金纳米粒子的细胞毒性(一):尺寸的影响

合集下载

金纳米颗粒 粒径

金纳米颗粒 粒径

金纳米颗粒粒径金纳米颗粒是一种具有奇特光学和电子学特性的纳米材料。

其粒径约为1~100纳米。

金纳米颗粒凭借其独特的性质,被广泛应用于生物医学、纳米电子学、催化剂、传感器等领域。

本文将重点介绍金纳米颗粒的制备、性质和应用。

金纳米颗粒的制备方法多种多样,常见的有物理法、化学法和生物法。

物理法主要利用溅射、气凝胶法等技术,通过控制金属薄膜或纳米粉末的物理过程,制备金纳米颗粒。

化学法则是以金盐为原料,通过还原或沉淀等反应,将金盐还原成纳米颗粒。

生物法则是利用生物体合成金纳米颗粒,如利用细菌或其他微生物代谢产物的还原剂还原金盐。

金纳米颗粒的性质主要表现在其表面等离子共振吸收和局域表面等离子体共振效应上。

当金纳米颗粒的粒径接近可见光波长时,其微小尺寸会导致光散射,使金纳米颗粒呈现出独特的颜色。

这种现象被称为“表面等离子共振吸收”。

另外,金纳米颗粒还具有较高的比表面积和强烈的局域场增强效应,使其具备了优异的催化性能和传感能力。

金纳米颗粒在生物医学领域的应用非常广泛。

由于其良好的生物相容性和可调控的表面性质,金纳米颗粒可以作为药物传递系统,用于肿瘤治疗。

通过改变金纳米颗粒的形状、大小和表面修饰,可以实现靶向传递药物、光热治疗和药物释放等功能。

此外,金纳米颗粒还被用于生物检测和诊断。

基于金纳米颗粒的传感器可以利用其特殊的光学性质,灵敏地检测生物分子和细胞。

在纳米电子学领域,金纳米颗粒也有着重要的应用价值。

由于其优异的电子输运性能和独特的光学性质,金纳米颗粒可以作为电子元件和光电器件的构建材料。

例如,利用金纳米颗粒制备的场效应晶体管具有较高的电导率和较低的漏电流,可以用于高性能的电子设备。

此外,金纳米颗粒还可以作为光电转换器件的增强剂,提高光电转换效率。

金纳米颗粒的催化应用是另一个重要领域。

由于其较大的比表面积和丰富的表面活性位点,金纳米颗粒表现出优异的催化性能。

金纳米颗粒常用于催化剂的制备,用于提高反应速率和选择性,促进化学反应的进行。

金纳米粒子在医学领域中的运用

金纳米粒子在医学领域中的运用

金纳米粒子在医学领域中的运用金是典型的惰性元素,由金制成的历史文物能够保留几千年的灿烂光泽不变色,如图1所示.金被广泛使用于珠宝、硬币和电子器件等方面.目前,20nm厚的金薄膜已用在办公室的窗户上,因为它能够在传输大量可见光的同时有效地反射红外光线,并吸收光的热量.因金纳米粒子具有很好的稳定性、易操作性、灵敏的光学特性、易进行表面修饰以及良好的生物相容性,使其广泛应用于食品安全检测、环境安全检测和医学检测分析等领域[1-4].金纳米粒子尺寸范围为1nm~100nm.图2(a)为50nm的金纳米棒,(b)为二氧化硅包覆的金纳米颗粒,其中扇形金纳米粒子尺寸比较小,被二氧化硅包覆后的纳米粒子尺寸大约140nm,(c)为50nm的金纳米笼[5].由于其比较微小的结构,这些颗粒比小分子更能积聚在炎症或肿瘤增长部位.具有高效的光转热属性的金纳米颗粒,可以被应用于特异性地消融感染或患病组织.因金纳米颗粒具有吸收大量X射线的能力,而被用于改善癌症放射治疗或CT(计算机断层扫描)诊断成像.另外,金纳米粒子可以屏蔽不稳定的药物或难溶造影剂,使之有效传递到身体各个部位.1金纳米粒子在加载药物方面的应用1.1金纳米粒子可作为内在药制剂金基疗法有着悠久的历史,这是金自然的优异性能以及其神秘效应引起的药效应用.金基分子化合物已被发现可以显着限制艾滋病病毒的生长[6].目前,搭载药物的金纳米粒子常用于靶向癌细胞[7].将放射性金种子植入肿瘤中,对其内部进行放射疗法,实现近距离放射治疗[7].直径非常小的金纳米颗粒(小于2nm)能够渗透到细胞和细胞区室(如细胞核)[8].金纳米颗粒与其无毒的较大尺寸的表面修饰试剂[8],有杀菌和杀死癌细胞的功效,并有诱导细胞氧化的应激能力,促使损伤的线粒体和DNA相互作用.最近,人们发现,纳米金(直径5nm)表现出抗血管生成性质(抑制新血管的生长).这些纳米颗粒可选择性结合肝素糖蛋白内皮细胞,并抑制它们的表面活性.因为上述纳米金的大小和生物分子或蛋白质差不多,在生理过程中,它们也可以相互修饰或作用,尤其在细胞和组织内.最近,El-Sayed和他的同事针对恶性生长与分裂的细胞核,已探索出微分细胞质.通过将金纳米粒子聚集于细胞表面,从而认识到整合肽序列(细胞质交付)和核内蛋白(核周交付),并通过金纳米颗粒选择性地靶向恶性细胞,他们已证明凋亡效应(DNA的双链断裂).另外,使用类似的研究策略,已发现金纳米粒子可选择性地发挥抗增殖和放射增敏效应.1.2基于金纳米粒子的光热疗法光热疗法是金纳米粒子在医疗上的核心应用[9].纳米金吸收光能将其转换为热量并被用于破坏癌细胞和病毒的能力,是一个令人着迷的属性.因此,激光曝光过的金纳米粒子无须结合药物可直接作为治疗剂.金纳米粒子能高效吸收近红外区的电磁波,且在生物液体和组织中的衰减是极小的.在近红外区域曝光过的金纳米粒子,可渗透于高深度组织中进行光热医疗.金纳米粒子和经典光敏剂之间的差异是前者产生热量而后者照射时产生单线态氧,金纳米粒子产生的热量能破坏不良细胞.另外,金纳米粒子具有强的吸收能力,生物相容性好,能高效吸收具有较长波长的分子和药物等.这些属性使得金纳米粒子有望通过光热治疗癌症和各种病原性疾病.金/二氧化硅纳米壳,是第一批经过光热光谱分析,并应用于治疗上的纳米粒子.此纳米核壳结构以二氧化硅为核心,以金为壳,其可调谐的消光能力取决于二氧化硅的尺寸和金壳厚度.在近红外光照射下,纳米壳已被用于靶向各种癌细胞,现已有成功地在体内治疗癌症的动物模型.尽管纳米核壳合成相对容易,也具有期望的电浆性质,然而被包覆后的纳米颗粒比较大(约130nm),此大小阻碍从肿瘤组织中消除它们,因此可能会降低它们的应用率.相比而言,金纳米棒容易制备,电浆吸收可调,且在尺寸上比金硅纳米核壳小.因此,金纳米棒已被用于侵入细胞成像[10],并用于烧蚀小鼠结肠癌肿瘤和鳞状细胞肿瘤[11-12].El-Sayed和他的同事[12]首次将金纳米棒用于体内光热癌症治疗,其结果证明金纳米棒能够抑制肿瘤生长,而且在许多情况下,金纳米棒靶向肿瘤,且能够被其完全吸收(见图3).最近,Bhatia等研究人员进一步证明了金纳米棒在体内的治疗功效,他们发现:通过X射线计算机断层摄影,观察到PEG包覆的单个静脉内剂量金棒能够靶向小鼠肿瘤部位,该发现对后续的高效光热治疗起到指导作用.1.3金纳米粒子作为药物运载工具探索性地将金纳米颗粒用于药物输送,有以下原因:(1)高比表面积的金纳米颗粒提高了药物加载量,增强了其溶解性和装载药物的稳定性;(2)功能化金纳米粒子与靶向配体络合,提高了其治疗效力,并减少了副作用;(3)多价的金纳米颗粒与受体细胞或其他生物分子的相互作用比较强;(4)能携带游离药物靶向肿瘤组织,增强药效;(5)具有生物选择性,让纳米级药物优先靶向肿瘤部位,增强渗透性.基于以上因素,金纳米颗粒被广泛应用于生物传感、药物输送以及治疗癌症等领域(见图4).1.3.1分区加载(图4a-b)所制备的金纳米颗粒表面包覆有单层或双层指示剂,可用作抗聚集的稳定剂或在某些情况下作为形状导向剂.金纳米颗粒表面包覆的单层或双层指示剂可以视为一薄层有机溶剂,能够从中区识别疏水性药物,由于这些原因,单层或双层指示剂可以更有效加载药物并随后在病变部位释放.例如,包覆金纳米棒的表面活性剂(十六烷基三甲基溴,CTAB),其双层厚度大约为3nm.Alkilany和同事制备的球形纳米金,包覆其表面的单层聚合物有两个疏水区域(内部)和亲水性区域(外部).包覆纳米颗粒表面的聚合物,其疏水区域是用于加载疏水性药物,其亲水性区域用于稳定水介质中的纳米颗粒.Rotello等人研究结果表明,纳米颗粒能够与细胞膜相互作用,不需要纳米颗粒进入细胞,便可以进行分区加载疏水性药物,且能在病变部位释放药物[24].1.3.2通过表面络合加载(图4c-e)硫醇和胺与金表面的亲合性是起源于表面络合加载方法.通过Au-S或Au-N键形成,硫醇或游离胺可携带药物固定到金纳米粒子表面,且硫醇或游离胺的原始结构不影响所加药物的内在活性.DNA加载药物修饰于金纳米颗粒表面也是使用了表面络合加载方法.该有效加载药物则可以通过各种方式释放.例如,在较弱的Au-N键作用下,扩散到细胞膜释放;通过打破Au-S键或熔化纳米颗粒,借助光热效应触发硫醇交换或外部释放.值得注意的是,药物络合到金表面会影响其释放曲线的性质.如果是巯基药,需通过简单的药物扩散释放.事实上,涉及Au-S键的形成,往往需要外部的帮助刺激释放,如硫醇交换或外部光照射.因Au-N键比Au-S键弱得多,因此在使用胺的情况下,其药物释放扩散相对比较容易.这种表面络合加载方法的明显优势是通过在纳米颗粒表面镀金,使其实现连接或释放药物,且可以通过简单的荧光显微镜监测(如药物荧光)或表面增强拉曼光谱(SERS)观测镀金纳米颗粒的加载和药物释放过程.当荧光团被连接到纳米级金表面,荧光淬灭能观察到供体的'能量或电子(荧光团)转移到受体(金芯)的过程[13].这就意味着通过监测荧光强度的反向变化或提高荧光信号监测装载药物释放到溶液或细胞的过程.此表面络合加载方法可实现选择性且高效地加载或释放药物,能够辅助激光进行光热治疗.1.3.3吸附加载(图4f)金纳米颗粒络合或耦合的官能团能被用于治疗领域.在某些情况下,一些官能团携带药物吸附于金纳米颗粒表面,使得金纳米粒子钝化.例如,Wheate和同事将HS-PEG-COOH的羧酸部分吸附到金纳米粒子表面,得到复杂的铂抗癌剂,并制备出铂-拴系的金纳米颗粒杀死肺癌和结肠癌细胞.另一个例子,Mirkin和同事通过将含羧酸的前体药物形成酰胺并功能化单链DNA,使其吸附于金纳米球表面,此功能化纳米金能够进入肿瘤细胞,且能将铂(Ⅳ)还原成铂(II)释放活性顺铂,基于此发展了一个强大的抗癌药物.Rothrock和同事将金纳米颗粒终端吸附的胺释放一氧化氮(NO)供体分子,从而使血管舒张.同时,Rothrock和同事将抗癌药物(5-氟尿嘧啶)的终端羧酸吸附于金纳米粒子表面,通过紫外光照射,在感光条件下观察到切割连接器释放药物的过程.1.3.4通过层-层组装加载(图4g)在水溶液中合成的金纳米颗粒表面电荷非常密集,因此可以通过静电结合或层-层组装,将带电荷的药物吸附于金纳米粒子表面.最好的例子是通过静电结合,将核酸(DNA或RNA)修饰于金纳米粒子表面.DNA或siRNA分子带有较强的负电荷,与金纳米粒子表面的阳离子结合后修饰于金纳米粒子表面.在此需要特别指出:层-层组装是补充带电聚合物,但也使它们之间产生了非常强烈的排斥作用,这可能阻碍有效载荷释放.为了克服这个问题,可以调节溶液的pH值,使得配体修饰的金纳米颗粒表现出净正电荷,从而实现从阳离子纳米颗粒表面上离解或释放附着的DNA或RNA.1.3.5装入纳米粒子内加载(图5)利用金纳米粒子具有大的比表面积特性,可将其空心金纳米结构作为容器装载药物分子,例如金纳米笼和空心纳米金壳是首选药物容器,在医疗领域广泛应用.金纳米笼已被用来建立一个“智能”控释药物递送系统,其外笼由致密热敏聚合物合成的药物分子被包封在金纳米立方体的中空内部和表面,在无热刺激条件下,聚合物壳能防止药物释放.由于金纳米立方体是优异的近红外光光子吸收剂,通过吸收近红外光光子能量,它们能够有效释放负载,将熔融的热敏性聚合物暴露于立方体壁孔之外,并释放药物.“智能”聚合物附着在金硫醇立方体的内表面,药物从内向外扩散到水介质中(见图5),此例子突出表现了纳米金壳的优越性,即具有消光、体积小和内部中空的优势,也证明了使用光触发纳米颗粒和聚合物纳米粒子释放是可行的.2金纳米粒子作为运载药物的稳定剂2.1金纳米粒子作为稳定剂输送脂质体金纳米粒子除了具有加载药物的潜力之外,也被用于稳定输送药物载体,如稳定输送脂质体和微胶囊.脂质体已被广泛应用于药物载体,然而它们的抗融合稳定性差,且血浆和其他器官限制其释放,因此其应用与发展受到了限制[14].Granick和同事研究了纳米颗粒稳定输送磷脂脂质体的效果,通过确凿的证据,证明了借助荧光和量热测量仪器可观测到纳米粒子稳定输送凝胶脂质体的现象,即通过增加几十度温度,纳米颗粒的相变部位吸附着并稳定输送凝胶脂质体,由于只有25%的纳米粒子外表面被脂质体占用,该纳米颗粒改进了脂质体的稳定性,没有任何泄漏有效载荷.Rotello和同事制备出了具有净负电荷的油包水滴,并组装带正电荷的金纳米颗粒(直径约为2nm),通过静电相互作用,该颗粒修饰于液滴的外表面.通过添加“架桥”蛋白,诱导纳米颗粒排斥液滴表面.他们的策略达到的目标是金纳米粒子与液体、蛋白间作用,大大增加了脂质胶囊的稳定性[14].研究人员使用金纳米粒子和其终端羧酸官能团来稳定阳离子脂质体,通过pH值调节促使它们结合.中性条件下(pH值约7.0),羧酸基团去质子化,与阳离子脂质体间形成比较强的静电相互作用.在温和的酸性条件下(pH约4.5~5.5),如细胞和溶酶体内部,羧酸的主要部分被质子化,从而诱导纳米颗粒从脂质体表面解离,并引发脂质体的融合和随后的药物释放.另外,金纳米粒子稳定的脂质体被用于选择性地对感染的位点释放抗菌药.功能化金纳米粒子壳聚糖被用来稳定脂质体,并能阻止溶液中纳米粒子的聚集[15].纳米粒子稳定的脂质体接近细菌时,细菌毒素引起的孔隙形成脂质体结构,有利于释放其有效载荷[15].2.2金纳米复合材料输送药物的应用最近,一些研究人员对金纳米颗粒进行包覆或掺入其他类型材料,来制造含金装置的药物输送剂[16-17].例如,Perera等人发展了ZnMOS4包覆金纳米粒子的核壳结构(见图6),将此用作细胞解毒药物载体,能用于治疗Cu2+污染引起的威尔逊氏病[16].Ge等研究人员发展了Ce包覆的金纳米团簇(Au/Ce),用作药物载体,主动靶向癌细胞[17],见图7.石墨烯绝缘的金纳米团簇,已被用于细胞成像,并借助其光热增强化疗效果[18],见图8.金纳米粒子在激光照射下,吸收光能并产生足够的热量,当所产生的温度高于临界温度(如最低临界溶液温度)时,将改变基体的结构和聚合物分布,增加其流动性.通常情况下,为保持基质的完整性,所选聚合物耐受温度应该比体温略高.聚合物制备时,可将抗癌药(如紫杉醇)掺入可生物降解的聚合物中(如微球酯),将其包覆于中空金纳米球内,经激光照射后释放药物.在无激光照射时,中空金纳米球包覆的聚合物无明显的药物释放,激光照射时,聚合物释放药物的效率依赖于照射时间、时间间隔、激光的功率和抗癌药浓度。

3.1金纳米粒子性质

3.1金纳米粒子性质

金纳米粒子性质1金纳米粒子类型不同形状的金纳米粒子对应着不同的应用目的。

目前为止,人们已经制备了多种不同形状的金纳米粒子,主要有棒状,球状,壳状,笼状,多面体,星状等,不同形状的金纳米粒子有着自身独特的优势。

例如棒状的金纳米粒子具有良好的光热性能,而笼状的金纳米粒子更适合于内部物质的负载等。

根据金纳米粒子的尺寸可以将其分为金纳米团簇及金纳米晶,通常来说,金属粒子具有一定的导电性,而当金纳米粒子的尺寸小于 2 nm时,金纳米粒子的性质由原来的金属导电性质变为了绝缘体性质,因此这个尺寸被称为临界尺寸。

通过这个临界尺寸可以将金纳米粒子分成两类:尺寸小于2 nm的金纳米粒子,被称为金纳米团簇;而金粒子的粒径尺寸大于2 nm时,通常被称为金纳米晶。

2金纳米粒子特性块状的金在通常被认为是惰性金属,而纳米金却显示出了区别于宏观尺寸的高活性。

金纳米粒子作为纳米材料中的贵金属纳米粒子的一类,金纳米粒子除了具有纳米材料的普遍特性之外还具有自身独特的性质,主要表现在以下几个方面:2.1表面等离子体共振特性有较高的比表面积,其表面自由电子较多,自由电子受到原子核的正电荷束缚较小,电子云在表面自由运动,当表面的电子云产生相对于核的位移时,来自电子和核之间的库仑引力会产生一个恢复力,从而产生表面电子云的震荡,振荡频率由四个因素决定:电子密度、有效电子质量电荷分布的形状和大小。

表面等离子体( surface plasmons),又被称为表面等离子体激元,是由于金属粒子表面的自由电子的集体谐振而产生。

当金属纳米粒子被一定波长的光照射后,入射的光子与表面自由电子相互作用,入射的光子与金属表面自由电子耦合后产生的疏密波。

当入射光的振动频率与金属粒子表面的自由电子谐振频率相同时产生的共振被称为表面等离子体共振。

金纳米粒子的表面等离子体共振对光子产生的吸收能够使用UV-vis-vis光谱检测,通过不同的吸收峰值反映金纳米粒子的形貌,大小等特性,实心球形的金纳米粒子具有一个单峰,不同尺寸的金纳米粒子具有的峰位不同,而金棒具有两个典型的吸收峰,分别为横向和纵向,而笼状的金粒子的吸收峰也有别于球状和棒状,而即使同为球形金粒子,壳层结构的金粒子的吸收峰也有很大的区别。

3.1 金纳米粒子性质

3.1 金纳米粒子性质

金纳米粒子性质1 金纳米粒子类型不同形状的金纳米粒子对应着不同的应用目的。

目前为止,人们已经制备了多种不同形状的金纳米粒子,主要有棒状,球状,壳状,笼状,多面体,星状等,不同形状的金纳米粒子有着自身独特的优势。

例如棒状的金纳米粒子具有良好的光热性能,而笼状的金纳米粒子更适合于内部物质的负载等。

根据金纳米粒子的尺寸可以将其分为金纳米团簇及金纳米晶,通常来说,金属粒子具有一定的导电性,而当金纳米粒子的尺寸小于2 nm时,金纳米粒子的性质由原来的金属导电性质变为了绝缘体性质,因此这个尺寸被称为临界尺寸。

通过这个临界尺寸可以将金纳米粒子分成两类:尺寸小于2 nm的金纳米粒子,被称为金纳米团簇;而金粒子的粒径尺寸大于2 nm时,通常被称为金纳米晶。

2 金纳米粒子特性块状的金在通常被认为是惰性金属,而纳米金却显示出了区别于宏观尺寸的高活性。

金纳米粒子作为纳米材料中的贵金属纳米粒子的一类,金纳米粒子除了具有纳米材料的普遍特性之外还具有自身独特的性质,主要表现在以下几个方面:2.1 表面等离子体共振特性有较高的比表面积,其表面自由电子较多,自由电子受到原子核的正电荷束缚较小,电子云在表面自由运动,当表面的电子云产生相对于核的位移时,来自电子和核之间的库仑引力会产生一个恢复力,从而产生表面电子云的震荡,振荡频率由四个因素决定:电子密度、有效电子质量电荷分布的形状和大小。

表面等离子体(surface plasmons),又被称为表面等离子体激元,是由于金属粒子表面的自由电子的集体谐振而产生。

当金属纳米粒子被一定波长的光照射后,入射的光子与表面自由电子相互作用,入射的光子与金属表面自由电子耦合后产生的疏密波。

当入射光的振动频率与金属粒子表面的自由电子谐振频率相同时产生的共振被称为表面等离子体共振。

金纳米粒子的表面等离子体共振对光子产生的吸收能够使用UV-vis-vis光谱检测,通过不同的吸收峰值反映金纳米粒子的形貌,大小等特性,实心球形的金纳米粒子具有一个单峰,不同尺寸的金纳米粒子具有的峰位不同,而金棒具有两个典型的吸收峰,分别为横向和纵向,而笼状的金粒子的吸收峰也有别于球状和棒状,而即使同为球形金粒子,壳层结构的金粒子的吸收峰也有很大的区别。

典型纳米材料的毒性研究

典型纳米材料的毒性研究

典型纳米材料的毒性研究林晓薇;冯世成;杨胜韬【摘要】随着纳米技术的进步和人工纳米材料的使用,大量纳米材料不可避免的进入生态环境,被生物体吸收或者与生物体发生直接接触。

其潜在的生态风险已引起社会广泛关注。

纳米材料在环境中的转化和降解关系着它们在环境中的潜在风险及生态毒性,其中纳米毒性是近年来纳米生物安全性研究的焦点。

研究纳米毒性对研究纳米材料的环境潜在风险和危害有重要意义。

本文通过结合国内外相关研究成果对近年来纳米材料的毒性进行了综述。

%With the progress of nanotechnology and the extensive uses of artificial nanomaterials, a large number of nanomaterials will inevitably enter the ecological environment. The nanomaterials are absorbed by organisms or directly contact with the biological systems. The potential ecological risk has attracted wide attention of the society. The degradation and transformation of nanomaterials in environment are directly related to their environmental risks and ecotoxicity, where the toxicity of nanomaterials is the most concerned one. It is important and crucial to study the potential environmental risk and hazard of nanomaterials. The recent advances in the toxicity of nanomaterials focusing on the domestic and international achievements were summarized.【期刊名称】《广州化工》【年(卷),期】2016(044)020【总页数】3页(P24-26)【关键词】人工纳米材料;毒性;生态效应;环境效应【作者】林晓薇;冯世成;杨胜韬【作者单位】西南民族大学化学与环境保护工程学院,四川成都 610041;西南民族大学化学与环境保护工程学院,四川成都 610041;西南民族大学化学与环境保护工程学院,四川成都 610041【正文语种】中文【中图分类】X131自从20世纪90年代人类发现富勒烯(C60),碳纳米管(CNT)等人工碳纳米材料以来[1],人工纳米材料凭借着其本身微小的尺寸和特殊的结构,具备了许多其他材料不曾拥有的理化性质,在材料化学、药学、生命科学、电子产业和能源产业等诸多领域被广泛应用。

影响纳米材料毒性的关键因素

影响纳米材料毒性的关键因素

影响纳米材料毒性的关键因素纳米材料的应用前景广阔,包括但不限于医疗、环保、能源等领域。

然而,随着纳米材料被广泛应用,人们开始其潜在的毒性影响。

纳米材料的毒性与其诸多物理化学性质密切相关,其中一些关键因素在本文中将得到详细阐述。

纳米材料毒性是指纳米尺度物质对人体、环境或生物体系产生的有害影响。

例如,某些纳米材料可能对细胞产生氧化应激,引发炎症反应,甚至导致基因突变等。

毒性效应不仅与纳米材料的性质有关,还受其制备方法、表面改性等因素的影响。

纳米材料的粒径对其毒性具有显著影响。

一般来说,粒径越小,纳米材料的毒性可能越高。

这是因为粒径越小,纳米材料与生物体系中的细胞或蛋白质接触的几率越大,从而引发毒性效应。

纳米材料的形态也是影响其毒性的重要因素。

例如,纳米纤维或棒状材料可能比球形或颗粒状材料更具毒性。

这是由于纤维或棒状材料更容易刺入或附着在细胞上,导致细胞损伤或死亡。

纳米材料的组成对其毒性也有重要影响。

例如,由重金属元素组成的纳米材料可能比由非重金属元素组成的纳米材料更具毒性。

这是由于重金属元素可能对人体健康和环境造成更大的危害。

为了评估纳米材料的毒性,可以采用不同类型的实验设计,包括细胞实验、动物实验和人类实验等。

细胞实验是通过培养细胞来观察纳米材料对其生长、增殖和功能的影响。

动物实验是通过将纳米材料注入动物体内,观察其对器官、组织、基因等方面的影响。

人类实验则是通过让志愿者接触纳米材料,评估其对健康的影响。

实验结果分析中,需要结合纳米材料的性质、粒径、形态、组成等因素,以及实验过程中观察到的现象和结果进行深入分析和解释。

例如,如果纳米材料导致细胞凋亡或基因突变,这可能与其粒径过小、形态不规则或组成有毒元素有关。

还需要考虑实验操作的标准化和重复性,以保证实验结果的可靠性和可比较性。

本文从纳米材料毒性的定义出发,详细阐述了影响其毒性的关键因素,包括粒径、形态和组成等。

同时,介绍了评估纳米材料毒性的实验设计与结果分析方法。

探究纳米材料对生物体的毒性效应

探究纳米材料对生物体的毒性效应

探究纳米材料对生物体的毒性效应近年来,随着纳米技术的快速发展,纳米材料在生物医学、环境保护、食品安全等领域中得到了广泛应用。

然而,随之而来的是对纳米材料对生物体的毒性效应的关注和担忧。

纳米材料因其独特的物理和化学特性,在进入生物体后可能影响细胞生长、基因表达、免疫功能等,从而导致不良影响。

本文将探讨纳米材料对生物体的毒性效应,分析其机制并提出相应的防范措施。

首先,纳米材料的种类和特性对其在生物体中的毒性效应产生重要影响。

不同类型的纳米材料具有不同的化学成分、结构和大小,这些因素决定了纳米材料与生物体相互作用的方式和程度。

例如,金属纳米粒子、碳纳米管、氧化物纳米颗粒等材料在生物体内的行为和毒性效应存在差异。

研究表明,一些纳米材料具有自发性氧化还原反应、离子释放、表面修饰等特性,这些特性可能导致细胞膜的损伤、蛋白质的变性、DNA的损伤等毒性效应。

其次,纳米材料的生物分布和代谢途径也对其毒性效应发挥起着重要作用。

纳米材料进入生物体后,会通过各种途径被吸收、转运和排泄。

一些研究发现,纳米材料在生物体内的生物分布不均匀,可能在某些组织或器官中积累导致毒性效应。

此外,纳米材料可能通过血液循环、淋巴系统等途径被传播到不同的组织和器官,从而影响多个生理过程。

对于纳米材料的代谢途径的研究有助于理解其在生物体内的行为和毒性效应。

再次,纳米材料与生物体的相互作用机制是影响其毒性效应的关键因素。

纳米材料与生物体发生相互作用的途径主要包括吞噬作用、穿膜转运、生物介导等。

研究表明,纳米材料可能通过产生氧化应激、诱导自噬、干扰细胞信号传导等途径对细胞和组织产生毒性效应。

此外,纳米材料可能干扰生物体内的新陈代谢、免疫调节等生理过程,导致免疫毒性、代谢毒性等不良影响。

最后,如何有效评估和防范纳米材料对生物体的毒性效应是当前亟待解决的问题。

有效的毒性评估方法可以帮助准确评估纳米材料的毒性潜力,并为纳米材料的安全应用提供参考。

目前,常用的毒性评估方法包括体内外实验、计算模拟、毒性机制研究等。

MTT法检测纳米金粒子体外细胞毒性的研究

MTT法检测纳米金粒子体外细胞毒性的研究

培养液中加入不同浓度纳米金溶胶(1 .875 m g·L - 1 、3 .750 m g·L - 1 、7 .500 m g·L - 1 、15 .000 m g·L - 1 、30 .000 m g·L - 1 )各
组细胞相对增殖率(RG R )分别为 112 .653% ,111 .293% ,89 .524% ,72 .109% ,46 .803% ,加入 15 .000 m g·L - 1 、30 .000 m g·
phology and w ellgrow th underinverted m icroscope observation in low dose ofgold nano-particles groupsw hile obvious vacuolardegen -
eration in 30 .000 m g·L - 1 gold nano-particles group .C onclusion The cytotoxicity of the gold nano-particles had does-effect re-
H um an fibroblasts(H F) w ere cultured w ith m edium contained differentdose ofsphericalgold nano-particles(1 .875 m g·L - 1 、3 .750
m g·L - 1 、7 .500 m g·L - 1 、15 .000 m g·L - 1 、30 .000 m g·L - 1 ) for24 hours ,the cytotoxicity effectw as tested by M TT m ethod ,m orphol-
L - 1纳米金溶胶组 ,其 RG R 与空白对照组有ቤተ መጻሕፍቲ ባይዱ著差异 ,1 .875 m g·L - 1 、3 .750 m g·L - 1 组毒性评级为 0 级 ,7 .500 m g·L - 1 、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金纳米粒子的细胞毒性(一):尺寸的影响
2016-08-16 12:45来源:内江洛伯尔材料科技有限公司作者:研发部
AuNPs
查阅文献时,在AuNPs的尺寸对细胞作用方面可以看到许多相互矛盾的报道。

例如Pan 等制备了4种1.4nm左右和15 nm多种粒径的金颗粒(AuNPs),他们提出:AuNPs的毒性是尺寸依赖的,1.4 nm时表现最强毒性,尺寸小于或大于1.4 nm时毒性逐渐减弱。

并且提出1.4 nm颗粒的明显毒性主要是因为它可以立体选择性地连接到B-DNA的大沟,从而造成对细胞的损伤。

但是在他们的实验中,在尺寸1.4 nm之外的几个AuNPs(0.8,1.2和1.8 nm)都具有相似毒性,不具有特异性,解释难以令人信服。

他们的实验还表明,当纳米颗粒大于15 nm时,是贴在细胞膜上而无害的,而Connor等则报告18 nm以下的含有各种表面修饰物(如半胱氨酸、柠檬酸钠、生物素和葡萄糖)的AuNPs对于人体细胞是无毒的,其毒性是由于所用的保护剂溴化十六烷基三甲基溴化铵(CTAB)造成的。

如果将CTAB去除干净,那么AuNPs对细胞是无毒的。

Shukla等报道了由赖氨酸加上聚赖氨酸共同修饰的3.5 nm AuNPs不具有毒性和免疫原性。

Soenen等指出AuNPs浓度对细胞毒性的影响。

他们发现4 nm的聚甲基丙烯酸保护的AuNPs在浓度10 nM时,对于多种敏感细胞系没有观察到明显的细胞参数改变,但是当浓度高于200 nM 时则引起明显的细胞毒性,他们认为这是由于增加了活性氧的原因。

Wang等研究了不同形状、作用时间和表面活性剂等与尺寸小于70 nm AuNPs细胞毒性的关系,认为圆形无
毒,棒型有毒,而棒型的毒性主要是其保护剂CTAB所造成。

Yen等比较了金和银纳米颗粒对于巨噬细胞(macrophages)的作用,认为带负电的金纳米颗粒比银纳米颗粒毒性更大。

Gu等将24 nm金颗粒通过半胱胺连接到金膜上,然后将此薄膜与猪的肝细胞共培养,发现细胞可以快速增殖,并且很好的保持了其生物代谢功能。

郑海霞等和张敏娟等表明金颗粒对于人正常皮肤细胞和人表皮细胞的促进增殖作用是时间和剂量依赖的。

在张敏娟等的工作中,使用了17 nm的AuNPs,发现加入AuNPs后,随浓度增加,增殖作用加强到一最大值然后下降。

Kang等使用30 nm AuNPs,证明了合适的表面处理会使AuNPs和癌细胞的细胞核作用而引起细胞死亡。

Yi等通过MTT方法研究了20 nm大小的金颗粒对于间充质干细胞(mesenchymal stem cells,MSCs)的作用及其作用机理,发现AuNPs能通过细胞膜进入细胞,激活了p38MAPK 信号通路(p38 mitogen-activatedprotein kinase),可以调节有关基因,从而促进成骨分化,抑制成脂分化。

相关文档
最新文档