2018安徽中考数学模拟试卷
安徽2018中考模拟考试数学试题

安徽2018中考模拟考试数学试题一、选择题(每小题4分,共40分)1.在﹣2,﹣5,5,0这四个数中,最小的数是()A.﹣2 B.﹣5 C.5 D.02.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109 B.0.40570×1010C.40.570×1011D.4.0570×10123.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°4.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.5.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.7.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数 B.众数、中位数C.平均数、方差D.中位数、方差8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数9.某工厂二月份的产值比一月份的产值增长了x%,三月份的产值又比二月份的产值增长了x%,则三月份的产值比一月份的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%10.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.注意事项:1.数学试卷共八大题,23小题,满分150分,考试时间120分钟.2.请你仔细思考、认真答题,不要过于紧张,祝考试顺利!二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:2a3—2a=_____________.12.一组数为:5,35,65,105,155……则第10个数为____________13.如图四边形ABCD中,AD∥BC,连接AC,E、F分别为AC、C B的中点,BC=2AD,SΔCEF=2,四边形ABCD的面积为_____________.14.如图,ΔABC中,AB=12,AC=5,AD是∠BAC角平分线,AE是BC边上的中线,过点C做CF⊥AD于F,连接EF,则线段EF的长为____________.三、(本大题共2小题,每小题8分,满分16分)15.计算:一12+(1/2)-1一sin60°一|3/2-l|16.NBA季后赛正如火如荼地进行着,詹姆斯率领的骑士队在第三场季后赛中先落后25分的情况下实现了大逆转.该场比赛中詹姆斯的技术统计数据如下表所示:技术上场时间投篮次数投中次数罚球得分篮板个数助攻次数个人总得分数据45 27 14 7 13 12 41 (表中投篮次数和投中次数均不包括罚球,个人总得分来自2分球和3分球的得分以及罚球得分)根据以上信息,求出本场比赛中詹姆斯投中2分球和3分球的个数.四、 (本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,AABC的三个顶点坐标为A(一3,4),B(一4,2),C(一2,1),ΔABC绕原点顺时针旋转90°,得到△A1B1C1,ΔA1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(1)画出ΔA1B1Cl和△A2B2C2(2)P(a,b)是AABC的AC边上一点,ΔABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P1、P2的坐标.18.“低碳环保,你我同行”.今年合肥市区的增设的“小黄车”、“摩拜单车”等公共自行车给市民出行带来了极大的方便.图①是某种公共自行车的实物图,图②是该种公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.求点E到AB的距离. (参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)五、 (本大题共2小题,每小题1 O分,满分20分)19.如图,AB是半圆的直径,0是圆心,C是半圆上一点,D是弧AC的中点,0D交弦AC于E,连接BE.若AC=8,DE=2,求BE的长度.20.某体育馆有3个入口和3个出口,其示意图如下,参观者可从任意一个入口进入,参观结束后从任意一个出口离开(1)用树状图表示,小明从进入到离开,对于入口和出口的选择共有多少种不同的结果?(2)小明从入口1进入并从出口2离开的概率是多少?六、(本题满分12分)21.如图,在直角坐标系xoy中,一次函数y1=k1x+b的图象与反比例函数y2=k2/x的图象交于A(一1,6)、B(a,一2)两点.(1)求一次函数的解析式;(2)连接OA、0B,求ΔAOB的面积;(3)当x满足_______________时, 0<y1≤y2.七(本题满分12分)22.已知顶点为A(2,一1)的抛物线与y轴交于点B,与x轴交于C、D两点,点C坐标(1,O);(1)求这条抛物线的表达式;(2)连接AB、BD、DA,求cos∠ABD的大小;(3)点P在x轴正半轴上位于点D的右侧,如果∠APB=45°,求点P的坐标.八、(本题满分14分)23.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.2018年中考模拟试题数学参考答案一、选择题(每小题4分,共40分)1.在﹣2,﹣5,5,0这四个数中,最小的数是()A.﹣2 B.﹣5 C.5 D.0【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣5<﹣2<0<5,∴在﹣2,﹣5,5,0这四个数中,最小的数是﹣5.故选:B.2.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109 B.0.40570×1010C.40.570×1011D.4.0570×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中40570亿,有13位整数,n=13﹣1=12.【解答】解:40570亿=4057000000000=4.057×1012,故选D.3.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【考点】平行线的性质.【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.4.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:∵由题意可得,由①得,x≥﹣3,由②得,x<0,∴﹣3≤x<0,在数轴上表示为:.故选:B.5.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答】解:所给图形的俯视图是B选项所给的图形.故选B.6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【考点】锐角三角函数的定义;旋转的性质.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.7.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数 B.众数、中位数C.平均数、方差D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】求出一次函数和反比例函数的解析式,根据其性质进行判断.【解答】解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.9.某工厂二月份的产值比一月份的产值增长了x%,三月份的产值又比二月份的产值增长了x%,则三月份的产值比一月份的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%【考点】列代数式.【分析】直接利用已知表示出三月份的产值,进而表示出增长率,即可得出答案.【解答】解:设一月份的产值为a,则二月份的产值为:a(1+x%),故三月份的产值为:a(1+x%)2,则三月份的产值比一月份的产值增长了﹣1=(2+x%)x%.故选:D.10.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A .B .C .D .【考点】相似三角形的判定与性质;等腰三角形的判定与性质.【分析】依次判定△ABC ∽△BDC ∽△CDE ∽△DFE ,根据相似三角形的对应边成比例的知识,可得出EF 的长度.【解答】解:∵AB=AC ,∴∠ABC=∠ACB ,又∵∠CBD=∠A ,∴△ABC ∽△BDC ,同理可得:△ABC ∽△BDC ∽△CDE ∽△DFE ,∴=, =, =, =,∵AB=AC ,∴CD=CE ,解得:CD=CE=,DE=,EF=. 故选C .二、填空题(本大题共4小题,每小题5分,满分20分)11.)1)(1(2+-a a a 12.555 13. 12 14.3.5三、(本大题共2小题,每小题8分,满分16分)15.原式=121⎛-+- ⎝⎭···········5分1210=-+-+=··········8分 16.解:设詹姆斯投中2分球和3分球的个数分别是x 个,y 个,根据题意,得 ⎩⎨⎧=++=+4173214y x y x ··········4分 解得⎩⎨⎧==68y x ,··········8分答:詹姆斯投中2分球和3分球的个数分别是8个,6个.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)图略··········4分(2)P 1 (b ,-a ), P 2(b-2,-a-5)··········8分18.解:在Rt △ADF 中,由勾股定理得)(1520252222cm FD AF AD =-=-=则AE=AD+CD+EC=15+30+15=60(cm )如图 ,过点E 作EH ⊥AB 于H ,在Rt △AEH 中,sinEAH=AE EH , 故EH=AEsinEAH=ABsin75°≈60×0.97=58.2(cm )答:点E 到AB 的距离为58.2cm.五、(本大题共2小题,每小题10分,满分20分)19.解:如图,连接BCD 是弧AC 的中点 ∴OD 垂直平分AC∴EA=EC=421=AC ∴设OD=OA=x ,则OE=x-2, ∴222OA EA OE =+ 即()22242x x =+-,·······4分 解得x=5 ··········6分∴AB=2OA=10∴68102222=-=-=AC AB BC ∴132642222=+=+=BC EC BE答:BE 的长度为132.··········10分20.解:(1)画树状图或列表得出共有9种等可能的结果.(图或表省略.)··········6分(2)9121(=),出口入口P ··········10分 六、(本题满分12分) 21.解:(1)由反比例函数得3=a ,再求得421+-=x y ··········5分(2)由421+-=x y 得直线AB 交x 轴于点C (2,0),则822216221=⨯⨯+⨯⨯=+=∆∆∆OBC OAC OAB S S S ,··········10分 (3)10x -<≤ ··········12分七、(本题满分12分)22.解:(1)∵顶点为A (2,﹣1)的抛物线经过点C (1,0),∴可以假设抛物线的解析式为y=a (x ﹣2)2﹣1,把(1,0)代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.··········4分(2)令y=0,x2﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),令x=0,y=3,∴B(0,3)∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),∴∠ADO=45°,∴∠BD A=90°,∴310cos ABD=∠··········8分(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD•AD=3=6,∴PD=,∴OP=3+,∴点P(3+,0).··········12分八、(本题满分14分)23.解:(1)①补全图形如图所示;··········2分②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,··········8分(2)证明:如图,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,·········14分。
安徽2018年九年级数学中考模拟试卷五

安徽2018年九年级数学中考模拟试卷五一、选择题:1.计算(﹣3)﹣(﹣5)的结果等于()A.﹣2B.2C.﹣8D.152.下列运算正确的是()A.3a2+5a2=8a4B.a6•a2=a12C.(a+b)2=a2+b2D.(a2+1)0=13.计算:,,,,,归纳各计算结果中的个位数字规律,猜测的个位数字是()A.1 B.3 C.7 D.54.如图,1,2,3,4,T是五个完全相同的正方体,将两部分构成一个新的几何体得到其正视图,则应将几何体T放在()A.几何体1的上方B.几何体2的左方C.几何体3的上方D.几何体4的上方5.化简的结果是( )6.下列各题去括号错误的是()A.x-(3y-0.5)=x-3y+0.5B.m+(-n+a﹣b)=m-n+a﹣bC.﹣0.5(4x-6y+3)=-2x+3y+3D.(a+0.5b)-(-c+)=a+0.5b+c﹣7.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时8.如果x:(x+y)=3:5,那么x:y=( )9.二次函数y=x2+bx的图象的对称轴为直线x=1,若关于x的一元二次方程x2+bx-t=0(t为实数)在-1<x<4的范围内有解,则t的取值范围是( )A.t≥-1B.-1≤t<3C.3<t<8D.-1≤t<810.在半径为6cm的圆中,长为6cm的弦所对的圆周角...的度数为()A.30°B.60°C.30°或150°D.60°或120°一、填空题:11.已知关于x,y的方程组的解为正数,则 .12.把多项式4x2y﹣4xy2﹣x3分解因式的结果是13.扇形的圆心角为120°,弧长为6πcm,那么这个扇形的面积为 cm2.14.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C 出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t= 时,△CPQ 与△CBA相似.二 、计算题:15.计算:16.解方程:x 2+x ﹣2=0.三 、解答题:17.如图,在平面直角坐标系xOy 中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)求出△ABC 的面积.(2)在图中作出△ABC 关于y 轴的对称图形△A 1B 1C 1.(3)写出点A 1,B 1,C 1的坐标.18.已知函数y=0.5x2+x﹣2.5.请用配方法写出这个函数的对称轴和顶点坐标.19.如图,直升飞机在资江大桥AB的上方P点处,此时飞机离地面的高度PO=450米,且A、B、O三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB.20.如图,点P(+1,﹣1)在双曲线y=kx-1(x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y=kx-1(x>0)上,顶点A,B分别在x轴和y轴的正半轴上,求点C的坐标.21.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.四、综合题:22.如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).(1)求抛物线的函数表达式;(2)当0<x<3时,求线段CD的最大值;(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;(4)过点B,C,P的外接圆恰好经过点A时,x的值为.(直接写出答案)23.如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F、D.(1)问题发现:直接写出∠NDE= 度;(2)拓展探究:试判断,如图②当∠EAC为钝角时,其他条件不变,∠NDE的大小有无变化?请给出证明.(3)如图③,若∠EAC=15°,BD=,直线CM与AB交于点G,其他条件不变,请直接写出AC的长.参考答案1.B2.D.3.B4.D5.A6.C7.B8.D9.D10.C11.答案为:7;13.答案为:6π×9÷2=27πcm2.14.答案为4.8或.15.解:原式.16.【解答】解:分解因式得:(x﹣1)(x+2)=0,可得x﹣1=0或x+2=0,解得:x1=1,x2=﹣2.17.解:(1)S△ABC=0.5×5×3=7.5(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).18.【解答】解:y=x2+x﹣,=(x2+2x+1)﹣﹣,=(x+1)2﹣3,19.,,,,20.21.【解答】解:(1)扇形图中跳绳部分的扇形圆心角为360°×(1﹣50%﹣20%﹣10%﹣10%)=36度;该班共有学生(2+5+7+4+1+1)÷50%=40人;训练后篮球定时定点投篮平均每个人的进球数是=5,故答案为:36,40,5.(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)的结果有6种,∴P(M)==.22.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),∴﹣9+3b+c=0,c=3,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(3,0),B(0,3),∴直线AB解析式为y=﹣x+3,∵P(x,0).∴D(x,﹣x+3),C(x,﹣x2+2x+3),∵0<x<3,∴CD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x=﹣(x﹣)2+,当x=时,CD最大=;(3)由(2)知,CD=|﹣x2+3x|,DP=|﹣x+3|①当S△PDB=2S△CDB时,∴PD=2CD,即:2|﹣x2+3x|=|﹣x+3|,∴x=±或x=3(舍),②当2S△PDB=S△CDB时,∴2PD=CD,即:|﹣x2+3x|=2|﹣x+3|,∴x=±2或x=3(舍),即:综上所述,x=±或x=±2;(4)直线AB解析式为y=﹣x+3,∴线段AB的垂直平分线l的解析式为y=x,∵过点B,C,P的外接圆恰好经过点A,∴过点B,C,P的外接圆的圆心既是线段AB的垂直平分线上,也在线段PC的垂直平分线上,∴,∴x=±,故答案为:23.。
安徽2018年中考数学模拟试卷十

安徽2018年中考数学模拟试卷十一、选择题:1.如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1B.2k﹣1C.2k+1D.1﹣2k2.下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(-a2)3=﹣a63.下列各式正确的是()A. B.C. D.4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.5.已知,则的值是()A.B.﹣ C.2 D.﹣26.设有理数a、b在数轴上对应的位置如图,化简|a﹣b|﹣|a|的结果是()A.﹣2a+bB.2a+bC.﹣bD.b7.下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查8.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()9.如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于B,连AB,∠α=75°,则b值为()A.3B.C.4D.10.如图,AC是⊙0的直径,∠ACB=60°,连接AB,过A,B两点分别作⊙O的切线,两切线交于点P.若已知⊙0半径为1,则△PAB的周长为( )二、填空题:11.不等式2x+7﹥3x+4的正整数解是________.12.分解因式:a3﹣25a= .13.如图①,圆内接正五边形的中心角∠AOB= ,∠ACB= ;如图②,圆内接正六边形的中心角∠AOB= ,∠ACB= .14.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形____________(用相似符号连接).一、计算题:15.计算:﹣(﹣1)2016﹣3tan60°+(﹣2016)0.16.解方程:3y2+4y-4=0二、作图题:17.在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°.画出旋转后的图形.三、解答题:18.已知函数y=x2+x﹣.请用配方法写出这个函数的对称轴和顶点坐标.19.A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.20.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图,根据题中相关信息回答下列问题:(1)求爆炸前后..空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?21.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.四、综合题:22.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)求证:该方程有两个实数根;(2)如果抛物线y=mx2+(3m+1)x+3与x轴交于A、B两个整数点(点A在点B左侧),且m为正整数,求此抛物线的表达式;(3)在(2)的条件下,抛物线y=mx2+(3m+1)x+3与y轴交于点C,点B关于y轴的对称点为D,设此抛物线在﹣3≤x≤﹣0.5之间的部分为图象G,如果图象G向右平移n(n>0)个单位长度后与直线CD有公共点,求n的取值范围.23.两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB=25,CD=17.保持纸片AOB 不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图2所示.(1)利用图2证明AC=BD且AC⊥BD;(2)当BD与CD在同一直线上(如图3)时,求AC的长和α的正弦值.参考答案1.B2.D3.A4.D5.D.6.D7.D8.C9.B10.A11.答案为:1、212.答案为:a(a+5)(a﹣5).13.答案为:∠AOB=60°,∠ACB=30°.14. [答案] 答案不唯一,如△ABF∽△DBE或△ACE∽△DCF或△EDB∽△FDC等[解析] ∵锐角三角形ABC的边AB和AC上的高CE和BF相交于点D,∴∠AEC=∠BEC=∠AFB=∠CFB=90°.∵∠ABF=∠DBE,∠ACE=∠DCF,∴△ABF∽△DBE,△ACE∽△DCF.∵∠EDB=∠FDC,∴△EDB∽△FDC.∴△ABF∽△DBE∽△DCF∽△ACE.15.【解答】解:原式=3﹣1﹣3×+1=0. 16.17.1)将线段AC先向右平移6个单位,再向下平移8个单位(答案不唯一). (2)F(-1,-1).(3).18.【解答】解:y=x2+x﹣,=(x2+2x+1)﹣﹣,=(x+1)2﹣3,19.【解答】解:AB不穿过风景区.理由如下:如图,过C作CD⊥AB于点D,根据题意得:∠ACD=α,∠BCD=β,则在Rt△ACD中,AD=CD•tanα,在Rt△BCD中,BD=CD•tanβ,∵AD+DB=AB,∴CD•tanα+CD•tanβ=AB,∴CD==(千米).∵CD=50>45,∴高速公路AB不穿过风景区.20.(1)因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为1y k x b =+由图象知1y k x b =+过点(0,4)与(7,46)∴14746b k b =⎧⎨+=⎩. 解得164k b =⎧⎨=⎩,∴64y x =+,此时自变量x 的取值范围是0≤x ≤7. (不取x =0不扣分,x =7可放在第二段函数中) 因为爆炸后浓度成反比例下降,所以可设y 与x 的函数关系式为2k y x =. 由图象知2k y x =过点(7,46),∴2467k =. ∴2322k =, ∴322y x=,此时自变量x 的取值范围是x >7. (2)当y=34时,由64y x =+得,6x+4=34,x=5 .∴撤离的最长时间为7-5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h).(3)当y=4时,由322y x=得, x=80.5,80.5-7=73.5(小时).∴矿工至少在爆炸后73.5小时能才下井. 21.【解答】解:(1)∵A 组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A 组男人成绩不合格,∴合格人数为:50﹣5=45(人);(2)∵C 组占30%,共有人数:50×30%=15(人),B 组有10人,D 组有15人,∴这50人男生的成绩由低到高分组排序,A 组有5人,B 组有10人,C 组有15人,D 组有15人,E 组有5人,∴成绩的中位数落在C 组;∵D 组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E 组,含甲、乙两名男生,记其他三名男生为a ,b ,c ,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为: =.22.【解答】(1)证明:由根的判别式,可得:△=(3m+1)2﹣4×m ×3=(3m ﹣1)2,∵(3m ﹣1)2≥0,∴△≥0,∴原方程有两个实数根;(2)解:令y=0,那么mx 2+(3m+1)x+3=0,解得:x 1=﹣3,x 2=﹣,∵抛物线与x轴两个交点的横坐标均为整数,且m为正整数,∴m=1,∴抛物线的解析式为:y=x2+4x+3;(3)如图,∵当x=0时,y=3,∴C(0,3),∵当y=0时,x1=﹣3,x2=﹣1,又∵点A在点B的左侧,∴A(﹣3,0),B(﹣1,0),∵点D与点B关于y轴对称,∴D(1,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的表达式为:y=﹣3x+3,又∵当x=﹣时,y=,∴点E(﹣,),∴平移后,点A,E的对应点分别为A′(﹣3+n,0),E′(﹣+n,),当直线y=﹣3x+3经过点A′(﹣3+n,0)时,得:﹣3(﹣3+n)+3=0,解得:n=4,当直线y=﹣3x+3经过点E′(﹣+n,),时,得:﹣3(﹣+n)+3=,解得:n=,∴n的取值范围是≤n≤4.23.【解答】(1)证明:如图2中,延长BD交OA于G,交AC于E.∵∠AOB=∠COD=90°,∴∠AOC=∠DOB,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,∵∠DBO+∠GOB=90°,∵∠OGB=∠AGE,∴∠CAO+∠AGE=90°,∴∠AEG=90°,∴BD⊥AC.(2)解:如图3中,设AC=x,∵BD、CD在同一直线上,BD⊥AC,∴△ABC是直角三角形,∴AC2+BC2=AB2,∴x2+(x+17)2=252,解得x=7,∵∠ODC=∠α+∠DBO=45°,∠ABC+∠DBO=45°,∴∠α=∠ABC,∴sinα=sin∠ABC==.第11 页共11 页。
2018年安徽省六安市中考数学模拟试卷(3月份)

2018年安徽省六安市中考数学模拟试卷(3月份)一、选择题(每小题4分,共40分)1.(4分)下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形2.(4分)抛物线y=﹣(2x﹣2)2+3的对称轴是()A.直线x=﹣2B.直线x=2C.直线x=1D.直线x=﹣1 3.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.4.(4分)如图,P A切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π5.(4分)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.6.(4分)如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC 交于点E,下列结论中不一定成立的是()A.AD=DC B.∠ACB=90°C.△AOD是等边三角形D.BC=2EO7.(4分)下列成语所描述的是必然事件的是()A.拔苗助长B.瓮中捉鳖C.水中捞月D.大海捞针8.(4分)因为(x﹣1)2≥0,所以x2﹣2x+1≥0,即x2+1≥2x,由此可得出结论:若x为实数,则x2+1≥2x,运用这个结论求代数式的最大值为()A.0B.C.1D.9.(4分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.(4分)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.2二、填空题(每小题5分,共20分)11.(5分)4与9的比例中项是.12.(5分)以半径为4的圆的内接正三角形,内接正方形,内接正六边形的边心距为三边作三角形,则该三角形的面积是.13.(5分)若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为.14.(5分)如图,点P是矩形ABCD内一点,连接P A、PB、PC、PD,已知AB=3,BC =4,设△P AB、△PBC、△PCD、△PDA的面积分别为S1,S2,S3,S4,以下判断:①P A+PB+PC+PD的最小值为10;②若△P AB≌△PCD,则△P AD≌△PBC;③若S1=S2,则S3=S4,④若△P AB∽△PDA,则P A=2其中正确的是(把所有正确的结论的序号都填在横线上)三、(本大题共两小题,每小题8分,共16分)15.(8分)计算:|﹣1|﹣()﹣1﹣3tan30°+16.(8分)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积.四、(本大题共2小题,每小题8分,共16分)17.(8分)如图,在直角坐标系中△ABC的A.B.C三点坐标为A(7,1)、B(8,2)、C (9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),再画出△A′B′C′关于y轴对称的△A″B″C″;(2)写出A′的坐标.18.(8分)在函数y=(x>0)的图象上有点P1,P2,P3,…p n,P n+1,过点P1,P2,P3,…p n,P n+1,分别作x轴、y轴的垂线段,构成如图所示的若干个矩形,将图中阴影部分的面积从左至右依次记为S1,S2,S3…,S n(1)若P1,P2,P3的横坐标依次为1,2,3,则S1=;S2=;S3=.(2)若P1,P2,P3,…p n,P n+1的横坐标依次为2,4,6,…,则S9=.若P1,P2,P3,…p n,P n+1的横坐标依次为a1,a2,a3,…a n,a n+1则S n=.五、(本大题共2小题,每小题10分,共20分)19.(10分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).20.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD =∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.六、(本大题共3小题,每小题12分,共24分)21.(12分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格x(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?23.(14分)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC 的内心.(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求+的值.2018年安徽省六安市中考数学模拟试卷(3月份)参考答案一、选择题(每小题4分,共40分)1.D;2.C;3.C;4.C;5.D;6.C;7.B;8.B;9.D;10.C;二、填空题(每小题5分,共20分)11.±6;12.2;13.﹣2;14.①②③;三、(本大题共两小题,每小题8分,共16分)15.;16.;四、(本大题共2小题,每小题8分,共16分)17.(﹣3,3);18.3;;;;(a n﹣a n﹣1)(﹣);五、(本大题共2小题,每小题10分,共20分)19.;20.;六、(本大题共3小题,每小题12分,共24分)21.;22.;23.;。
2018年安徽省六安市中考数学模拟试卷

2018年安徽省六安市中考数学模拟试卷一、选择题(每小题4分,共40分)1. 下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A. 正三角形B. 正方形C. 正五边形D. 正六边形2.抛物线y=﹣(2x﹣2)2+3的对称轴是()A. 直线x=﹣2B. 直线x=2C. 直线x=1D. 直线x=﹣13. 下面的几何体中,主(正)视图为三角形的是( )A. B. C. D.4.如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A. B. π C. 2π D. 4π5.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.6.如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC交于点E,下列结论中不一定成立的是()A. AD=DCB. ∠ACB=90°C. △AOD是等边三角形D. BC=2EO7.下列成语所描述的是必然事件的是()8.正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上,若CE =35,且∠ECF =45°,则CF 的长为( )A .210B .3 5 C.5310 D.103 59.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数12,y y x x=-=、的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A. 逐渐变小B. 逐渐变大C. 时大时小D. 保持不变10.如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( ) A. 6 B. 3 C. 2.5 D. 2 二、填空题(每小题5分,共20分) 11. 4与9的比例中项是__ ___.12. 以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是__ __。
安徽省合肥市2018年中考模拟数学试题及答案

2018年安徽省合肥市中考模拟测试数学试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四题号 1 2 3 4 5 6 7 8 9 10答案1.在算式(-2)□(-3)的□中填上运算符号,使结果最小,运算符号是()A. 加号B. 减号C. 乘号D. 除号2.如图所示的几何体的俯视图是()A B C D3.下列计算中正确的是()A. a·a2=a2B. 2a·a=2a2C. (2a2)2=2a4D. 6a8÷3a2=2a44.二次根式x x3中x的取值范围是()A.x>3 B.x≤3且x≠0C.x≤3 D.x<3且x≠05.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°第5题图第8题图第10题图6.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+17.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度得分评卷人数为()A.15°B.75°或15°C.105°或15°D.75°或105°8.为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼时间等于9小时的人数是()A. 5B. 18C. 10D. 49.若关于x的一元二次方程ax2+bx+1=0(a≠0)的解是x=1,则2015-a-b的值是()A. 2014B. 2015C. 2016D. 201710.如图,动点S从点A出发,沿线段AB运动至点B后,立即按原路返回,点S在运动过程中速度不变,则以点B为圆心,线段BS长为半径的圆的面积m与点S的运动时间t之间的函数关系图象大致为()A.B.C.D.得分评卷人二、填空题(每题5分,共20分)11.据安徽省旅游局信息,2018年春节假日期间全省旅游总收入约为196.19亿元,196.19亿用科学记数法表示为.12.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则弧BC的长为(结果保留π).第12题图第13题图第14题图13.根据图中的程序,当输入x=2时,输出的结果y=.14.如图,正五边形的边长为2,连接对角线AD、BE、CE,线段AD分别与BE和CE相交于点M、N,给出下列结论:①∠AME=108°,②AN2=AM•AD;③MN=3-5;④S△EBC=25-1,其中正确的结论是(把你认为正确结论的序号都填上).得分评卷人三、解答题(共90分)15.(8分)先化简:(2x -x x 12+) ÷ xx x 122+-,然后从0,1,-2中选择一个适当的数作为x 的值代入求值.16.(8分)观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256,…. 通过观察,能用你所发现的规律写出232的个位数字是多少吗?那32018的个位数字呢?17.(8分)如图,在边长为1个单位长度的小正方形网格中. (1)画出△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1.(2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2.18.(8分)如图①,②分别是某吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角. 吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A距地面的高度是多少米?(精确到0.1米. 参考数据:sin10°=cos80°≈0.17,cos10°=sin80°≈0.98,sin20°=cos70°≈0.34,tan70°≈2.75,sin70°≈0.94)19.(10分)目前节能灯在城市已基本普及,今年云南省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利润多少元?20.(10分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A 、B 、C 三个班,他俩希望能再次成为同班同学. (1)请你用列举法,列出所有可能的结果; (2)求两人再次成为同班同学的概率.21.(12分)已知,如图,反比例函数y=xk的图象与一次函数y=x+b 的图象交于点A (1,4),点B (m ,-1),(1)求一次函数和反比例函数的解析式; (2)求△OAB 的面积;(3)直接写出不等式x+b >x k的解.22.(12分)已知,抛物线y=ax2+bx-2与x轴的两个交点分别为A(1,0),B(4,0),与y轴的交点为C.(1)求出抛物线的解析式及点C的坐标;(2)点P是在直线x=4右侧的抛物线上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OCB相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.23.(14分)已知,如图1,AD是△ABC的角平分线,且AD=BD,(1)求证:△CDA∽△CAB;(2)若AD=6,CD=5,求AC的值;(3)如图2,延长AD至E,使AE=AB,过E点作EF∥AB,交AC于点F,试探究线段EF 与线段AD的大小关系.2018年安徽省合肥市中考模拟测试数学试题参考答案完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
2018年安徽省初中毕业学业考试数学模拟卷(1)含答案

最大最全最精的教育资源网2018 年安徽省初中毕业学业考试数学模拟卷一(卷Ⅰ )本卷合计 3 大题,时间 45 分钟,满分92 分一、选择题(本大题共10 小题,每题 4 分,满分40 分)1 .以下四个数中,最小的数是 ········································ ( )A .2B .- 2C .0D .- 22 .依据第六次全国人口普查结果,当前合肥市滨湖新区常住人口已达36 万人, 36 万人用科学记数法表示为 ······· ( )A .3.6 ×104人 B . 36×104 人 C .3.6 ×105 人 D . 0.36 ×105 人 3 .以下运算正确的选项是 ············································ ()A .(-a)2· a 3=a 5B . a 3÷a=a 3C .( a 2)3=a 5D . (-3a 2 )3=- 9a 64 .长方体的主视图与左视图如下图 ( 单位: cm),则其俯视图的面积是 ······················ () A .12 cm 2B . 8 cm 2C .6 cm 2D . 4 cm 25 .如下图,已知直线 AB ∥CD ,∠ A = 45°,∠ C = 125°,则∠ E 的度数为 ·····················()A .70°B .80°C .90°D .100°6 .如图是某班全体学生出门时搭车、步行、骑车的人数散布直方图和扇形图(两图都不完好 ) ,则以下结论中错误的是 ···()..A .该班总人数为 50 人B .骑车人数占总人数的 20%C .步行人数为 30 人D .搭车人数是骑车人数的2.5 倍第4题图 第5题图 第 6题图 第 8题图7.某地震灾区睁开灾后重修, 桂花村派男女村民共 15 人到山外采买建房所需的水泥, 已知男村民一人挑两包, 女村民两人抬一包,共购回 15 包.请问此次采买派男女村民各多少人? ·······························()A .男 3 人,女 12 人B .男 5 人,女 10 人C .男 6人,女 9人D .男 7人,女 8人8.已知⊙ O 的半径为 R ,AB 是⊙ O 的直径, D 是 AB 延伸线上一点, DC 是⊙ O 的切线, C 是切点,连结 AC ,若∠ CAB =30°,则BD 的长为 ·················································()3A .2RB . 3RC . RD .2R1N 在一次函数 y=x+3 的图像上,设点 M 的坐标为 (a ,9.已知 M 、 N 两点对于 y 轴对称,且点 M 在反比率函数 y= 2x的图像上,点b),则二次函数 y=abx 2+( a+b)x ·········································()9999A .有最小值 2B .有最大值- 2C .有最大值 2D .有最小值- 210.如图,点 P 是菱形 ABCD 的对角线 AC 上的一个动点,过点 P 垂直于 AC 的直线交菱形 ABCD 的边于 M 、N两点.设 AC = 2, BD = 1, AP = x ,△ AMN 的面积为 y ,则 y 对于 x 的函数图象大概形状是 ······················· ()二、填空题(本大题共 4 小题,每题 5 分,满分 20 分)11.因式分解: 2x 3y - 8xy =.ax+112.已知对于 x 的方程 x - 2=- 1 的解是正数,则a 的取值范围是.需要更完好的资源请到新世纪教育网学校租用教师免费下载①△ APD ≌△ AEB ;② EB ⊥ ED ;③点 B 到直线 AE 的距离为 2;④正方形 ABCD 的面积为 4+ 6; 此中正确结论的序号是 .三、本大题共 2 小题,每题8 分,满分 16 分1-115.计算: ( 3- 2) +(3) +4cos30 °- |- 12|16.先化简,再求值:m 2 2m 1 ( m 1 m 1 ),此中 - .m 2 1 m 1 m= 3 2四、本大题共 2 小题,每题 8 分,满分 16 分17.如图,已知 △ABC 三个极点的坐标分别是A(1, 3),B(4,1),C(4, 4).(1)请按要求绘图:①画出 △ABC 向左平移 5 个单位长度后获得的△ A 1 B 1C 1 ;②画出 △ABC 绕着原点 O 顺时针旋转 90°后获得的 △ A 2 B 2 C 2.(2)请写出直线 B 1C 1 与直线 B 2C 2 的交点坐标.m18.如图,直线 y = kx +b 与反比率函数 y = x (x < 0)的图象交于点A ,B ,与 x 轴交于点C ,此中点 A 的坐标为 (- 2,4),点 B 的横坐标为- 4.(1)求一次函数和反比率函数的关系式;(2) 求△ AOB 的面积.2018 年安徽省初中毕业学业考试数学模拟卷一(卷Ⅱ )本卷合计 4 大题,时间50 分钟,满分58 分五、本大题共 2 小题,每题10 分,满分20 分19.如图,平行四边形 ABCD 中,∠ BAD=32°,分别以 BC、CD 为边向外作△ BCE 和△ DCF ,使 BE=BC,DF =DC,∠ EBC=∠CDF ,延伸 AB 交边 EC 于点 G,点 G 在 E、C 两点之间,连结 AE 、AF .(1)求证:△ ABE≌△ FDA ;(2)当 AE⊥AF 时,求∠ EBG 的度数.20.如图,搁置在水平桌面上的台灯的灯臂 AB 长为 40 cm,灯罩 BC 长为 30 cm,底座厚度为 2 cm,灯臂与底座组成的∠ BAD=60°.使用发现,光芒最正确时灯罩 BC 与水平线所成的角为 30°,此时灯罩顶端 C 到桌面的高度 CE 是多少厘米?(结果精准到0.1 cm,参照数据:3≈ 1.732)六、本大题满分12 分21.如图,在Rt△ABC 中,∠ C=90°, BD 是角均分线,点O 在 AB 上,以点 O 为圆心, OB 为半径的圆经过点D,交 BC 于点 E .(1)求证: AC 是⊙ O 的切线;(2) 若 OB=10,CD=8,求 BE 的长.七、本大题满分 12 分22.如图,有长为 30m 的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花园,设花园一边 AB 的长为 x m,面积为 y m2.(1)求 y 与 x 的函数关系式并指出自变量的取值范围;(2)假如要围成面积为63m2的花园, AB 的长是多少?2更大的花园吗?假如能,恳求出最大面积;假如不可以,请说明原因.(3)能围成面积比63m八、本大题满分 14 分23.如图,边长为 1 的正方形 ABCD 被两条与边平行的线段EF 、GH 切割为四个小矩形,EF 与 GH 交于点 P.(1)若 AG=AE,证明: AF =AH ;(2)若∠ FAH =45°,证明: AG+AE=FH ;(3)若 Rt GBF 的周长为 1,求矩形 EPHD 的面积.2018 年安徽省初中毕业学业考试数学模拟卷一参照答案一、选择题答案题号1 2 3 4 5 6 7 8 9 10答案BCAABCBCDC二、填空题答案题号 111213 14 答案2xy(x - 2)(x + 2)a >- 1 且 a ≠-14①②④2三、简答题答案15. 答案: 4 ;16. 答案: (1) 1,当 m = 3-2 时,原式=-3-2 ;原式= m 17.答案: (1) 图略; (2) (- 1,- 4) ;818. 答案: (1)y =- xy = x + 6 ; (2) 6 ;19. 答案: (1) 证明略 ; (2) 58 °;20. 答案: (1) 51.6 cm ;21.答案: (1)证明略;(2)12 ;22.答案: (1) y=- 3x2+ 30x 20≤ x< 10 ;(2)AB= 7 m ;(3) 能最大面积是200;33123.答案: (1) 证明略;(2)证明略;(3) 2;。
2018年安徽省六安市霍邱县中考数学一模试卷含答案解析

2018年安徽省六安市霍邱县中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣2.(4分)某几何体的三视图如图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥3.(4分)已知点A(﹣2,y1).B(﹣1,y2)在反比例函数y=﹣上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1≥y2D.无法比较4.(4分)下列计算正确的是()A.a+2a2=3a3B.(a3)2=a5C.a3?a2=a6 D.a6÷a2=a45.(4分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分6.(4分)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点7.(4分)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+208.(4分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.109.(4分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.10.(4分)如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA 最大时,PA的长等于()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年第二学期九年级中考模拟考试 数学试卷 2018年5月考生注意:本卷共八大题,23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分) 1.在0,,3,1π--四个数中,绝对值最大的数是( ).A .0B .π-C .3D .-1 2.下列计算结果等于5a 的是( ).A .32a a +B .32a aC .32()a D .102a a ÷3.经济学家马光远在2017新消费论坛上表示,因为新技术引发新产生、新业态、新模式,新兴消费增长速度超过40%,将会影响到5亿人左右.受此影响,到2020年,中国个人消费总规模有望达到5.6万亿美元.其中5.6万亿用科学记数法表示为( ). A .95.610⨯ B .105610⨯ C .125.610⨯ D .135.610⨯ 4.如图所示的几何体中,其俯视图是( ).5.把多项式228xy x -因式分解,结果正确的是( ). A .22(4)x y - B . (2)(24)y xy x +- C .(22)(2)xy x y +- D . 2(2)(2)x y y +- 6.如图,AB ∥CD ,AC ⊥BE 于点C ,若∠1=140°,则∠2等于( ).A .40°B .50°C .60°D .70° 7 若关于x 的一元二次方程2440x x c -+=有两个相等的实数根,则c 的值为( ). A .1 B .-1 C .4 D .-48. 市主城区2017年8月10至8月19日连续10天的最高气温统计如下表:则这组数据的中位数和平均数分别为( ).A .40,39.5B .39,39.5C .40,39.7D .39, 39.79.如图,⊙O 的直径垂直于弦CD ,垂足为点E ,点P 为⊙O 上一动点(点P 不与点A 重合),连接AP 并延长交CD 所在的直线于点F ,已知AB =10,CD =8,PA =x ,AF =y ,则y 关于x 的函数图象大致是( ).10.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形部的一个动点,且满足∠EAB =∠EBC ,连接CE ,则线段CE 长的最小值为( ).A .32B .2C .第6题图 第9题图二、选择题(本大题共4小题,每小题5分,满分20分) 11.不等式组12x ->-的解集是 .12.已知3a b +=,2ab =-,则22a b +的值为 .13.如图,已知AB 是⊙O 的直径,延长AB 至C 点,使AC =3BC ,CD 与⊙O 相切于D 点.若CD=3,则劣弧AD ︵的长为________.14.如图,等边三角形ABC 中,边长为15,点M 为线段AB 上一动点,将等边△ABC 沿过点M 的直线折叠,直线与AC 交于点N ,使点N 落在直线BC 的点D 处,且BD :DC =1:4,设折痕为MN ,则CN 的值为 .三、(本大题共2小题,每小题8分,满分16分)15.计算:21o 11()sin 6012--+---.16.高迪同学在一本数学课外读物中看到这样一则信息:1925年,数学家莫伦发现了如图(1)所示的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形.高迪同学仔细研究了此图后,设计出了一个如图(2)所示的“准完美长方形”,其中标号“3与4”的正方形完全相同,若中间标号为“1”的正方形的边长为1cm ,求这个“准完美长方形”的面积.四、(本大题共2小题,每小题8分,满分16分) 17.(1)计算(直接填写结果)2222121⨯=++ ;33333312321⨯++++= . (2)先猜想结果,再计算验证:444444441234321⨯++++++= ;5555555555123454321⨯++++++++= .(3)归纳:设N 是各位数字都是n 的n 位数(n 是小于10的正整数),那么123(1)21N Nn n ⨯+++++-+++是 位数,其正中的一个数字是 .18.某太阳能热水器的横截面示意图如图所示,已知真空热水管AB 与支架CD 所在直线相交于点O ,且OB =OD ,支架CD 与水平线AE 垂直,∠BAC =∠CDE =30°,DE =80cm ,AC =165cm .(1)求支架CD 的长;(2)求真空热水管AB 的长.(结果保留根号).五、(本大题共2小题,每小题10分,满分20分)19.在边长为1个单位长度的小正方形网格中,给出了格点△ABC (顶点为网格线的交点),以及过格点的的直线l . (1)将△ABC 向左平移3个单位长度,再向下平移两个单位长度,画出平移后的△DEF (点A 与点D ,点B 与点E ,点C 与点F 为对应点); (2)画出△ABC 关于直线l 对称的△GMN (点A 与点G ,点B 与点M ,点C 与点N 为对应点;(3)若DF 与MG 相交于点P ,则tan ∠MPF = .20.如图,四边形ABCD 是⊙O 的接四边形,AD BD ,AC 为直径,DE ⊥BC ,垂足为E .(1)求证:CD 平分∠ACE ; (2)若AC =9,CE =3,求CD 的长.六、(本题满分12分)21.小明、小强和小亮三个小朋友在一起玩“手心,手背”游戏,游戏时,每人每次同时随机伸出一只手,手心向上简称“手心”,手背向上简称“手背” (1)请你列出三人玩“手心、手背”游戏,出手一次出现的所有等可能的情况(用A 表示手心,用B 表示手背)ECO DAB(2)求他们同时随机出手,都是“手心”的概率;(3)若小明出手为“手心”,则三人中只有一人出手为“手背”的概率为七、(本题满分12分)22.某工艺厂生产一种装饰品,每件的生产成本为20元,销售价格在30元/件至80元/件之间(含30元/件和80元/件),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y (万件)与销售价格x (元/件)之间的函数关系如图所示.(1)当30≤x ≤60时,求y 与x 之间的函数关系式.(2)求出该厂生产销售这种产品获得的利润w (万元)与销售价格x (元/件)之间的函数关系式.(3)当销售价格定为多少元/件时,获得的利润最大?最大利润是多少?八、(本题满分14分)23.我们知道:三角形三条角平分线的交点叫做三角形的心,已知点I 为△ABC 的心(1)如图1,连接AI 并延长交BC 于点D ,若AB =AC =3,BC =2,求ID 的长 (2)过点I 作直线交AB 于点M ,交AC 于点N .①如图2,若MN ⊥AI ,求证:2MI BM CN =②如图3,AI 交BC 于点D ,若∠BAC =60°,AI =4,求11AM AN+的值.2017-2018学年第二学期九年级第一次月考 数学答案 2018年4月一、选择题二、填空题11.3x < 12.13 13.23π14.92三、 15.原式=016.设标号为“3”的正方形边长为x cm ,由题意,得2531x x +=+,解得4x =,所以(25)(23)1311143x x ++=⨯=2cm 答:这个“准完美长方形”的面积为143cm 2.四、17.(1)121 12321 (2)1234321 123454321 (3)21n - n18.(1)在Rt △CDE 中,∠CDE =30°,DE =80cm ,∴CD =o80cos3080==(cm )(2)在Rt △OAC 中,∠BAC =30°,AC =165cm ,∴OC =AC otan 30165==∴OD =OC -CD ==(cm ).∴AB =AO -OB =AO -OD =2-=cm ). 五、19.(1) (2)如图所示 (3)220.(1)证明:∵四边形ABCD 是⊙O 接四边形,∴∠DCE =∠BAD .∵AD BD =,∴∠BAD =∠ACD ,∴∠DCE =∠ACD ,即CD 平分∠ACE . (2)∵AC 为直径,∠ADC =90°. ∵DE ⊥BC ,∴∠DEC =90°,∠DEC =∠ADC ∵∠DCE=∠ACD ,∴△DCE ∽△ACD ∴CE CD CD CA =,即39CDCD =∴CD =六、21.(1)画树状图,得∴共有8种等可能的结果:AAA ,AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB(2)∵他们同时随机出手,都是“手心”的只有1种情况,∴他们同时随机出手,都是“手心”的概率是18 (3)12七、22.(1)当60x =时,120260y == ∴当30≤x ≤60时,图象过(60,2)和(30,5)设y kx b =+,则305602k b k b +=⎧⎨+=⎩,解得0.18k b =-⎧⎨=⎩,∴0.18(3060)y x x =-+≤≤ (2)当30≤x ≤60时2(20)50(20)(0.18)500.110210w x y x x x x =--=--+-=-+-当60<x≤80时1202400(20)50(20)5070w x y x x x=--=-⨯-=-+ 综述:20.110210(3060)240070(6080) x x x w x x ⎧-+-≤≤⎪=⎨-+<≤⎪⎩(3)当30≤x ≤60时,220.1102100.1(50)40w x x x =-+-=--+ 当50x =时,w 最大=40(万元) 当60<x≤80时,w 随x 的增大而增大, ∴当80x =时,w 最大=2400704080-+=(万元) 所以当销售价格定为50元/件或80元/件时,获得的利润最大,最大利润是40万元. 八、23.(1)作IE ⊥AB 于E .设ID =x ,∵AB =AC =3,I 点为△ABC 的心,∴AD ⊥BC ,BD =CD =1.在Rt △ABD 中,由勾股定理,得AD = ∵∠EBI =∠DBI ,∠BEI =∠BDI =90°,BI =BI ∴△BEI ≌△BDI ,∴ID =IE =x ,BD =BE =1,AE =2在Rt △AEI 中,222AE EI AI +=,即2222)x x +=,∴2x =.(2)如图,连接BI ,CI∵I 是△ABC 的心,∴∠MAI =∠NAI .∵AI ⊥MN ,∴AM =AN ∴∠AMN =∠ANM ,∠BMI =∠CNI∵∠NIC =180°-∠IAC -∠ACI -∠AIM =90°-∠IAC -∠ACI∠ABC =180°-∠BAC -∠ACB =180°-2∠IAC -2∠ACI ∴∠ABI =90°-∠IAC -∠ACI ,即∠NIC =∠ABI ∴△BMI ∽△INC ,BM MIIN NC=又MI =NI ,∴2MI BM CN =.(3)过点N 作NG ∥AD 交MA 的延长线于点G ,∵∠BAD =∠CAD ,∠BAC =60°,∴AN =AG ,∠ANG =∠AGN =30°,NG由AI ∥NG ,得AM AIMG NG =,AM AM AN =+∴11AM AN +=。