或超过“100℃”。
温度传感器损坏。
可更换传感器。
2.温度示值超过或低于现场实际温度,更换传感器后,仍为该现象。
温压电路损坏。
可更换温压电路。
二、旋进漩涡流量计表头无显示1.流量计无24V电源或电池供电。
对流量计进行24V供电或更换流量计电池。
2.流量计液晶板损坏。
超声波流量计工作原理.doc

超声流量计工作原理超声波在流体中传播时,受到流体速度的影响而载有流速信息,通过检测接收到的超声波信号可以测知流体流速,从而求得流体流量。
超声波测量流量的作用原理用的最多的有传播速度法、多普勒法,这些方法各有特点,在工业应用中以传播速度法最普遍。
1、传播速度法的测量原理超声波在流体中的传播速度与流体流速有关。
传播速度差法利用超声波在流体中顺流与逆流传播的速度变化来测量流体流速并进而求得流过管道的流量。
其测量原理如图1所示,根据具体测量参数的不同,又可分为时差法、相差法和频差法。
① 时差法时差法就是测量超声波脉冲顺流和逆流时传播的时间差。
图1 超声测速原理如图1所示,在管道上、下游相距L 处分别安装两对超声波发射器(1T 、2T )和接收器(1R 、2R )。
设声波在静止流体中的传播速度为c ,流体的流速为u ,则声波沿顺流和逆流的传播速度将不同。
当1T 按顺流方向、2T 按逆流方向发射超声波时,超声波到达接收器1R 和2R 所需要的时间1t 和2t 与流速之间的关系为 (1-1) 由于流体的流速相对声速而言很小,即c 远远大于u ,可忽略,因此时差而流体流速(1-2)当声速c 为常数时,流体流速和时差t ∆成正比,测得时差即可求出流速,进而求得流量。
但是,时差t ∆非常小,在工业计量中,若流速测量要达到1%精度,则时差测量要达到0.01/s μ的精度。
这样不仅对测量电路要求高,而且限制了流速测量的下限。
因此,为了提高测量精度,早期采用了检测灵敏度高的相位差法。
② 相差法相位差法是把上述时间差转换为超声波传播的相位差来测量。
设超声换能器向流体连续发射形式为10()sin()s t A ωϕ=+的超声波脉冲,式中ω为超声波的角频率。
按顺流和逆流方向发射时收到的信号相位分别为和。
则在顺流和逆流接收的信号之间有相位差式中,f 为超声波振荡频率。
由此可见,相位差ϕ∆比时差t ∆大2f π倍,且在一定范围内,f 越大放大倍数越大,因此相位差ϕ∆要比时差t ∆容易测量。
超声波流量计原理

超声波流量计原理超声波流量计是一种利用超声波技术来测量流体流速的仪器。
它主要由传感器、转换器和显示器组成。
传感器用于发射和接收超声波信号,转换器用于处理信号并将其转换为流速值,显示器用于显示流速数值。
超声波流量计的原理是利用超声波在流体中传播的速度与流体流速成正比的关系来测量流速。
超声波流量计的原理基于多普勒效应。
当超声波信号穿过流体时,如果流体是静止的,超声波的频率不会发生变化。
但是,如果流体是运动的,超声波的频率会发生变化,这就是多普勒效应。
根据多普勒效应,当超声波与流体运动方向一致时,超声波频率增加;当超声波与流体运动方向相反时,超声波频率减小。
通过测量超声波信号的频率变化,可以计算出流体的流速。
超声波流量计的原理还涉及到超声波在流体中传播的速度。
超声波在流体中传播的速度与流体的密度和压力有关,但与流速无关。
因此,通过测量超声波在流体中传播的速度,可以得到流体的密度和压力,从而计算出流速。
超声波流量计的原理还包括超声波传感器的安装位置。
传感器的安装位置对测量结果有很大影响。
通常情况下,传感器应该安装在流速较大的地方,以保证测量的准确性。
此外,传感器的安装位置还应该避免有气泡、杂质等影响超声波传播的物质,以确保测量的可靠性。
总的来说,超声波流量计的原理是基于超声波在流体中传播的速度与流体流速成正比的关系来测量流速。
它利用多普勒效应和超声波在流体中传播的速度来实现流速的测量。
通过合理安装传感器,可以确保测量结果的准确性和可靠性。
超声波流量计因其测量范围广、精度高、不易受流体性质影响等优点,被广泛应用于工业生产、环境监测、水利水电等领域。
超声波流量计工作原理

超声波流量计工作原理
超声波流量计是一种检测不同类型流体流量的装置,它主要基于一种叫做“超声波流量计原理”的原理来工作。
超声波流量计原理是利用超声波技术,通过在流体中发出、接收和测量超声波来估计流体的流量。
原理是流量计通过发射一种称为超声波的电磁波,然后检测在液体中的反射波。
基于波的幅度和时间,可以确定流量的大小。
首先,流量计将发出一个超声波信号,然后,该信号穿过流体,然后碰撞到另一端,接着再反射回来,最后,它会被接收到流速计,从而计算出流量的大小。
首先,在流体中放置超声波传感器,这个传感器主要由声发射器和接收器组成,声发射器发出一个高频超声波,这个超声波由流体中穿过,然后接收到另一端的声接收器,声接收器会接收到声波的反射信号。
接下来,流量计会将反射信号的时间和幅度捕捉到,然后计算出它与发射信号的时间差和幅度差,根据这些数据,就可以计算出流量。
一般来说,流速越快,反射时间越短,反射幅度越大,这说明流量越大,反之亦然。
流量计是由一个专业操作的控制系统组成,该系统可以控制声发射器、计算检测到的反射信号与发射信号的时间差和幅度差,从而判断出流量。
该系统还可以在变速时自动调整,从而保证测量的准确性。
超声波流量计的一个很大的优势是准确度高,安装也很容易,可以帮助你测量出各种形状的不同流体的流速,比如液体和气体。
它用来测量流量,可以准确控制流量,从而可以节约能源。
超声波流量计的工作原理

超声波流量计的工作原理
超声波流量计是一种利用超声波测量流体流速的仪器,它通过
测量超声波在流体中传播的时间来计算流体的流速。
它主要由传感器、脉冲发生器、计数器和显示器等部分组成。
首先,传感器是超声波流量计的核心部件,它负责发射超声波
和接收反射回来的超声波。
当超声波发射器发出超声波时,它会被
流体中的颗粒反射回来,传感器接收到反射的超声波,并测量超声
波的传播时间。
其次,脉冲发生器是超声波流量计的另一个重要组成部分,它
负责产生一系列的脉冲信号,并将这些信号发送给传感器。
传感器
接收到脉冲信号后,会根据这些信号发射超声波,并测量超声波的
传播时间。
接着,计数器是用来记录传感器接收到的超声波的传播时间的
设备,它会将测量到的时间转换成流速,并将结果显示在显示器上。
通过计数器的计算,我们可以得到流体的流速数据。
最后,显示器是用来显示流速数据的设备,它会将计数器计算
得到的流速数据显示出来,供用户进行观测和分析。
总的来说,超声波流量计的工作原理就是利用超声波在流体中的传播时间来计算流体的流速。
传感器负责发射和接收超声波,脉冲发生器产生脉冲信号,计数器记录传感器接收到的超声波传播时间,并将结果显示在显示器上。
这种工作原理使得超声波流量计具有测量精度高、无需直接接触流体、适用范围广等优点,因此在工业生产和科学研究中得到了广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波流量计原理分类及详细说明
一、超声波流量计工作原理: 超声波在流动的流体中传播时就载上流体流速的信息。
因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。
超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。
当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。
如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。
这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。
这里所说的长些或短些都是与气体不流动时的传输时间相比而言;根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。
起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。
根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。
其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。
由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。
其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。
按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。
波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大。
多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。
相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。
但相关器价格贵,线路比较复杂。
在微处理机普及应用后,这个缺点可以克服。
噪声法(听音法)是利用管道内流体流动时产生的噪声与流体的流速有关的
原理,通过检测噪声表示流速或流量值。
其方法简单,设备价格便宜,但准确度低。
以上几种方法各有特点,应根据被测流体性质.流速分布情况、管路安装地点以及对测量准确度的要求等因素进行选择。
一般说来由于工业生产中工质的温度常不能保持恒定,故多采用频差法及时差法。
只有在管径很大时才采用直接时差法。
对换能器安装方法的选择原则一般是:当流体沿管轴平行流动时,选用Z 法;当流动方向与管铀不平行或管路安装地点使换能器安装间隔受到限制时,采用V法或X法。
当流场分布不均匀而表前直管段又较短时,也可采用多声道(例如双声道或四声道)来克服流速扰动带来的流量测量误差。
多普勒法适于测量两相流,可避免常规仪表由悬浮粒或气泡造成的堵塞、磨损、附着而不能运行的弊病,因而得以迅速发展。
随着工业的发展及节能工作的开展,煤油混合(COM)、
煤水泥合(CWM)燃料的输送和应用以及燃料油加水助燃等节能方法的发展,都为多普勒超声波流量计应用开辟广阔前景。
二、构成:超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。
超声波流量计的电子线路包括发射、接收、信号处理和显示电路。
测得的瞬时流量和累积流量值用数字量或模拟量显示。
超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。
这样就实现了流量的检测和显示。
超声波流量计常用压电换能器。
它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振劝。
超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。
发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。
三、优点:超声波流量计非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。
它与水位计联动可进行敞开水流的流量测量。
使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。
多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。
在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。
超声被流量汁也可用于气体测量。
管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。
四、缺点:主要是可测流体的温度范围受超声波换能铝及换能器与管道之间的耦合材料耐温程度的限制,以及高温下被测流体传声速度的原始数据不全。
目前我国只能用于测量200℃以下的流体。
另外,超声波流量计的测量线路比一般流量计复杂。
这是因为,一般工业计量中液体的流速常常是每秒几米,而声波在液体中的传播速度约为1500m/s左右,被测流体流速(流量)变化带给声速的变化量最大也是10-3数量级.若要求测量流速的准确度为1%,则对声速的测量准确度需为10-5~10-6数量级,因此必须有完善的测量线路才能实现,这也正是超声波流量计只有在集成电路技术迅速发展的前题下才能得到实际应用的原因。
五、超声波流量计安装步骤
安装超流可按照以下步骤操作:
1、观察安装现场管道是否满足直管段前10D后5D以及离泵30D的距离。
(D 为管道内直径)
2、确认管道内流体介质以及是否满管。
3、确认管道材质以及壁厚(充分考虑到管道内壁结垢厚度)
4、确认管道使用年限,在使用10左右的管道,即使是碳钢材质,最好也采用插入式安装。
5、前四步骤完成后可确认使用何种传感器安装。
6、开始向表体输入参数以确定安装距离。
7、非常重要:精确测量出安装距离。
(1)外夹式可选安装传感器大概距离,然后不断调试活动传感器以达到信号和传输比最好的匹配。
(2)插入使用专用工具测量管道上安装点距离,这个距离很重要,它直接影响表的实际测量精度,所以最好进行多次测量以求较高精度。
8、安装传感器——调试信号——做防水——归整好信号电缆——清理现场线头等废弃物——安装结束——验收签字。
六、超声波流量计使用中常见问题:
1、超声波流量计探头使用一段时间,会出现不定期的报警。
尤其是输送介质杂质较多时,这种问题会较常见。
解决办法:定期清理探头(建议一年清理一次)。
2、超声波流量计输送介质含有水等液体杂质时,流量计引压管容易产生积液,气温较低时会出现引压管冻堵现象,尤其在北方地区冬季较常见。
解决办法:对引压管进行吹扫或加电伴热。
超声波在传播过程中,由于受介质和介质中杂质的阻碍或吸收,其强度会产生衰减。
不论是超声波流量计还是超声波物位计,对所接受的声波强度都有一定要求,所以都要对各种衰减进行抑制。