初三数学阶段测试B卷
2023年重庆市(初三毕业考试)中考数学真题试卷(B卷)含详解

重庆市2023年初中学业水平暨高中招生考试数学试卷(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.4的相反数是()A.14 B.14- C.4 D.4-2.四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A. B. C. D.3.如图,直线a ,b 被直线c 所截,若a b ,163∠=︒,则2∠的度数为().A.27︒B.53︒C.63︒D.117︒4.如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.55.反比例函数6y x =的图象一定经过的点是()A.()3,2- B.()2,3- C.()2,4-- D.()2,36.用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.267.估计-的值应在()A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间8.如图,AB 为O 的直径,直线CD 与O 相切于点C ,连接AC ,若50ACD ∠=︒,则BAC ∠的度数为()A.30︒B.40︒C.50︒D.60︒9.如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF 的长度为()A.2B.C.1D.10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0 B.1 C.2 D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的撗线上.11.计算:05(2-+=________.12.有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是________.13.若七边形的内角中有一个角为100︒,则其余六个内角之和为________.14.如图,在ABC 中,AB AC =,AD 是BC 边的中线,若5AB =,6BC =,则AD 的长度为________.15.为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程________.16.如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)17.若关于x 的不等式组213241x x x a x +⎧>+⎪⎨⎪+<-⎩的解集为<2x -,且关于y 的分式方程22211a y y y +++=--的解为正数,则所有满足条件的整数a 的值之和为________.18.对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵716-=,312-=,∴7311是“天真数”;四位数8421,∵816-≠,∴8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()()3P M a b c d =+++,()5Q M a =-,若()()P M Q M 能被10整除,则满足条件的M 的最大值为________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)()()263x x x ++-;(2)2293n m n m m -⎛⎫+÷ ⎪⎝⎭.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.21.某洗车公司安装了A ,B 两款自动洗车设备,工作人员从消费者对A ,B 两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级,不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息.抽取的对A 款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B 款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m 9645%B 8887n40%根据以上信息,解答下列问题:(1)填空:=a _______,m =_______,n =_______;(2)5月份,有600名消费者对A 款自动洗车设备进行评分,估计其中对A 款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.23.某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒503亩,求派往甲区每架次无人机平均喷洒多少亩?24.人工海产养殖合作社安排甲、乙两组人员分别前往海面A ,B 养殖场捕捞海产品,经测量,A 在灯塔C 的南偏西60︒方向,B 在灯塔C 的南偏东45︒方向,且在A 的正东方向,3600AC =米.(1)求B 养殖场与灯塔C 的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B 处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B 2 1.414≈3 1.732≈)25.如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C -.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.26.如图,在等边ABC 中,AD BC ⊥于点D ,E 为线段AD 上一动点(不与A ,D 重合),连接BE ,CE ,将CE 绕点C 顺时针旋转60︒得到线段CF ,连接AF .(1)如图1,求证:CBE CAF ∠=∠;(2)如图2,连接BF 交AC 于点G ,连接DG ,EF ,EF 与DG 所在直线交于点H ,求证:EH FH =;(3)如图3,连接BF 交AC 于点G ,连接DG ,EG ,将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,连接PQ ,QF .若4AB =,直的最小值.接写出PQ QF重庆市2023年初中学业水平暨高中招生考试数学试卷(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.4的相反数是()A.14 B.14- C.4 D.4-【答案】D【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【详解】解:4的相反数是4-,故选:D .【点睛】本题考查相反数的概念,关键是掌握相反数的定义.2.四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A. B. C. D.【答案】A 【分析】从正面看到的有三列,从左到右正方形的个数依次是1,1,2,据此判断即可.【详解】解:从正面看到的视图是:,故选:A .【点睛】本题考查了几何体的视图,明确从正面看到的视图是解题关键.3.如图,直线a ,b 被直线c 所截,若a b ,163∠=︒,则2∠的度数为().A.27︒B.53︒C.63︒D.117︒【答案】C 【分析】求2∠的度数,根据平行线的性质求解即可.【详解】∵a b ,∴1263∠=∠=︒,故选:C .【点睛】此题考查了平行线的性质,解题的关键熟练掌握两直线平行,内错角相等的性质.4.如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B 【分析】根据相似三角形的性质即可求出.【详解】解:∵ABC EDC ∽,∴::AC EC AB DE =,∵:2:3AC EC =,6AB =,∴2:36:DE =,∴9DE =,故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.5.反比例函数6y x =的图象一定经过的点是()A.()3,2- B.()2,3- C.()2,4-- D.()2,3【答案】D【分析】根据反比例函数的定义,只要点的横纵坐标之积等于k 即可判断该点在函数图象上,据此求解.【详解】解:∵()()326,236,248,236-⨯=-⨯-=--⨯-=⨯=,∴点()2,3在反比例函数6y x=的图象上,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特点,熟知点的横纵坐标满足函数解析式是解题关键.6.用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341=⨯-;…,所以第⑦个图案中圆圈的个数为37120⨯-=;故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n-是解题的关键.7.估计-的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】A【分析】先计算二次根式的乘法,再根据无理数的估算即可得.1=,253036<<,<<56<<,415∴<<,故选:A.【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握二次根式的乘法法则是解题关键.8.如图,AB为O的直径,直线CD与O相切于点C,连接AC,若50ACD∠=︒,则BAC∠的度数为()A.30︒B.40︒C.50︒D.60︒【答案】B【分析】连接OC,先根据圆的切线的性质可得90OCD∠=︒,从而可得40OCA∠=︒,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC ,直线CD 与O 相切,OC CD ∴⊥,90OCD ∴∠=︒,50ACD ∠=︒ ,40OCA ∴∠=︒,OA OC = ,40BAC OCA ∴∠=∠=︒,故选:B .【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键.9.如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF 的长度为()A.2B.C.1D.【答案】D【分析】连接AF ,根据正方形ABCD 得到AB BC BE ==,90ABC ∠=︒,根据角平分线的性质和等腰三角形的性质,求得45BFE ∠=︒,再证明ABF EBF ≌,求得90AFC ∠=︒,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度.【详解】解:如图,连接AF ,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=︒,22AC ==BEC BCE ∴∠=∠,1802EBC BEC ∴∠=︒-∠,290ABE ABC EBC BEC ∴∠=∠-∠=∠-︒,BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠-︒,45BFE BEC EBF ∴∠=∠-∠=︒,在BAF △与BEF △,AB EB ABF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,()SAS BAF BEF ∴△≌△,45BFE BFA ∴∠=∠=︒,90AFC BAF BFE ∴∠=∠+∠=︒,O 为对角线AC 的中点,122OF AC ∴==,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得45BFE ∠=︒是解题的关键.10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答.【详解】解:∵x y z m n >>>>,∴x y z m n x y z m n ----=----,∴存在“绝对操作”,使其运算结果与原多项式相等,故①正确;根据绝对操作的定义可知:在多项式x y z m n ----(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0,故②正确;∵在多项式x y z m n ----(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下:∴x y z m n x y z m n ----=----,x y z m n x y z m n ----=-+--,x y z m n x y z m n x y z m n ----=----=--+-,x y z m n x y z m n x y z m n ----=----=---+,x y z m n x y z m n ----=-+-+,共有5种不同运算结果,故③错误;故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的撗线上.11.计算:05(2-+=________.【答案】6【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516-+-=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.12.有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是________.【答案】14【分析】根据列表法求概率即可求解.【详解】解:列表如下,清风朗月清清清清风清朗清月风风清风风风朗风月朗朗清朗风朗朗朗月月月清月风月朗月月共有16中等可能结果,其中,抽取的两张卡片上的汉字相同的情形有4种,∴抽取的两张卡片上的汉字相同的概率是14,故答案为:14.【点睛】本题考查了列表法求概率,熟练掌握列表法求概率是解题的关键.13.若七边形的内角中有一个角为100︒,则其余六个内角之和为________.【答案】800︒##800度【分析】根据多边形的内角和公式()1802n ︒-即可得.【详解】解:∵七边形的内角中有一个角为100︒,∴其余六个内角之和为()180********︒⨯--︒=︒,故答案为:800︒.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.14.如图,在ABC 中,AB AC =,AD 是BC 边的中线,若5AB =,6BC =,则AD 的长度为________.【答案】4【分析】根据等腰三角形的性质和勾股定理求解即可.【详解】解:∵在ABC 中,AB AC =,AD 是BC 边的中线,∴AD BC ⊥,12BD BC =,在Rt △ABD 中,5AB =,132BD BC ==,∴4AD ===,故答案为:4.【点睛】本题考查等腰三角形的性质、勾股定理,熟练掌握等腰三角形的三线合一性质是解答的关键.15.为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程________.【答案】2301(1)500x +=【分析】根据变化前数量2(1)x ⨯+=变化后数量,即可列出方程.【详解】 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .∴第二个月新建了301(1)x +个充电桩,∴第三个月新建了2301(1)x +个充电桩,第三个月新建了500个充电桩,于是有2301(1)500x +=,故答案为2301(1)500x +=.【点睛】本题考查了一元二次方程的实际应用中的增长率问题,若设平均增长率为x ,则有(1)n a x b +=,其中a 表示变化前数量,b 表示变化后数量,n 表示增长次数.解决增长率问题时要注意区分变化前数量和变化后数量,同时也要注意变化前后经过了几次增长.16.如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)【答案】4π-【分析】利用矩形的性质求得2,2AB CD BE CE ====,进而可得45BAE AEB DEC CDE ∠=∠=∠=∠=︒,然后根据()2ABE BEM S S S =- 阴影扇形解答即可.【详解】解:∵四边形ABCD 是矩形,2AB =,4BC =,E 为BC 的中点,∴12,22AB CD BE CE BC =====,90ABC DCB ∠=∠=︒,∴45BAE AEB DEC CDE ∠=∠=∠=∠=︒,∴()2145212=22222423602ABE BEM S S S πππ⎛⎫⨯⎛⎫=-⨯⨯⨯-=⨯-=- ⎪ ⎪⎝⎭⎝⎭阴影扇形;故答案为:4π-.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45︒的扇形面积是解题关键.17.若关于x 的不等式组213241x x x a x +⎧>+⎪⎨⎪+<-⎩的解集为<2x -,且关于y 的分式方程22211a y y y +++=--的解为正数,则所有满足条件的整数a 的值之和为________.【答案】13【分析】先求出一元一次不等式组中两个不等式的解集,从而可得5a ≤,再解分式方程可得2a >-且1a ≠,从而可得25a -<≤且1a ≠,然后将所有满足条件的整数a 的值相加即可得.【详解】解:213241x x x a x +⎧>+⎪⎨⎪+<-⎩①②,解不等式①得:<2x -,解不等式②得:13a x +<-,∵关于x 的不等式组213241x x x a x +⎧>+⎪⎨⎪+<-⎩的解集为<2x -,123a +∴-≥-,解得5a ≤,方程22211a y y y+++=--可化为()2221a y y +--=-,解得23a y +=, 关于y 的分式方程22211a y y y +++=--的解为正数,203a +∴>且2103a +-≠,解得2a >-且1a ≠,52a ∴-<≤且1a ≠,则所有满足条件的整数a 的值之和为10234513-+++++=,故答案为:13.【点睛】本题考查了一元一次不等式组、分式方程,熟练掌握不等式组和分式方程的解法是解题关键.18.对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵716-=,312-=,∴7311是“天真数”;四位数8421,∵816-≠,∴8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()()3P M a b c d =+++,()5Q M a =-,若()()P M Q M 能被10整除,则满足条件的M 的最大值为________.【答案】①.6200②.9313【分析】根据题中“天真数”可求得最小的“天真数”;先根据题中新定义得到()8c d a b +=+-,进而()()()485P M M a Q b a +--=,若M 最大,只需千位数字a 取最大,即9a =,再根据()()P M Q M 能被10整除求得3b =,进而可求解.【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d -=,2b c -=,69a ≤≤,29b ≤≤,则()8c d a b +=+-,∴()()()348P M a b c d a b =+++=+-,∴()()()485P M M a Q b a +--=,若M 最大,只需千位数字a 取最大,即9a =,∴()()()498795b P Q b M M =+-=+-,∵()()P M Q M 能被10整除,∴3b =,∴满足条件的M 的最大值为9313,故答案为:6200,9313.【点睛】本题是一道新定义题,涉及有理数的运算、整式的加减、数的整除等知识,理解新定义是解答的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)()()263x x x ++-;(2)2293n m n m m -⎛⎫+÷ ⎪⎝⎭.【答案】(1)229x +(2)13m n-【分析】(1)先根据单项式乘以多项式的法则、完全平方公式计算,再合并同类项;(2)根据分式混合运算的法则解答即可.【小问1详解】解:()()263x x x ++-22669x x x x =++-+229x =+;【小问2详解】解:2293n m n m m -⎛⎫+÷ ⎪⎝⎭()()333m n m m m n m n +=⋅+-13m n=-.【点睛】本题考查了整式和分式的运算,属于基本计算题型,熟练掌握整式和分式混合运算的法则是解题的关键.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21.某洗车公司安装了A ,B 两款自动洗车设备,工作人员从消费者对A ,B 两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级,不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息.抽取的对A 款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B 款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m 9645%B 8887n40%根据以上信息,解答下列问题:(1)填空:=a _______,m =_______,n =_______;(2)5月份,有600名消费者对A 款自动洗车设备进行评分,估计其中对A 款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【答案】(1)15,88,98(2)90(3)A 款,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一)【分析】(1)先根据“满意”的人数除以总人数求得“满意”所占百分比,进而求得a ,再根据中位数和众数的定义求得m ,n ;(2)利用样本估计总体即可;(3)根据平均数、中位数、众数及“非常满意”所占百分比即可得出结论.【小问1详解】解: 抽取的对A 款设备的评分数据中“满意”的有6份,∴“满意”所占百分比为:6100%30%20⨯=,∴“比较满意”所占百分比为:130%45%10%15%---=,15a ∴=,抽取的对A 款设备的评分数据中的中位数是第10份和第11份数据的平均数,“不满意”和“满意”的评分有()2010%15%5⨯+=(份),∴第10份和第11份数据为“满意”,评分分别为87,89,∴8789882m +==, 抽取的对B 款设备的评分数据中出现次数最多的是98,98n ∴=,故答案为:15,88,98;【小问2详解】解:600名消费者对A 款自动洗车设备“比较满意”的人数为:60015%90⨯=(人),答:600名消费者对A 款自动洗车设备“比较满意”的人数为90人.【小问3详解】解:A 款自动洗车设备更受欢迎,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一).【点睛】本题考查了扇形统计图,中位数,众数,样本估计总体,从统计图表中获取信息时,认真观察、分析,理解各个数据之间的关系是解题的关键.22.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【小问1详解】解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;【小问2详解】函数图象如图:当04t <≤时,y 随x 的增大而增大;【小问3详解】当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.【点睛】此题考查了动点问题,一次函数的图象及性质,解一元一次方程,正确理解动点问题是解题的关键.23.某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒503亩,求派往甲区每架次无人机平均喷洒多少亩?【答案】(1)甲区有农田50000亩,乙区有农田40000亩(2)100亩【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x -亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫- ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【小问1详解】解:设甲区有农田x 亩,则乙区有农田()10000x -亩,由题意得:80%10000x x =-,解得50000x =,则10000500001000040000x -=-=,答:甲区有农田50000亩,乙区有农田40000亩.【小问2详解】解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫- ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次,由题意得:5031.2ay a y ⎛⎫=- ⎪⎝⎭,即5031.2y y ⎛⎫=- ⎪⎝⎭,解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.24.人工海产养殖合作社安排甲、乙两组人员分别前往海面A ,B 养殖场捕捞海产品,经测量,A 在灯塔C 的南偏西60︒方向,B 在灯塔C 的南偏东45︒方向,且在A 的正东方向,3600AC =米.。
九年级数学试卷(B卷)及答案

一 填空题1.如图,将ABC △绕点C 顺利针方向旋转40︒得A CB ''△,若AC A B ''⊥,则BAC ∠等于( )A.50︒ B.60︒ C.70︒ D.80︒2.如图,已知梯形ABCD 的中位线为EF ,且AEF △的面积为26cm ,则梯形ABCD 的面积为( )A.212cm B.218cm C.224cm D.230cm 3一组数据2、1、5、4的方差和中位数分别是( )A .2.5和2B .1.5和3C .2.5和3D .1.5和2 4关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .1a >- B .10a a >-≠且 C .1a <- D .12a a <-≠-且5.如图是四棱锥(底面是矩形,四条侧棱等长),则它的俯视图是( )6如图,已知Rt ΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( )A .84π5B .24πC .168π5 D .12π 7一副三角板按图1所示的位置摆放,将△DEF 绕点A(F)逆时针旋转60°后(图2),测得CG =8cm ,则两个三角形重叠(阴影)部分的面积为( ) A .16+2 B .16cm 2 C .16cm 2 D .48cm 2 8如图,点A 、B 的坐标分别为(﹣2,﹣3)和(1,﹣3),抛物线y=a (x ﹣h )2+k 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣6,则点D 的横坐标最大值为( )A . ﹣3B .﹣2C . 2D . 5ACB第6题图A .B .C .D .第5题图第1题图第2题迎 迎接 奥 运 圣 火 接 奥1 23 9.某班七个合作学习小组人数如下:4、5、5、x 、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是( ) A .5 B .5.5 C .6 D .7 10.如图,矩形ABCD 中,AB=8,AD=3.点E 从D 向C 以 每秒1个单位的速度运动,以AE 为一边在AE 的右下方 作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过多少秒时.直线MN 和正方形AEFG 开始有公共点?( ) A .53 B .12 C .43 D .2311.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,A 、B 、P 是⊙O 上的点,则∠APB 等于( ).A .30°B .45°C .60°D .90° 12.抛物线3)5(22--=x y 的顶点坐标是( ).A .(53),B .(53)-,C .(53),-D .(53)-,-13.如图,若A B C '''∆与ABC △关于直线AB 对称, 则点C 的对称点C ’的坐标是( ). A .(0,-1) B .(0,-3) C .(2,1) D .(1,2)14如图,一次函数y 1=kx+n (k ≠0)与二次函数y 2=ax2+bx+c (a ≠0)的图象相交于A (﹣1,5)、B (9,2)两点,则关于x 的不等式kx+n ≥ax 2+bx+c 的解集为( )A . ﹣1≤x ≤9B . ﹣1≤x <9C . ﹣1<x ≤9D . x ≤﹣1或x ≥9 15.如图,点A ,B ,C 在一次函数y=﹣2x+m 的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A. 1 B . 3 C . 3(m ﹣1) D .16如图(1)是一个小正方体的侧面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是()A .圣B .火C .运 D.接A 第11题17在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )18.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( ) A .-2 B .-1 C .1 D .2 19.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示).对应的两条抛物线关于y 轴对称,AE ∥x 轴,AB =4cm ,最低点C 在x2cm .则右轮廓线DFE 所在抛物线的函数解析式为( )A .2)3(41+=x yB .2)3(41--=x yC .2)3(41+-=x yD .2)3(41-=x y20.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…,按这样的规律进行下去,第2013个正方形的面积为( )A .2012235⎪⎭⎫⎝⎛⨯ B .2012495⎪⎭⎫⎝⎛⨯C .2013235⎪⎭⎫ ⎝⎛⨯D .2013495⎪⎭⎫ ⎝⎛⨯二、填空题1.函数y =的自变量x 的取值范围是__________. 2.已知函数1+-=x y 的图象与x 轴、y 轴分 别交于点C 、B ,与双曲线xky =交于点A 、D , 若AB+CD= BC ,则k 的值为.xA. B. C..3.如图,在腰梯形ABCD 中,E 、N 、F 、M 分别各边中点。
成都初三数学b卷试题及答案

成都初三数学b卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y=ax+bB. y=ax^2+bx+cC. y=a(x-h)^2+kD. y=a(x+b)^2+c答案:B2. 一个圆的半径为3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C3. 如果一个角的补角是它的两倍,那么这个角的度数是多少?A. 30°B. 60°C. 90°D. 120°答案:A4. 一个等腰三角形的两边长分别为4和6,那么它的周长是多少?A. 14B. 16C. 18D. 20答案:C5. 一个数的立方根等于它本身,这个数可能是?A. 1B. -1C. 0D. 以上都是答案:D6. 已知一组数据的平均数是5,中位数是4,众数是3,那么这组数据的极差是多少?A. 2B. 4C. 6D. 无法确定答案:D7. 直角三角形的两直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 8答案:A8. 下列哪个选项是不等式的基本性质?A. 若a>b,则a+c>b+cB. 若a>b,c>0,则ac>bcC. 若a>b,c<0,则ac>bcD. 若a>b,则a/c>b/c答案:A9. 一个正多边形的内角和是720°,那么这个多边形的边数是多少?A. 5B. 6C. 8D. 10答案:C10. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 无法确定答案:A二、填空题(每题3分,共15分)11. 已知一个等腰三角形的顶角是80°,那么它的底角是多少度?________答案:50°12. 一个数的绝对值是5,那么这个数可能是________答案:±513. 一个二次函数的顶点坐标是(2,3),那么它的对称轴是________答案:x=214. 一个圆的直径是8,那么它的周长是多少?________答案:8π15. 一个三角形的三边长分别是3,4,5,那么这个三角形的面积是多少?________答案:6三、解答题(共55分)16. (10分)已知一个二次函数y=ax^2+bx+c,其中a=1,b=-2,c=1,求这个函数的顶点坐标和对称轴。
成都初三数学b卷试题及答案

成都初三数学b卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x+3=7的解?A. x=1B. x=2C. x=3D. x=42. 一个数的平方是36,这个数是?A. 6B. ±6C. -6D. 363. 一次函数y=2x+1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 圆的面积公式是πr²,其中r是?A. 直径B. 半径C. 周长D. 面积5. 一个长方体的长、宽、高分别为3cm、2cm、1cm,其体积是?B. 9cm³C. 12cm³D. 18cm³6. 一个角的补角是120°,那么这个角的度数是?A. 60°B. 30°C. 90°D. 120°7. 函数y=3x-2的图象与x轴交点的横坐标是?A. 2/3B. -2/3C. 2D. -28. 一个三角形的内角和是?A. 90°B. 180°C. 360°D. 720°9. 一个数的立方是-27,这个数是?A. -3B. 3C. ±3D. 910. 一个圆的直径是10cm,那么它的半径是?A. 5cmC. 15cmD. 20cm二、填空题(每题3分,共30分)1. 一个数的相反数是-5,那么这个数是______。
2. 如果一个角是直角的一半,那么这个角的度数是______。
3. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的面积是______。
4. 一个数的绝对值是4,这个数可以是______。
5. 一个长方体的体积是64cm³,长和宽都是4cm,那么它的高是______。
6. 一个数的平方根是2,那么这个数是______。
7. 一个数的立方根是-2,那么这个数是______。
8. 一个直角三角形的两条直角边长分别是3cm和4cm,那么它的斜边长是______。
2024重庆中考数学b试题及答案

2024重庆中考数学b试题及答案2024年重庆中考数学B试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.0B. √2C. 0.5D. π2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 14D. 无法确定3. 一个二次函数y=ax^2+bx+c的顶点坐标为(2,1),且过点(0,3),则a的值为?A. -1B. 1C. -2D. 24. 以下哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 正方形D. 圆5. 一个圆的半径为r,那么它的面积是多少?A. πr^2B. 2πrC. πrD. r^26. 一个数的立方根等于它本身,这个数可能是?A. 0B. 1C. -1D. A和C7. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 无法确定8. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 0D. A和B9. 一个数的平方是25,那么这个数可能是?A. 5B. -5C. 0D. A和B10. 一个数的倒数是1/2,那么这个数是?A. 2B. 1/2C. -2D. -1/2二、填空题(每题3分,共15分)11. 一个等差数列的首项为2,公差为3,那么第5项的值是_________。
12. 一个直角三角形的两直角边长分别为3和4,那么斜边长是_________。
13. 一个数的平方根是2,那么这个数是_________。
14. 一个数的立方是8,那么这个数是_________。
15. 一个圆的直径为10,那么它的周长是_________。
三、解答题(每题15分,共45分)16. 已知一个二次函数y=ax^2+bx+c,其中a>0,且该函数的图像与x 轴有两个交点,求证:b^2-4ac>0。
17. 一个等腰三角形的两边长分别为5和10,求证:这个三角形是等腰三角形。
18. 一个数列的前三项分别为1,2,3,且每一项都是前一项的2倍,求证:这个数列是等比数列。
成都中考数学B卷专练(16套)含详细答案

成都中考B 卷专练(16套)含详细答案B 卷专练(一)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分) 21. 若a -b =3,a -c =1,则(2a -b -c )2+(c -a )3=________.22. 若n 是一个两位正整数,且n 的个位数字大于十位数字,则称n 为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.则抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率是________.23. 已知a n =1-1(n +1)2(n =1,2,3,…),定义b 1=a 1,b 2=a 1·a 2,b n =a 1·a 2·…·a n ,则b 2019=________.24. 如图,直线y =-2x +2与x 轴、y 轴分别相交于点A 、B ,四边形ABCD 是正方形,双曲线y =kx 在第一象限经过点D ,则k =________.第24题图25. 如图,在等腰△ABC 中,CA =CB =6,AB =6 3.点D 在线段AB 上运动(不与点A 、B 重合),将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAE 与△CBF ,连接EF ,则△CEF 面积的最小值为________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)国家为支持大学生创业,提供小额无息贷款,学生王芳享受政策无息贷款36000元用来代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y (件)与销售价x (元/件)之间的关系如图所示,每天付员工的工资每人每天82元,每天应支付其他费用106元.(1)求日销售y(件)与销售价x (元/件)之间的函数关系式;(2)若该店只有2名员工,则该店至少需要多少天才能还清贷款,此时,每件服装的价格应定为多少元?第26题图27. (本小题满分10分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一动点,作EM⊥EC交AB 于点M,点N在射线MB上,且AE2=AM·AN,连接NE.(1)如图①,求证:∠ANE=∠DCE;(2)如图②,当点N在线段MB上时,连接AC,且AC⊥NE,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.28. (本小题满分12分)如图①,抛物线y=ax2-3ax-2交x轴于A、B(A左B右)两点,交y轴于点C,过点C作CD∥x轴,交抛物线于点D,E(-2,3)在抛物线上.(1)求抛物线的解析式;(2)P为第一象限抛物线上一点,过点P作PF⊥CD于点F,连接PE交y轴于点G,连接FG,DE,求证:FG∥DE;(3)如图②,在(2)的条件下,过点F作FM⊥PE于点M.若∠OFM=45°,求P点坐标.第28题图B 卷专练(二)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A 、B ,则点A 表示的数为________.第21题图22. 已知m ,n 是关于x 的方程x 2+(2b +3)x +b 2=0的两个实数根,且满足1m +1=-1n ,则b 的值为________.23. 一只小鸟自由自在在空中飞翔,然后随意落在如图(由16个小正方形组成)中,则落在阴影部分的概率是________.第23题图24. 在平面直角坐标系xOy 中,对于P (a ,b ),若点P ′的坐标为(ka +b ,a +bk )(其中k 为常数且k ≠0),则称点P ′为点P 的“k 的和谐点”.已知点A 在反比例函数y =43x (x >0)的图象上运动,且点A 是点B 的“3的和谐点”,若Q (-2,0),则BQ 的最小值为________.25. 如图,把正方形纸片对折得到矩形ABCD ,点E 在BC 上,把△ECD 沿ED 折叠,使点C 恰好落在AD 上的点C ′处,点M 、N 分别是线段AC ′与线段BE 上的点,把四边形ABNM 沿NM 向下翻折,点A 落在DE 的中点A ′处.若原正方形的边长为12,则线段MN 的长为________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数解析式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?第26题图27. (本小题满分10分)(1)如图①,已知:在等腰直角△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.小明观察图形特征后猜想线段DE、BD和CE之间存在DE=BD+CE的数量关系,请你判断他的猜想是否正确,并说明理由;(2)如图②,将(1)中的条件改为:△ABC为等边三角形,D、A、E三点都在直线m上,并且有∠BDA =∠AEC=∠BAC=60°,请问结论DE=BD+CE是否成立?并说明理由;(3)如图③,若将(1)中的三角形变形为一般的等腰三角形,△ABC中,AB=AC,∠BAC=α,其中α为任意锐角或钝角,D、A、E三点都在直线m上.问:满足什么条件时,结论DE=BD+CE仍成立?直接写出条件即可.第27题图28. (本小题满分12分)如图,在平面直角坐标系中,抛物线y =x 2+4x 的顶点为A . (1)求点A 的坐标;(2)点B 为抛物线上横坐标等于-6的点,点M 为线段OB 的中点,点P 为直线OB 下方抛物线上的一动点.当△POM 的面积最大时,过点P 作PC ⊥y 轴于点C ,若在坐标平面内有一动点Q 满足PQ =32,求OQ +12QC 的最小值;(3)当(2)中OQ +12QC 取得最小值时,直线OQ 与抛物线另一交点为E ,作点E 关于抛物线对称轴的对称点E ′.点R 是抛物线对称轴上的一点,在x 轴上是否存在点S ,使得以O 、E ′、R 、S 为顶点的四边形是平行四边形?若存在,请直接写出S 点的坐标;若不存在,请说明理由.B 卷专练(三)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. “万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则其中选择红色运动衫的约有________名.第21题图22. 若x 1,x 2是关于x 的方程x 2-2mx +m 2-m -1=0的两个根且x 1+x 2=1-x 1x 2,则m =________. 23. 对于平面直角坐标系xOy 中的点P (a ,b ),若点P ′的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P ′为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P ′(1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P ′点,且线段PP ′的长度为线段OP 长度的2倍,则k 的值________.24. 如图,在矩形ABCD 中,AB =4,BC =5,E 为CD 边上一点,将△BCE 沿BE 折叠,使得点C 落到矩形内点F 的位置,连接AF ,若tan ∠BAF =12,则CE =________.第24题图25. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A (4,4),C (-2,-2),点B ,D 在反比例函数y =k x 的图象上,对角线BD 交AC 于点M ,交x 轴于点N ,若BN ND =53,则k 的值是________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某塑料厂每月生产甲、乙两种塑料的信息如下表:注1:生产乙种塑料每月还需另外支付专用设备维护费20000元.注2:总成本包括生产成本、排污处理费、专用设备维护费.(1)已知该厂每月共生产甲、乙塑料共700吨,甲、乙塑料均不超过400吨,求该厂每月生产利润的最大值;(2)试销中发现,甲种塑料销售量Q(吨)与销售价m(百元)满足一次函数Q=-10m+810,营销利润为W(百元).若规定销售价不低于出厂价,且不高于出厂价的200%,则销售甲种塑料营销利润的最大值是多少?27. (本小题满分10分)已知:正方形ABCD,等腰直角△DEF的直角顶点落在正方形的顶点D处,使△DEF绕点D旋转.(1)当△DEF旋转到图①的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE=1,AE=7,CE=3,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连接DM,DM与AC交于点O,当△DEF的一边DF与边DM重合时(如图②),若OF=53,求CN的长.第27题图28. (本小题满分12分)如图,抛物线y=ax2-2ax+c的图象与坐标轴分别交于A、B、C三点,其中A(-1,0)、C(0,3).点Q是线段BC上方抛物线上的一个动点.(1)求抛物线的表达式;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为P′.若新抛物线经过点C,并且新抛物线的顶点和原抛物线的顶点P的连线PP′平行于直线BC,求新抛物线对应的函数表达式;(3)过点Q作x轴的垂线,交线段BC于点D,再过点Q作QE∥x轴交抛物线于点E,连接DE,请问是否存在点Q使△QDE为等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.第28题图备用图B 卷专练(四)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 已知x 1,x 2是关于x 的方程x 2-(2m -2)x +m 2-2m =0的两根,且满足x 1x 2+2(x 1+x 2)=-1,那么m 的值为________.22. 一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何点的可能性都相同.那么它停在△AOB 上的概率是________.第22题图23. 在平面直角坐标系xOy 中,点A 的坐标为(1,0),P 是第一象限内任意一点,连接PO ,P A ,若∠POA =m °,∠P AO =n °,则我们把(m °,n °)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).若点P 到x 轴的距离为12,则m +n 的最小值为________.24. 如图,在矩形纸片ABCD 中,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则BP 的长为________.第24题图25. 如图,在平面直角坐标系中,等边△OAB 和菱形OCDE 的边OA ,OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx(x >0)的图象经过点B ,则k 的值为________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)一家特产店有A、B两种特产礼盒,A种礼盒进价72元/盒,售价120元/盒,B种礼盒进价40元/盒,售价80元/盒,这两种礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种礼盒各多少盒?(2)调査发现,A种礼盒售价每降3元可多卖1盒.若B种礼盒的售价和销量不变,当A种礼盒降价多少元/盒时,这两种礼盒平均每天的总利润最大,最大是多少元?27. (本小题满分10分)如图①,在正方形ABCD中,E是AB上一动点,F是AD延长线上一点,且DF =BE,(1)求证:CE=CF;(2)在图①中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)如图②,在四边形ABCD中,AD∥BC(BC>AD),∠A=∠B=90°,AB=BC=16,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.第27题图28. (本小题满分12分)如图,抛物线与x 轴交于点A (-1,0),B (3,0),顶点为D (1,-4),点P 为y 轴上一动点.(1)求抛物线的解析式;(2)在y 轴的负半轴上是否存在点P ,使△BDP 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图②,点M (-32,m )在抛物线上,求MP +22PC 的最小值.第28题图B 卷专练(五)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.那么,其中最喜欢足球的学生数占被调查总人数的百分比为________ %.第21题图 第24题图 第25题图22. 设α,β是方程x 2-x -2019=0的两个实数根,则α3-2021α-β的值为______.23. 式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =å,这里“∑”是求和符号,如421n n =å=12+22+32+42=30,通过对以上材料的阅读,计算20191n =å1n (n +1)=________.24. 如图,在Rt △ABC 中,∠BAC =90°,AB =2,边AB 在x 轴上,BC 边上的中线AD 的反向延长线交y 轴于点E (0,3),反比例函数y =kx(x >0)的图象过点C ,则k 的值为________.25. 如图,在平行四边形ABCD 中,∠A =45°,AB =4,AD =22,M 是AD 边的中点,N 是AB 边上一动点,将线段MN 绕点M 逆时针旋转90°至MN ′,连接N ′B ,N ′C ,则N ′B +N ′C 的最小值是________.二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?第26题图27. (本小题满分10分)已知,在△ABC 中,∠ABC -∠ACB =90°,点D 在BC 上,连接AD ,且∠ADB =45°.(1)如图①,求证:∠BAD =∠CAD ;(2)如图②,点E 为BC 的中点,过点E 作AD 的垂线分别交AD 的延长线,AB 的延长线,AC 于点F ,G ,H ,求证:BG =CH ;(3)如图③,在(2)的条件下,过点E 分别作EM ⊥AG 于点M ,EN ⊥AC 于点N ,若AB +AC =26,EM +EN =12013,求△AFG 的面积.第27题图28. (本小题满分12分)如图,一次函数y=x+3与坐标轴交于A、C两点,过A、C两点的抛物线y=ax2-2x+c与x轴交于另一点B的抛物线顶点为E,连接AE.(1)求该抛物线的函数表达式及顶点E坐标;(2)点P是线段AE上的一动点,过点P作PF平行于y轴交AC于点F连接EF,求△PEF面积的最大值及此时点P的坐标;(3)若点M为坐标轴上一点,点N为平面内任意一点,是否存在这样的点,使以A、E、M、N为顶点的四边形是以AE为对角线的矩形?如果存在,请直接写出N点坐标;若不存在,请说明理由.第28题图备用图B 卷专练(六)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 若关于x 的分式方程mx -2=1-x 2-x-3有一个根是x =3,则实数m 的值是____.22. 欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”.如图所示,可见卖油翁的技艺之高超,若铜钱直径为4 cm ,中间有边长为1 cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入口中的概率是________.第22题图23. 如图,矩形ABCD 中,AB =4,AD =3,点P 是CD 边上的一动点(点P 与D 、C 点不重合),四边形ABCP 沿AP 折叠得四边形AFEP ,延长CD 交AF 于点N .若点E 恰好在AD 的延长线上,则DP 的长度为________.第23题图24. 如图,在直角坐标系中,O 为坐标原点,点A (1,2),过点A 分别作x 轴、y 轴的平行线交反比例函数y =kx(x >0)的图象于点C 、B ,连接BC ,延长OA 交BC 于点D .若△ABD 的面积为2,则k 的值为________.第24题图25. 我们规定:一个多边形上任意两点间距离的最大值称为该多边形的“直径”.现有两个全等的三角形,边长分别为4、4、27.将这两个三角形相等的边重合拼成对角线互相垂直的凸四边形,那么这个凸四边形的“直径”为________.二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某公司经销的一种产品每件成本为40元,要求在90天内完成销售任务.已知该产品90天内每天的销售价格与时间(第x天)的关系如下表:任务完成后,统计发现销售员小王90天内日销售量p(件)与时间(第x天)满足一次函数关系p=-2x+200.设小王第x天销售利润为W元.(1)求W与x之间的函数关系式,并写出自变量x的取值范围;(2)小王第几天的销售利润最大?最大利润是多少?(3)任务完成后,统计发现平均每个销售员每天销售利润为4800,公司制定如下奖励制度:如果一个销售员某天的销售利润超过该平均值,则该销售员当天可获得200元奖金.请计算小王一共可获得多少元奖金?27. (本小题满分10分)(1)如图①,锐角△ABC 中,分别以AB 、AC 为边向外作等边△ABE 和等边△ACD ,连接BD ,CE ,试猜想BD 与CE 的大小关系,并说明理由;(2)如图②,△ABC 中,∠ABC =45°,AB =5,BC =3,分别以AB 、AC 为边向外作正方形ABNE 和正方形ACMD ,连接BD ,求BD 的长;(3)如图③,在(2)的条件下,以AC 为直角边在线段AC 的左侧作等腰直角△ACD ,求BD 的长.第27题图28. (本小题满分12分)如图,直线y =-x +4与x 轴交于点B ,与y 轴交于点C ,抛物线y =-x 2+bx +c 经过B ,C 两点,与x 轴另一交点为A .点P 以每秒2个单位长度的速度在线段BC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图①,过点P 作y 轴垂线交y 轴于点N ,连接MN 交BC 于点Q ,当MQ NQ =12时,求t 的值;(3)如图②,连接AM 交BC 于点D ,当△PDM 是等腰三角形时,直接写出t 的值.第28题图B 卷专练(七)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 已知代数式ax 5+bx 3+cx +e ,当x =0时,该代数式的值为10,当x =1时,该代数式的值为2020,则当x =-1时,该代数式的值为________.22. 从2019年高中一年级学生开始,某省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A 已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选择思想政治、历史、地理的可能性相等,选择化学、生物的可能性相等,则选修地理和生物的概率为________.23. 如图,在菱形ABCD 中,∠ABC =120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若BC =4,BG =3,则GE 的长为________.第23题图24. 如图,点A 、B 在x 轴的上方,∠AOB =90°,OA 、OB 分别与反比例函数y =8x 、y =-2x 的图象交于A 、B 两点,以OA 、OB 为邻边作矩形AOBC .当点C 在y 轴上时,分别过点A 和点B 作AE ⊥x 轴,BF ⊥x 轴,垂足分别为E 、F ,则AEBF=________.第24题图25. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为“格点弦图”.例如,在如图①所示的格点弦图中,正方形ABCD 的边长为65,此时正方形EFGH 的面积为5.问:当格点弦图中的正方形ABCD 的边长为65时,正方形EFGH的面积的所有可能值是________(不包括5).第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电量为60度,则应缴费多少元?若该用户某月缴费125元,则该用户该月用电量为多少?第26题图27. (本小题满分10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图①,求证:△CDE是等边三角形;(2)设OD=t,①如图②,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由;②求t为何值时,△DEB是直角三角形(直接写出结果即可).第27题图28. (本小题满分12分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.第28题图B 卷专练(八)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分) 21. 计算:(3-2)2019·(3+2)2020=________.22. 已知关于x 的一元二次方程x 2-mx +2m -1=0的两根x 1、x 2满足x 21+x 22=14,则m =________.23. 取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m ,则数字m 使分式方程x x -1-1=m(x -1)(x +2)无解的概率为________.24. 当m ,n 是实数,且满足m -n =mn 时,就称点Q (m ,mn )为“奇异点”,已知点A 是“奇异点”且在反比例函数y =2x的图象上,则点A 的坐标为________.25. 如图,在△ABC 中,∠BAC =90°,AB =AC =10 cm ,点D 为△ABC 内一点,∠BAD =15°,AD =6 cm ,连接BD ,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E ,连接DE ,DE 交AC 于点F ,则CF 的长为________ cm .第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某竹制品加工厂根据市场调研结果,对该厂生产的一种新型竹制品玩具未来两年的销售进行预测,并建立如下模型:设第t 个月,竹制品销售量为P (单位:箱),P 与t 之间存在如图所示的函数关系,其图象是线段AB (不含点A )和线段BC 的组合.设第t 个月销售每箱的毛利润为Q (百元),且Q 与t 满足如下关系Q =2t +8(0≤t ≤24).(1)求P 与t 的函数关系式(6≤t ≤24);(2)该厂在第几个月能够获得最大毛利润?最大毛利润是多少.第26题图27. (本小题满分10分)如图①,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD,BC分别交于点E,F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4- 2.①求KD的长度;②如图②,点P是线段KD上的动点(不与点D,K重合),连接DG,PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S△PMN=24时,求m的值.第27题图28. (本小题满分12分)如图,已知抛物线C1:y=a(x+2)2-5的顶点为点P,与x轴交于A,B两点(点A在点B的左边),点B的横坐标是1.(1)求点P坐标及a的值;(2)如图①,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求抛物线C3的解析式;(3)如图②,点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4,抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.第28题图B 卷专练(九)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 某校为了解七年级学生的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则估计该校一分钟仰卧起坐的次数不少于25次的有________人.第21题图22. 已知x 1,x 2是方程x 2-73x +13=0的两根,若实数a 满足a +x 1+x 2-x 1x 2=2018,则a =________.23. 如图,多边形的各顶点都在方格纸的格点(横竖格子线的交点)上,这样的多边形称为格点多边形,它的面积S 可用公式S =a +12b -1(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S =40.设该格点多边形外的格点数为c ,则c -a =________.第23题图24. 如图,矩形OABC 的边OA =2,OC =4,点E 是边AB 上的一动点(不与点A 、B 重合),过点E 的反比例函数y =kx的图象与边BC 交于点F ,当四边形AOFE 的面积最大时,点F 的坐标为________.第24题图25. 如图,在Rt△ABC中,∠C=90°,AB=5,AC=4,线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D,BD交AE于点H,则AH=________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?27. (本小题满分10分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图①,若点E是DC的中点,CH与AB之间的数量关系是________;(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由;(3)如图③,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.第27题图28. (本小题满分12分)如图,抛物线y=ax2-2ax+c的图象与坐标轴分别交于A、B、C三点,其中A(-1,0)、C(0,3).点Q是线段BC上方抛物线上的一个动点.(1)求抛物线的表达式;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为P′.若新抛物线经过点C,并且新抛物线的顶点和原抛物线的顶点P的连线PP′平行于直线BC,求新抛物线对应的函数表达式;(3)过点Q作x轴的垂线,交线段BC于点D,再过点Q作QE∥x轴交抛物线于点E,连接DE,请问是否存在点Q使△QDE为等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.B 卷专练(十)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分) 21. 若a 2-3a +1+b 2+2b +1=0,则a 2+1a2-|b |=________.22. 若实数a ,b (a ≠b )分别满足方程a 2-7a +2=0,b 2-7b +2=0,则b a +ab 的值为________.23. 如图,将一个含30°角的三角尺ABC 放在直角坐标系中,使直角顶点C 与原点O 重合,顶点A ,B 分别在反比例函数y =-4x 和y =kx的图象上,则k 的值为________.第23题图24. 如图,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,将△ADE 绕点A 在平面内自由旋转,连接DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,若AD =3,AB =7,则线段MN 的取值范围是________.第24题图25. 我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y =kx +43与x 轴、y 轴分别交于 A ,B 两点,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当点P 在线段OA 上运动时,使得⊙P 成为整圆的点P 的个数是________个.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某学校九年级为提高学生的身体素质,加强体育锻炼,现计划购进篮球和排球共45个,其中篮球的价格定为每个70元,购买排球所需费用y(元)与购买数量x(个)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,排球的数量不超过30个,且不少于篮球的数量,求购买多少个排球,可使得总费用最低,并求出最低费用.第26题图27. (本小题满分10分)如图①,E是正方形ABCD的边AD上的一点,过点C作CF⊥CE,交AB的延长线于点F.(1)求证:△CDE≌△CBF;(2)过点C作∠ECF的平分线交AB于点P,连接PE,请探究PE与PF的数量关系,并证明你的结论;(3)如图②,E是正方形ABCD的边AD上的一点,过点C作CF⊥CE,交AB的延长线于点F,连接EF 交DB于点M,连接CM并延长CM交AB于点P,已知AB=6,DE=2,求PB的长.第27题图。
初三数学阶段测试B卷 .doc

人社工作信息
第205期
大武口区技能提升培训正在火热进行中
今年以来,为进一步提升大武口区产业人才技能水平,缓
解辖区企业对技能人才的需求,大武口区人社局围绕辖区工业企业产业发展布局,多次深入辖区重点招商企业、传统企业,详细掌握企业职工的岗位技能提升培训需求,鼓励企业根据生产需求自主开展相应岗位技能提升培训,同时人社局为需定培的企业量身定制技能提升培训套餐,全面帮助职工提升技能,为企业发展增添了新活力。
截止目前,大武口区共开展工业企业岗位技能提升培训12期600人,完成年度目标任务的86%,培训工种为中级焊工、中级电工。
4月4日在宁夏恒达纺织科技股份有限公司举办的中级电工有50名员工参加,此次培训班由定点培训机构康悦学校承办,预计于4月22日结束。
(宁夏石嘴山市大武口区人社局邢映) xx
抄报:自治区人力资源和社会保障厅,石嘴山市人力资源和社会保障局;抄送:区党办,区政协办,区委宣传部。
大武口区人力资源和社会保障局 2019年4月12日印发。
初三数学阶段测试B卷二-初中三年级数学试题练习、期中期末试卷-初中数学试卷

初三数学阶段测试B卷二-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载初三数学阶段测试B卷二制卷时间:10、27本卷总分:130分姓名得分一、填空题(每空2分共30分)1、把方程化成一元二次方程的一般形式得。
2、方程的根是。
3、已知方程的两根分别为,则=。
4、在实数范围内分解因式:=。
5、已知,则=。
6、某商品两次价格上调后单价从4.05变为5元,则平均每次调价的百分率为。
7、某项工程,甲队单独做需小时,乙单独做需小时,甲先做3小时,剩下部分再由甲、乙两队合做5小时可完成任务,则列出方程。
8、若方程有增根,则的值为。
9、已知∠A+∠B=900,且sinA=,则cosAtanB=.10、山坡与地面成300的倾斜角,某人上坡走了60米,则他上升了米。
11、在∠ABC中三边之比为::=,则sinA+tanA=。
12、已知:如图,Rt∠ABC中,∠B=900,∠C=300,D是BC的中点,则∠DAC的正弦值为。
AA CBDB C(第12题图)(第17题图)13、如果渠道斜坡的坡度为,则坡角的余弦值等于。
14、计算:。
15、边长为的正三角形的面积为。
二、选择题(每题3分共30分)16、若,则锐角的度数是……………………………()A、200B、300C、400D、50017、某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成800角,房屋朝南的窗子高AB=1.8m,要在窗子外面上方安装一个水平挡光板AC,使午间光线不能直接射入窒内,那么挡光板AC的宽度应为………………………………………………………()A、1.8tan800mB、1.8cos800mC、D、1.8cot800m18、两建筑物的水平距离为m,从A点测得D点的俯角为,测得C点的俯角为,则较低建筑物CD的高为…………………………………………………………()A、mB、mC、mD、mA AC DB CD B(第20题图)19、若A为锐角,且,则……………………………………………()A、00<∠A≤300B、300<∠A≤450C、450<∠A<600D、600<∠A<90020、如图,AC∠BD,AD=,BD=,∠A=,∠B=,则AC=……()A、B、C、D、21、若、是方程的两根,则等于……()A、-2000B、2000C、1999D、200122、在下列方程中有实数根解的方程是…………………………………………()A、B、C、D、23、若方程组没有实数解,则实数的取值范围是………()A、>1B、<-1C、<1且≠0D、>-1且≠024、一项工程甲、乙两队合作需天完成,甲队单独工作需天完成(<=那么乙队单独工作完成这项任务所需天数是……………………………………………………()A、B、C、D、25、某商品原价为100元,现有下列四种调价方案,其中0<<<100,则调价后商品价格最高的方案是……………………………………………………………………()A、先涨价﹪,再降价﹪B、先涨价﹪,再降价﹪C、先涨价﹪,再降价﹪D、先涨价﹪,再降价﹪三、解答题:26、若实数满足条件和求:(本题6分)27、已知方程,求一个一元二次方程,使它的根分别是原方程根的倒数28、解下列方程(1)、(2)29、已知方程组(为未知数)求证:不论为何值时方程组总有两个不同的实数解30、已知关于的方程的两个实数根的倒数和等于3,关于的方程有实数根,且为正整数,求代数式的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学阶段测试B 卷
命题时间:10月10日
本卷总分为130分,时间为100分钟
一、填空题:(每题2分共30分)
1、方程()()075232
=+-+x x 化为一元二次方程的一般形式为 。
、 2、若p 、q 满足122=-p p ,122=-q q ,则q
p p q +的值等于 。
3、方程()()222+=+x x x 的解为 。
4、若一元二次方程
()002≠=++a c bx ax 满足0=++c b a ,则该方程必有一根为 。
5、方程0232=--x x 的两根为21,x x ,则()()1121++x x = 。
6、若方程02=++q px x 的两根为3-和4,则二次三项式q px x ++2应该分解
为 。
7、一件商品原价a 元,连续两次均降价10%,则现价为 。
8、某钢铁厂去年第一季度增长率为20%,3月份钢产量7200吨,设1月份钢产量x 吨,则可列方程
为 。
9、当=a 时,方程3
132--=--x a x x 会产生增根。
10、方程组⎩
⎨⎧==+67xy y x 的解为 。
11、在△ABC 中,∠C=900,5,12==b a ,则=A cos 。
12、在Rt △ABC 中,∠C=900,若32,2==a b
,则∠A= 。
13、一斜坡的坡度3:1=i ,则坡角α= 。
14、计算:3cot600-
0060sin 245cos 2-= 。
15、等腰三角形顶角为1200,底边上的高为4cm ,则底边长为 。
二、选择题:(每题3分共30分)
16、 若sinA <2
3,则锐角A 一定……………………………………………( ) A 、小于600 B 、大于600 C 、小于300 D 、大于450 17、Rt △ABC 中,若sinA=
32
,那么tanB 的值(∠C=900)为 …………………( )
A 、53
B 、35
C 、5
2 D 、25 18、Rt △ABC 中∠C=900,28=+b a ,5
7sin sin =+B A ,则斜边c 的长为…( ) A 、10 B 、14 C 、20 D 、24
19、某人在距一建筑物100米处测得该建筑物顶部的仰角为600,则该建筑物的高度为( )
A 、50米
B 、100米
C 、3
3100米 D 、1003米 20、等腰三角形一腰上的高为3,这高与底的夹角是600,则ABC S ∆=………( )
A 、3
B 、2
3 C 、32 D 、3 21、如图,矩形ABCD 中,AB=3,BC=4,BE ⊥AC ,垂足为E ,则sin ∠ABE 的值( ) A 、43 B 、5
4 C 、53 D 、34
A
B
22、下列方程中,有实数根的方程是………………………………………………( )
A 、021
32=++x B 、011=-x C 、02=+x x D 、111-=-x x x 23、某厂计划用x 天生产机床120台,由于采用新技术,每天多生产3台,则可提前2天完成,由题
意可列方程…………………………………………………………………( )
A 、31202120=-+x x
B 、32120120--=x x
C 、31202120-=+x x
D 、32
120120+-=x x 24、若关于y x ,的方程组⎩⎨⎧+==-m
x y x y 2042有两个不同的实数解,则m 的取值范围是( )
A 、m ≥21
B 、m ≤
21 C 、m >21 D 、m <21 25、若方程x 的方程()
044322=-+-+k x k k x 的两根互为相反数,则k 的值为( ) A 、0 B 、4 C 、0或4 D 、0或4-
三、解答题:
26、若关于x 的方程()04122=-+-+k x k x 有一个正根和负根,且正根的绝对值较小,求整
数k 的值。
(本题6分)
27、已知:方程08922=+-x x ,求作一个一元二次方程,使它的一根为原方程和的倒数,另一
根为原方程两根差的平方。
(本题6分)
28、在实数范围内分解因式:(本题8分)
(1)、5842--x x
(2)、2210-6y xy x +
四、应用题:
29、某车间加工300个零件,在加工完80个后,改进了操作方法,每天能多加工15个,一共用6天
完成了任务,求改进操作方法后每天加工的零件数。
(本题5分)
30、小明将勤工俭学挣得的100元钱,按一年定期存入银行,到期后取出50元,剩下的50元和应得的
利息,又全部按一年定期存入,若存款的年利率保持不变,这样到期后可得本金和利息共66元,求这种存
款的年利息。
(本题6分)
五、解答题:
31、k 为何值时方程组⎩⎨⎧+==+--2
01242kx y y x y (1)有两个相等的实数根,并求出此时的解。
(2)无实数解。
(本题6分)
32、在Rt △ABC 中,∠C=900,斜边C=5,两直角边长分别为关于
x 的方程
()()014122=-+--m x m x 的根,求m 的值。
(本题6分)
33、已知关于x 的方程()01131222=-+-+m x m x ,
(1)、m 取什么实数时,方程有两个相等的实数根?
(2)、是否存在m 实数,使方程的两根21,x x 满足
11
221-=+x x x x ,若存在求出方程的两根,若不存在说明理由。
(本题8分)
34、已知等腰梯形下底长为12,高为6,下底角的余弦值为
53,求梯形的上底长。
(本题5分)
35、如图,水坝的横截面积为梯形,坝顶宽6米,坝高4米,坡AB 的坡度为5.1:1=i
,坡CD
的坡角为600,求坝底宽BC (本题7分) A D
E C
36、一艘船以每小时20海里的速度向正东方向航行,上午8时位于A 处,这时灯塔S 在船的北偏东450方向上,上午9时30分船B 处,这时灯塔S 在此船的北偏东300方向上,若船继续航行,求船和灯塔之间的最短距离。
(本题7分)。