2数字视频处理重点总结

合集下载

数字视频处理课件

数字视频处理课件
这种信号不仅其亮度和色度都具有较宽的 带宽,而且由于亮度和色度分开传输,可 以减少其互相干扰
与复合视频信号相比,S-Video可以更好 地重现色彩
S-Video
S-Video信号使用单独的两条信号电缆线, 一条用于亮度信号,另一条用于色度信号, 这两个信号称为Y/C信号
S-Video使用4针连接器
对所有的制式,每一扫描行的有效样本数 均为720个
有效采样样本
采样格式
两种采样方法: ➢ 一种是使用相同的采样频率对图像的亮度
信号和色度信号进行采样 ➢ 另一种是对亮度信号和色度信号分别采用
不同的采样频率进行采样 如果对色度信号使用的采样频率比对亮度
信号使用的采样频率低,这种采样就称为 子采样(Subsampling)
S-Video
分量视频信号
分量视频信号(component video signal)是指 每个分量(Y、U、V或Y、Cb、Cr)作为 独立的视频信号
使用分量视频信号是表示彩色的最好方法, 但需要比较宽的带宽和同步信号
分量信号实际上也是亮色分离的信号,与 S-Video不同的是两个色度信号不用分离
子采样格式
4:2:2 这种子采样格式是指在每条扫描线 上每4个连续的采样点取4个亮度Y样本、2 个Cr色度样本和2个Cb色度样本,平均每 个像素用2个样本表示
子采样格式
4:1:1 这种子采样格式是指在每条扫描线 上每4个连续的采样点取4个亮度Y样本、1 个Cr色度样本和1个Cb色度样本,平均每 个像素用1.5个样本表示
625行/帧,25帧/秒 每帧有575行有图像显示
电视制式兼容性
NTSC制和PAL制是互不兼容的电视制式 NTSC制和PAL制都是彩色和黑白兼容的

数字信号处理课程总结

数字信号处理课程总结

数字信号处理课程总结一、概括数字信号处理这门课程,真是让我大开眼界,原来信号也能玩出这么多花样!这门课程主要介绍了数字信号处理的基础概念、基本原理和实际应用。

学完之后我简直觉得信号的海洋是如此的广阔和深邃。

一开始课程从信号的表示和处理方式入手,让我对信号有了全新的认识。

接着介绍了数字信号处理的核心原理和方法,比如采样、量化、滤波等等。

这些内容听起来很高级,但实际上都是处理我们生活中遇到的各种各样信号的基础。

通过学习我发现数字信号处理并不是高高在上的高难课程,而是与我们的日常生活紧密相连。

而且课程还深入浅出地介绍了数字信号处理在通信、音频、图像等领域的应用。

这让我意识到,原来我们每天都在和数字信号处理打交道,只是我们不知道罢了。

可以说这门课程让我对数字信号处理有了更深的理解和更多的兴趣。

学习数字信号处理这门课程,让我对信号有了全新的认识,也让我明白了数字信号处理的重要性。

我觉得这门课程不仅仅是理论知识的学习,更是打开了一扇探索信号世界的窗户。

现在我已经迫不及待想要继续深入学习了!二、数字信号处理基础知识在这一阶段的学习过程中,你们可能已经领略到数字信号处理的奇妙世界,那么先来简单聊聊那些处理的基础常识。

说起数字信号处理,是不是听起来像进入了什么高大上的黑科技世界?但实际上数字信号处理跟我们的日常生活紧密相连,例如音频播放、视频播放这些大家每天干的事都与数字信号处理密切相关。

当你聆听音乐的每一个节拍时,数字信号处理就像魔法一样确保了这些音频的完美传递和重现。

好啦接下来我们说说那些具体的常识。

首先了解什么是信号,信号可以简单理解为一种传递信息的媒介,比如声音、图像等都可以是信号。

而数字信号处理则是把这些信号转换成数字形式进行处理,想象一下这就像是把现实世界的声音、图像等转化成电脑能懂的语言。

接下来是处理的过程,这涉及到信号的采集、转换、分析和处理等环节。

在这个过程中,数字信号处理帮助我们实现信号的放大、滤波等功能,让我们的音质更加纯净、图像更加清晰。

数字视频基础知识

数字视频基础知识

数字视频基础知识数字视频是现代社会中广泛应用的一种媒体形式。

它以数字信号为基础,通过图像编码、传输和解码等技术,实现对视频图像的采集、处理和展示。

数字视频的应用领域涉及电视、电影、广告、网络视频等众多领域。

本文将介绍数字视频的基础知识,包括视频编码、视频格式、视频分辨率和帧率等方面。

一、视频编码数字视频的编码技术是将连续的视频图像序列转化为数字信号的过程。

常见的视频编码标准有MPEG-2、H.264、H.265等。

这些编码标准通过对图像进行压缩,实现了视频数据的高效传输和存储。

视频编码的核心原理是空间和时间的冗余性去除,即通过图像的相似性和相邻帧之间的相关性,减少视频数据的冗余程度。

二、视频格式视频格式是指数码视频文件的存储和传输格式。

常见的视频格式包括AVI、MOV、MP4、MKV等。

这些格式不仅包含视频数据,还可以携带音频数据、字幕等相关信息。

不同的视频格式适用于不同的应用场景,选择合适的视频格式可以提高视频的传输和播放效果。

三、视频分辨率视频分辨率是指视频图像的大小和清晰度程度,通常以像素为单位来表示。

常见的视频分辨率有1080p、720p、480p等。

数字视频的分辨率决定了图像的细节和清晰度,高分辨率的视频图像能够更真实地还原真实场景,但也需要更大的存储和传输带宽。

四、帧率帧率是指视频中每秒显示的图像帧数。

常见的帧率有24fps、30fps、60fps等。

帧率的选择直接影响到视频图像的流畅度和感官效果。

较低的帧率可能导致视频卡顿和画面不连贯,而较高的帧率则能够呈现出更加细腻和流畅的动态效果。

五、视频编解码器视频编解码器是视频编码和解码的工具软件或硬件。

常见的视频编解码器有X264、X265、FFmpeg等。

视频编解码器的作用是将视频数据进行压缩编码和解码还原,实现视频文件的传输和播放。

六、数字视频的应用数字视频在现代社会中有着广泛的应用。

电视、电影、广告等传统媒体领域,数字视频成为了主流媒体形式。

数字视频处理

数字视频处理

数字视频处理数字视频处理概述数字视频就是先用摄像机之类的视频捕捉设备,将外界影像的颜色和亮度信息转变为电信号,再记录到储存介质(如录像带)。

播放时,视频信号被转变为帧信息,并以每秒约30帧的速度投影到显示器上,使人类的眼睛认为它是连续不间断地运动着的。

电影播放的帧率大约是每秒24帧。

如果用示波器(一种测试工具)来观看,未投影的模拟电信号看起来就像脑电波的扫描图像,由一些连续锯齿状的山峰和山谷组成为了存储视觉信息,模拟视频信号的山峰和山谷必须通过数字/模拟(D/A)转换器来转变为数字的“0”或“1”。

这个转变过程就是我们所说的视频捕捉(或采集过程)。

如果要在电视机上观看数字视频,则需要一个从数字到模拟的转换器将二进制信息解码成模拟信号,才能进行播放。

模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV信号方式,而计算机工作在RGB空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。

因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。

模拟视频一般采用分量数字化方式,先把复合视频信号中的亮度和色度分离,得到YUV或YIQ分量,然后用三个模/数转换器对三个分量分别进行数字化,最后再转换成RGB空间。

DSP是数字信号处理器的简称,在全球的数字化浪潮中,DSP以其高性能和软件可编程等特点,长期对数字媒体处理起到了积极的推动作用。

最初DSP的应用在于专业数据通信和语音处理,各种专用调制解调器、声码器、数据加密机初步获得市场。

其后DSP应用扩展到广泛的民用产品,诸如硬盘驱动器、通用调制解调器、数字答录机、无线通信终端。

九十年代中DSP在数字GSM手机应用和无线基站应用中都获得了巨大的成功。

与此同时,DSP开始全面拓展到新兴应用,并在宽带通信、数字控制、数字音频、数字视频等众多市场全球。

现在,我们就DSP在数字视频行业中的应用进行分析。

数字音视频技术讲义第二章 数字视频基础

数字音视频技术讲义第二章 数字视频基础

2.2 光和电磁波谱--• 人类感受到的可见光的彩色范围占电磁 波的一小部分。 • 电磁波可用波长、频率或能量来描述。
2.3 图像感知和获取
• 各类图像都是由“照射”源和形成图像 的“场景”元素对光能的反射与吸收相 结合而产生的。 • 照射可由电磁能源产生:如雷达、红外 线、X射线。---, • 照射可由非传统光源产生:如超声波、 计算机产生的照射模式。 • 把照射量变为数字图像的三种主要传感 器装置。如下图2.12。---,
• 人眼的锥状细胞是彩色视觉的传感器, 实验结果已确定人眼中的6~7百万个锥状 细胞可分别对应于红(65%,700nm )、 绿 ( 33% , 546.1nm ) 、 蓝 ( 2% , 435.8nm )3个视觉。 • CIE标准只是实验数据的近似,没有单--。 • 图2.2.6显示了人眼对红、绿、蓝光吸收 的平均试验曲线。 • 当 λ < 400nm或 λ >760nm时,V(λ ) =0,说明了人眼已没有亮度感觉。
2.4.2 数字图像表示
• 取样和量化的结果是一个实际矩阵。 • 假如一幅图像f(x,y)被取样,则产生的数 字图像有p行q列。 • 坐标(x,y)的值是离散量,对离散坐标 量取整。 • 原点的坐标值是(x,y)=(0,0)其它依 次类推。
2.4.3 空间和灰度级分别率 • 取样值是决定一幅图形空间分辨率的主 要参数。 • 灰度级分辨率是指灰度级别中可分辨的 最小变化。 • 考虑到硬件方面的因素,灰度级数通常 是2的整数次幂,一般取8比特。 • 通常把大小为P*Q,灰度为L的数字图像 称为空间分辩率为P*Q像素、灰度级分 辩率为L的数字图像。
2.5 三基色原理
• 根据人眼的视觉特性,在彩色重现过程 中,并不要求恢复原景物辐射光的光谱 成分,重要的是应获得与原景物相同的 彩色感觉。 • 比若,某一单色光的彩色感觉,也可以 由不同光谱分布的色光的组合而成。

《数字视频处理》课件

《数字视频处理》课件
《数字视频处理》PPT课 件
数字视频处理是指对数字视频进行各种处理和操作的技术和方法。本课件将 介绍数字视频处理的基础知识、技术、实践以及未来展望。
数字视频处理介绍
1 什么是数字视频处理?
数字视频处理是指对数字视频进行各种处理和操作的技术和方法。
2 应用领域
数字视频处理广泛应用于电影、电视、广告、游戏等领域。
3 数字视频处理基础知识
了解视频编码、像素处理、颜色空间转换等基础知识。
数字视频处理技术
数字视频压缩
学习如何压缩视频文件大小,减少存储空间和传输 带宽。
视频编解码技术
了解各种视频编解码算法,以及它们对视频质量、 压缩率的影响。
视频增强技术
学习如何提高视频质量、增强图像细节和对比度。
视频分析技术
探索如何从视频中提取出有用的信息,如运动检测 和目标识别。
数字视频处理实践
1
数字视频处理软件介绍
2
了解常用的数字视频处理软件
数字视频处理项目实战
参与实际项目,锻炼数字视频处理技能, 解决实际问题。
数字视频处理流程示例
从采集、编辑、特效到输出,学习数字 视频处理的完整流程。
数字视频处理未来展望
1 数字视频处理发展趋势
探索未来数字视频处理的发展方向和趋势,如人工智能和虚拟现实。
2 数字视频处理技术创新
了解最新的数字视频处理技术,如高效的编码算法和实时图像增强。
3 数字视频处理应用前景
展望数字视频处理在娱乐、教育和医疗等领域的广阔应用前景。
结束语
数字视频处理对生活的 影响
数字视频处理改变了我们的 娱乐方式,提供了更丰富、 更精彩的视觉体验。
数字视频处理的未来意 义

1数字视频信号2解析

1数字视频信号2解析

23
2.4 数字视频处理
(1)处理内容 (2)视频比特流产生—A/D, D/A (3)视频压缩编码 (4)电视信号的数字处理
24
(1)处理内容
根据人的要求对视频图像进行处理: • ห้องสมุดไป่ตู้除视频信号产生, 获取, 传输时引入的失真和干
扰, 尽可能逼真地重现图像; • 视频压缩—在保证一定图像质量的前提下尽可能
29
2.5 数字视频设备
• 数字特技机; • 数字时基校正器; • 数字帧同步机; • 数字录像机; • 数字电视接收机; • 数码相机; • 网络摄象机。
30
31
2.6 数字视频应用
• 数字电视; • 多媒体桌面视频; • 视频会议; • 可视电话和移动图象通信; • 数字视频监控; • 智能化视频交通处理; • 医疗视频图象处理; • 航空和飞行控制仿真。
18 T.M.D.S.Data0+
19 T.M.D.S.Data0/5
20 T.M.D.S.Data5- 地
21 T.M.D.S.Data5+
22 T.M.D.S.Clock 地
23 T.M.D.S.Clock +
24 T.M.D.S.Clock -
C3 B(模拟)
12
➢LVDS最初是作为高功率ECL线驱动的替代技术而 发展起来的,通过降低功率可以提高ECL的有限特 性,如普通电源供电、高集成度与低成本IC封装 的兼容性等。LVDS是在ANSI/TIA/EIA-644-A 中定义的开放标准,可以抑制高达±1V的共模噪 声,这种噪声可能是耦合噪声,也可能是总线节 点之间接地零电平的差值引起。LVDS的差分特性 使其具有很强的噪声容限,不需要对驱动器和接 收器的电源电压作任何限制,所以经常看到驱动 端采用5V供电而接收端采用3.3V的设计。

第二章 数字视频描述

第二章   数字视频描述

2.1
颜色感知和表示
3、彩色混合的三基色原理
三基色原理: 三基色原理:任何一种颜色可以通过三基色 按不同比例混合得到。 按不同比例混合得到。 • 照明光源的基色系包括红色、绿色和蓝色, 照明光源的基色系包括红色 绿色和蓝色, 的基色系包括红色、 称为RGB基色。 RGB基色 称为RGB基色。 • 反射光源的基色系包括青色、品色和黄色, 反射光源的基色系包括青色 品色和黄色, 的基色系包括青色、 称为CMY基色。 CMY基色 称为CMY基色。 RGB和CMY基色系是互补的 基色系是互补的, RGB和CMY基色系是互补的,也就是说混 合一个色系中的两种彩色会产生另外一个色 系中的一种彩色。 系中的一种彩色。
2.1
颜色感知和表示
三类锥状细胞其峰值分别位于红色(570nm附 三类锥状细胞其峰值分别位于红色(570nm附 (570nm 绿色(535nm附近)和蓝色(445nm附近) (535nm附近 (445nm附近 近)、绿色(535nm附近)和蓝色(445nm附近)波 它们的组合可以使人类感知任何彩色, 长,它们的组合可以使人类感知任何彩色,这 就是彩色视觉的三感光细胞原理。 就是彩色视觉的三感光细胞原理。
数字视频定义的YCbCr 数字彩色信号与模拟 数字视频定义的 YCbCr数字彩色信号与模拟 YCbCr RGB信号之间的转换关系如下 信号之间的转换关系如下: RGB信号之间的转换关系如下:
Y Cb Cr R G B = 0.257 0.504 0.098 -0.148 -0.291 0.439 0.439 -0.368 -0.071 1.164 0.000 1.596 1.164 -0.392 -0.813 1.164 2.017 0.000 R G B + 16 128 128
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.三基色原理:任何一种颜色可以通过三基色按不同比例混合得到。

照明光源的基色系包括红色、绿色和蓝色,称为RGB基色。

R+G+B=White 反射光源的基色系包括青色、品色和黄色,称为CMY基色。

C+M+Y=Black RGB和CMY基色系是互补的,也就是说混合一个色系中的两种彩色会产生另外一个色系中的一种彩色。

2.HVS(人类视觉系统) -人类获取外界图像、视频信息的工具。

视网膜有两种类型感光细胞:
锥状细胞:在亮光下起作用,感知颜色的色调。

含有三种类型的锥状细胞。

杆状细胞:在暗一些的光强下工作,只能感知亮度信息。

3.相加混色法:
1)空间混色法:将三种基色光同时分别投射到同一平面的相邻3点,若3点相距足够近,由于人眼的分辨力有限和相加混色功能,因此,人眼看到的不是基色,而是这三种基色的混合色。

彩色显像管的现象就是利用了空间混色法。

2)时间混色法:按一定顺序轮流将三种基色光投射到同一平面上,由于人眼的视觉惰性和相加混色功能,因此,人眼看到的不是基色,而是这三种基色的混合色。

场顺序制彩色电视就是采用时间混色法以场顺序来传送三种基色信号的。

3)生理混色法:(立体彩色电视的显像原理)
4)全反射混色法:(投影电视的基本原理)
4.彩色电视三种制式:
NTSC制:正交平衡调幅制(采用YIQ彩色空间)
PAL制:正交平衡调幅逐行倒相制(采用YUV彩色空间)
SECAM制:行轮换调频制(采用YDbDr彩色空间)
矢量量化
编码--用二进制数来表示量化后样值的过程
9.量化:(将无限极的信号幅度变换成有限级的数码表示)
量化的用途
1)将模拟信号转换为数字信号,以便进行数字处理和传输
2)用于数据压缩
10.二维采样定理:
若二维连续信号f(x,y)的空间频率u和v分别限制在|u|<=Um、|v|<=Vm (Um、Vm为最高空间频率),则只要采样周期Δx、Δy满足Δx<=1/2Um、Δy<=1/2Vm,就可以由采样信号无失真的恢复原信号。

3.基于多分辨率的运动估计:
1)运动场接近最优解的概率更大;在较小分辨率层上,误差函数可以接近全局最小值,通过插值,获得高分辨率上的初始解,最后到达最大分辨率时,运动场很可能接近最优解。

2)计算量比直接在最大分辨率上进行运动估计时要小;在较小分辨率层上,搜索范围限制在较小的范围。

1.压缩时,视频冗余:
1)空间冗余:相邻像素/行变化小
2)时间冗余:相邻帧变化小,具有相关性
3)结构冗余:图像从大面积上看常存在有相似结构,称之为结构冗余。

4)知识冗余:有些图像的理解与某些知识有相当大的相关性
5)视觉冗余:人眼的视觉系统对于图像的感知是非均匀和非线性的,对图像的变化并不都能察觉出来。

3.预测编码:
利用图像信号的空间或时间相关性,用已传输的像素对当前的像素进行预测,即只对预测值与真实值的差——预测误差进行编码(处理和传输)。

所谓预测编码,就是用信源的前几个符号来预测接下来的符号,用几个符号就称之为几阶预测。

不直接对当前符号进行编码,而是利用相邻符号来预测当前符号,然后对预测误差进行编码。

预测编码主要消除时间冗余和生理冗余。

(1)运动估计
是对运动物体的位移作出估计,即估计出运动物体从上一帧到当前帧的位移方向和位移量,也就是估计出运动矢量。

(2)运动补偿
是按照运动矢量将上一帧作位移基准,求出当前帧的运动结果。

对运动物体的补偿后的位移帧差信号以及运动矢量等进行编码传输。

帧间运动补偿原理:
①当前帧在过去帧的窗口中寻找匹配部分,从中找到运动矢量;
②根据运动矢量,将过去帧位移,求得对当前帧的估计;
③将这个估计和当前帧相减,求得估计的误差值;
④将运动矢量和估计的误差值送到接收机端去。

4.变换编码:
将空间域描述的图像经某种变换(如傅立叶变换、离散余弦变换等),即将空间域分散分布的图像能量变为变换域的相对集中分布,便于用Z字形扫描、自适应量化、变长编码等进一步处理,完成对图像信息的有效压缩。

变换编码主要消除空间冗余。

1.JPEG:
JPEG是联合图象专家组(Joint Picture Expert Group)的英文缩写,是国际标准化组织(ISO)和CCITT联合制定的静态图象的压缩编码标准。

JPEG是目前静态图象中压缩比最高的。

JPEG压缩是有损压缩,它利用了人的视觉系统的特性,使用量化和无损压缩编码相结合来去掉视觉的冗余信息和数据本身的冗余信息。

DCT的特点:
DC分量为子块的平均灰度,系数分布集中在低频端
(1)正交变换具有熵保持性
(2)正交变换具有能量保持性,并能把能量重新分配与集中。

(3)去相关性,可使高度相关的空间样值变为相关性较弱的变换系数,从而
减少空间样值之间冗余度。

四种操作模式:
(1)基于DCT的顺序型操作模式一遍扫描
(2)基于DCT的渐进型操作模式从粗到细多遍扫描
(3)基于DPCM的无损编码操作模式
(4)基于多分辨率编码的操作模式
2.JPEG2000主要特点:(新一代静态图像压缩标准)
(1)高压缩率。

与JPEG相比,可修复约30%的速率失真特性。

JPEG和JPEG2000在压缩率相同时, JPEG2000的信噪比将提高30%左右;
(2)无损压缩。

预测编码作为对图像进行无损编码的成熟方法被集成在JPEG2000中;
(3)渐进传输。

JPEG2000可实现以空间清晰度和信噪比为首的各种可调节性,从而实现渐进传输,即具有“渐现”特性;
(4)感兴趣区域压缩。

JPEG2000 支持所谓的“感兴趣区域”。

与JPEG的区别:
采用了以小波变换为主的多分辨率编码方式:统一了面向静态图像和二值图像的编码方式:既支持低比率压缩又支持高比率压缩。

3.H.264/AVC新一代视频压缩标准:
根据应用领域不同,制定了不同的算法集合和技术限定,共分为3个档次:基本档(视频会话)、主档(消费电子应用)和扩展档(网络视频流)。

基本档是扩展档的子集,但不是主档的子集。

H.264优点:
(1)更高的编码效率
(2)自适应的时延特性
(3)面向IP包的编码机制
(4)错误恢复功能
(5)开放性
显示顺序:
编码顺序:
I、P、B关系:
图像压缩首先处理I帧图像,然后是P帧,最后在两者的基础上才处理B帧;
IBBPBBP……帧序重排:在编码器端需要对输入图像重新排序,对按显示顺序输入的序列,经过帧序重排后成为按编码顺序排列,然后按I、 P 、 B帧分别进行编码,即图像的显示顺序和编码顺序不相同。

6层数据结构:
图像序列、图像组、图片、切片slice、宏块、块
(1)图像序列层——由连续图像组成,用序列终止符结束;
(2)图像组层——图像组(GOP)由几帧连续图像组成,是随机存取单元,其第一帧总是I帧;
(3)图像层——图像(帧)编码的基本单元,独立的显示单元;
(4)条带层——由一帧图像中的几个宏块组成,主要用于误差恢复;
(5)宏块层——一个宏块由四个8×8的亮度块和两个8×8的色差块组成;
(6)块层——一个8×8的像素区域称为一个块,是最小的DCT单位。

MPEG-4采用了基于对象的编码方案。

相关文档
最新文档