2017年成都七中外地生入学考试数学试题
成都七中2017年外地生招生考试 数学答案

【答案】6 . 4 星
【解】设三种盒子依次有 x, y, z 个. 10x+9y+6z=108 . 注意到 x 应为 3 的倍数, ∴ x=3, 6, 9.
当 x=3 时, 方程化为:3y+2z=26 . 得(y, z)=(8,1), (6,4),(4,7),(2,10) . 共 4 种 .
当 x= 6 时, 方程化为:3y+2z=16 . 得(y, z)=(4,2), (2,5) . 共 2 种 .
【解】有理化或平方去根号得 x 1 1, 原式= (x 1)(x2 1 1 ) 12 2 1 2
x
x
x2
7、已知关于
x
的方程
x
2 x
3
0
的两实数根为
x1,
x2.
则
1
2 1
__________ .
x1 x2
【答案】 4 . 3
【解】
8、化简 (a2 2a 2)2 (a 1)(a 2)(a 3)(a 4) 25 __________ . (a 3)(a 1)
【解】(1)联立
y
2 x
得 A(1, 2), B(2,1).所以正方形 ABCD 的中心为 (2, 2) .于是 C(3, 2).
y x 3
代入 y m 得 m 6. 6分 x
(2) 因为 AP BP ,所以点 P 落在线段 AB 的垂直平分线 y x 上.
2)
6 3. 2
当 P( 6, 6) 时, MP ( 6 3)2 ( 6 3)2 2 3 3 2 .
2
2
2017成都七中高三数学(文)入学试题

高2017届2016~2017学年度下期入学考试数学(文科)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1、已知集合{}12A x x =-<<,{}03B x x =<<,则A B = ( ) A .(1,3)- B .(1,0)- C .(0,2)D .(2,3) 2、复数z 满足,则z 等于()A.1 C3A .y =x 3B .y =|x |+1C .y =-x 2+1D .2xy -=4、将函数3sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( ) A.3sin(2)4y x π=+B.3sin(2)3y x π=+C.3sin(2)4y x π=-D.3sin(2)3y x π=- 5、下列命题中正确的是( )A .“1x <-”是“220x x -->”的必要不充分条件B .对于命题p :0x R ∃∈,使得20010x x +-<,则p ⌝:x R ∀∈,均有210x x +-> C .命题“2230ax ax -+>恒成立”是假命题,则实数a 的取值范围是:0a <或3a ≥D .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”6、若α为锐角,,则cos 2β等于( ) A7、已知平面直角坐标系中的区域由不等式组若为上的动点,点的坐标为z OM OA =⋅的最大值为( )A. D .xOy D (),M x y D A 438、设函数sin cos y x x x =+的图象在点(),()t f t 处切线的斜率为k ,则函数()k g t =的部分图象为( )9、如图所示,在直三棱柱111ABC A B C -中,BC AC =,1AC ⊥1A B ,M ,N 分别是11A B ,AB 的中点,下列结论错误..的是( ) A .1C M ⊥平面11A ABB B .1AB ⊥1NBC .平面1AMC ∥平面1CNBD .平面1A BC ⊥平面1ABC10、棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体各表面面积的最大值为( )A.4B.5C.11、过曲线的左焦点F 作曲线2222:C x y a +=的切线,设切点为M ,延长FM 交曲线于点N ,其中曲线C 1与C 3有一个共同的焦点,若OF ON =(O 为坐标原点),则曲线C 1的离心率为() A .BD12、设函数321()3(8)53f x x x a x a =-+---,若恰好存在两个正整数12x x ,,使得()0i f x <,1,2i =,则a 的取值范围是()二、填空题:本大题共4小题,每小题5分.13、设函数22,0()log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩,则函数1()2y f x =-的零点所构成的集合为________.)0,0(1:22221>>=-b a by a x C )0(2:23>=p px y C 215+14、执行如图所示的程序框图,输出的k 值为.15、若A 、B 、C 、D 四点共圆,1AB =,3BC =,2CD DA ==,则BD 等于.16、已知ABC ∆中,过中线AD 的中点E 任作一条直线分别交边AB ,AC 于M ,N 两点,设AM xAB = ,AN yAC=(0xy ≠),则4x y +的最小值为.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分)某校高二年级十二个班级安全教育平台作业得分情况如下面茎叶图 所示:已知得分在80到90之间为良好(大于等于80,小于90),得分不小于90为优秀. (Ⅰ)求高二年级得分的极差和平均数; (Ⅱ)教育局将得分良好以上的班级随机抽取两个进行问卷调查,求抽到的班级至少有一个得分优秀的概率.18、(本小题满分12分)如图,四棱柱11ABCD A -菱形,AC BD O = ,11A B A D ===AA AB (Ⅰ)证明:平面1ACO ⊥平面11BB D D ; (Ⅱ)若60BAD ∠=,求点1A 到平面1BCB19、(本小题满分12分)已知数列{}n a 满足21*123222(1)21()n n n a a a a n n N -++++=-⋅+∈ . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若1tan tan n n n b a a +=⋅,求数列{}n b 的前n 项和n T .20、(本小题满分122y 轴上一点Q 的坐标为(0,5).(Ⅰ)求该椭圆的方程;(Ⅱ)若对于直线:l y x m =+,椭圆C 上总存在不同的两点A 与B 关于直线l 对称,求QAB ∆面积的最大值,及取得最大值时直线l 的方程.21、(本小题满分12分)已知函数(1)()ln a x f x x x-=-,已知 2.71828e =...是自然对数的底数.(Ⅰ)当4a =时,求()f x 的单调区间; (Ⅱ)若()0f x ≥恒成立,求实数a 的取值集合; (Ⅲ)证明:13211113e<(). 22、4-4:坐标系与参数方程,曲线1cos :(sin x C y θθθ=⎧⎨=⎩为参数).(Ⅰ)设l 与1C 相交于,A B 两点,(Ⅱ)若把曲线1C 上各点的横坐标不变,纵坐标变为原来的3倍,得到2C ,设点P 是曲线2C 上的一个动点,求点P 到直线l 的距离的最大值.。
2017年四川省成都七中自主招生考试数学试卷(含详细解析)

2017年四川省成都七中自主招生考试数学试卷一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A. B. C.D.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.23.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2 D.24.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S25.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个 B.2个 C.3个 D.4个6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.447.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.48.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E 作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个 B.10个C.12个D.14个10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P 从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A. B.C.2D.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.12.(6分)如图,圆锥母线长为2,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6=.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,则k=.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=.17.(6分)函数y=2+的最大值为.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为.三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x的取值.2017年四川省成都七中自主招生考试数学试卷参考答案与试题解析一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A. B. C.D.【解答】解:过A作AE⊥BC,如图所示:∵菱形ABCD的边长为2,∠ABC═60°,∴∠BAE=30°,∴BE=AB=1,∴AE=BE=,∴内切圆半径为,∴内切圆面积=π•()2=;故选:A.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.2【解答】解:,②×5﹣①得:14y+3z=﹣17④,②×2﹣③得:5y+2z=﹣7⑤④×2﹣⑤×3得:13y=﹣13,解得:y=﹣1,把y=﹣1代入⑤得:z=﹣1,把y=﹣1,z=﹣1代入②得:x=2,则(a,b,c)=(2,﹣1,﹣1),则a+b+c=2﹣1﹣1=0.故选:B.3.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2 D.2【解答】解:∵圆O1与圆O2半径分别为4和1,圆心距为2,∴4﹣1>2,故两圆内含,不妨设截得的弦为AB,切点为C,连接O1A,连接O1O2,O2C,∵半径确定,∴弦心距越小,则弦越长,∵AB是⊙O2的切线,∴O2C⊥AB,∴当O1、O2、C在一条线上时,弦AB最短,由题意可知OC1=2+1=3,AO1=4,在Rt△ACO1中,由勾股定理可得AC==,∴AB=2AC=2,故选:C.4.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S2【解答】解:∵AD∥BC,∴△AOD∽△COB,∴=,∵△AOD与△AOB等高,∴S1:S2=AD:BC=a:b,∴S1=S2,S3=S2,∴S1+S3=(+)S2=S2,∵a≠b,∴a2+b2>2ab,∴>2,∴S1+S3>2S2,故选:D.5.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个 B.2个 C.3个 D.4个【解答】解:方程两边都乘x(x+2)得,(2k﹣4)x(x+2)+(k+1)(x+2)=x(k ﹣5),整理得,(k﹣2)x2+(2k﹣1)x+k+1=0.①当k﹣2≠0时,∵△=(2k﹣1)2﹣4(k﹣2)(k+1)=9>0,∴一元二次方程(k﹣2)x2+(2k﹣1)x+k+1=0有两个不相等的实数根.∵关于x的分式方程2k﹣4+仅有一个实数根,而x(x+2)=0时,x=0或﹣2,∴x=0时,k+1=0,k=﹣1,此时方程﹣3x2﹣3x=0的根为x=0或﹣1,其中x=0是原方程的增根,x=﹣1是原方程的根,符合题意;x=﹣2时,4(k﹣2)﹣2(2k﹣1)+k+1=0,k=5,此时方程3x2+9x+6=0的根为x=﹣2或﹣1,其中x=﹣2是原方程的增根,x=﹣1是原方程的根,符合题意;即k=﹣1或5;②当k﹣2=0,即k=2时,方程为3x+3=0,解得x=﹣1,符合题意;即k=2.综上所述,若关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值为﹣1或5或2,共有3个.故选:C.6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.44【解答】解:设从左向右位置为①,②,③,④,⑤,∵英语书不在最左边,∴最左边①有4种取法,∵同类书不相邻,∴②有3种取法,③有两种取法,④有两种取法,⑤有一种取法,共4×3×2×2×1=48,但是英语书排在第②位置时,只能是语文、英语、数学、语文、数学,或者数学、英语、语文、数学、语文,故英语书排在第②位置时只有8种情况,故种情况为48﹣8=40种,故选:C.7.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.4【解答】解:∵==﹣=﹣=﹣,∴=﹣+﹣+﹣=﹣∵a=,∴==4,0<a27<a3=()3=<,∴<1﹣a27<1,∴1<<2,∴的值的整数部分为2.故选:B.8.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E 作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个 B.10个C.12个D.14个【解答】解:综合三视图,我们可以得出,这个几何模型的底层至少有3个小正方体,第二层至少有3个小正方体,第三层至少有3个小正方体,则这样的小正方体至少应有3+3+3=9个,选项中10是满足条件最小的数字.故选:B.10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P 从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A. B.C.2D.【解答】解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为M,在DA上,且DM=DA,第三次碰撞点为N,在DC 上,且DN=DC,第四次碰撞点为G,在CB上,且CG=BC,第五次碰撞点为H,在DA上,且AH=AD,第六次碰撞点为Z,在AB上,且AZ=AD,第七次碰撞点为I,在BC上,且BI=AD,第八次碰撞点为D,再反方向可到E,由勾股定理可以得出EF=HZ==,FM=GH=ID=,MN=NG=,ZI=,P所经过的路程为(×2+×3+×2+)×2=.故选:B.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是(﹣2,1).【解答】解:∵y=kx+(2k+1)∴y=k(x+2)+1,∴图象恒过一点是(﹣2,1),故答案为(﹣2,1).12.(6分)如图,圆锥母线长为2,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为2.【解答】解:如右图所示,是圆锥侧面展开的一部分,∵圆锥母线长为2,底面半径为,∠AOB=135°,∴,作AD⊥SB于点D,∵SA=SB=2,∴展开的扇形所对的圆心角为,∴在Rt△SAD中,AD=SD=,∴BD=SB﹣SD=2﹣,∴AB==,故答案为:2.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6= 1﹣26.【解答】解:由题意可知a0=(﹣2)6,令x=1,则1=a0+a1+a2+a3+a4+a5+a6,因此a1+a2+a3+a4+a5+a6=1﹣a0=1﹣(﹣2)6=1﹣26.故答案为:1﹣26.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.【解答】解:正五边形ABCDE,∴∠BAE=∠ABC=BCD=∠CDE∠AED=108°,AB=BC=CD=DE=AE,∴△ABC≌△ABE,∴AC=BE,同理:△ABH≌△△BCG≌△AJE,∴AH=CG=JE,∴HJ=HG,同理:FG=FK=JK=HG,∴五边形HGFKJ是正五边形,∴正五边形HGFKJ∽正五边形ACBDE,设HE=CD=a,HJ=x,由题意,△HAB∽△ABE,∴,∴x=∴落在五边形FGHJK区域内的概率为=,故答案为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,【解答】解:∵函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),∴,消去y得x2﹣kx+1=0,∴x1+x2=k,x1x2=1,∴+====18,∴k(k2﹣2)﹣k=18,解答k=3.故答案为3.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=45°.【解答】解:作AF∥CD,DF∥AC,AF交DF于点F,∴四边形ACDF是平行四边形.∵∠C=90°∴四边形ACDF是矩形,∴CD=AF,AC=DF,∠EAF=∠FDB=∠AFD=90°.∵BD=AC,AE=CD∴△BDF和△AEF是等腰直角三角形,∴∠AFE=∠DFB=45°,∴∠DFE=45°,∴∠EFB=90°.∴∠EFB=∠AFD.∴△BDF∽△AEF,∵∠EFB=∠AFD,∴△ADF∽△EBF∴∠PAF=∠PEF∴∠APE=∠AFE∵∠AFE=45°∴∠APE=45°17.(6分)函数y=2+的最大值为.【解答】解:根据题意得:,解得:1≤x≤2,由柯西不等式得:y=2+≤•=×=(当且仅当2=,即x=时,取等号),故函数y=2+的最大值为.故答案为:.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为(45,7,1)或(19,9,1).【解答】解:∵(2x+1),(2y+1),(2z+1)都是奇数,∴x,y,z都是奇数,∵(2x+1)(2y+1)(2z+1)=13xyz,∴(2+)(2+)(2+)=13,∵x≥y≥z,如果z≥3,那么(2+)(2+)(2+)≤(2+)2=<13,∴z=1,∴3(2x+1)(2y+1)=13xy,化简得:xy=6(x+y)+3,则x==6+,∵39的因子有:1,3,12,39,∴y﹣6=1,3,13,39,∴y=7,9,19,45,∴x的对应只有:45,19,9,7,∵x>y,∴正整数解(x,y,z)为:(45,7,1)或(19,9,1).故答案为:(45,7,1)或(19,9,1).三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.【解答】解:(1)由题设可知S=(2﹣)2=,△DEF解得k=1或7(不合题意,舍去),∴k=1;(2)①如图1,当2≤t≤时,因为C点坐标为(t,0),所以E点坐标为(t,),所以DE=2﹣,而F点坐标为(,2),所以DF=t﹣,所以S=DE•DF=(2﹣)(t﹣)=t+﹣1;②如图2,当t>时,此时OB=t﹣2,所以F点的坐标为(t﹣2,),所以AF=2﹣,所以S=•2•(DE+AF)=•2•(2﹣+2﹣)=4﹣﹣;(3)当2≤t≤时,DE和DF随t的增大而增大,S也类似,故当t=时S有最大值为<2,所以S=2只可能发生在t>时,令4﹣﹣=2,解得t=;(4)①如图3,当2≤t≤时,假设位置存在,由对称性知Rt△FDE∽Rt△DCD1,因为DE=D1E,则有=,其中D1C==,整理得:t(t﹣1)=4,解得t=>,与假设矛盾,所以当2≤t≤时,不存在;②如图4,当t>时,假设位置存在,过F作直线FG∥x轴交CD于G,由对称性可知Rt△FGE≌Rt△DCD1,DE=D1E,所以GE=D1C,而GE=﹣,整理可得t(t﹣1)(t﹣2)2=1,设y=t(t﹣1)(t﹣2)2,当t>2时,y随t的增大而增大,取t=2.5,则y=0.9375<1,取t=2.6,则y=1.4976>1,利用试值法可以判断位置存在且唯一,对应的t的取值在2.5和2.6之间.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x的取值.【解答】解:(1)函数y=|x﹣1|+|x﹣3|的最小值的几何意义是数轴上x到1和3两点距离之和的最小值,∵两点之间线段最短,∴当1<x<3时,y min=|3﹣1|=2,(2)∵y=|x﹣1|+|x﹣2|+|x﹣3|=(|x﹣1|+|x﹣3|)+|x﹣2|,当x=2时,|x﹣2|有最小值,∴结合(1)的结论得出,当x=2时,y min=2+0=2,(3)当n为偶数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x ﹣(n﹣1)|)+…+(|x﹣|+|x﹣(+1)|),由(1)知,当<x<+1时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…|x ﹣|+|x ﹣(+1)|有最小值1,∴当<x <+1时,y min=1+3+5+…+(n﹣3)+(n﹣1)=,当n为奇数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x﹣(n﹣1)|)+…+(|x ﹣|+|x ﹣(+1)|)+|x ﹣|,由(1)知,当x=时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…|x ﹣|+|x ﹣(+1)|有最小值1,|x ﹣|的最小值为0,∴当x=时,ymin=0+2+4+…+(n﹣3)+(n﹣1)=,(4)类似(3)的做法可知,y=|x﹣a1|+|x﹣a2|+…+|x﹣a n|,如果n 为偶数时,当时,y有最小值,如果n为奇数时,当x=时,y有最小值;∵y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|=++…++|x﹣1|∴共有9+8+7+…+2+1=45项,为奇数.∴当x=时,ymin=|﹣1|+|﹣1|+…+|﹣1|+|﹣1|=第21页(共21页)。
2017-2018学年四川省成都七中高三(上)入学数学试卷(理科)(解析版)

2017-2018学年四川省成都七中高三(上)入学数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,若(a,b∈R),则ab=()A.﹣15B.3C.15D.﹣32.(5分)某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程,其中,,据此模型预测广告费用为9万元时,销售轿车台数为()A.17B.18C.19D.203.(5分)程序框图的功能是:给出以下十个数:5,9,80,43,95,73,28,17,60,36,把大于60的数找出来,则框图中的①②应分别填入的是()A.x>60?,i=i﹣1B.x<60?,i=i+1C.x>60?,i=i+1D.x<60?,i=i﹣14.(5分)圆C的圆心在y轴正半轴上,且与x轴相切,被双曲线的渐近线截得的弦长为,则圆C的方程为()A.x2+(y﹣1)2=1B.x2+(y﹣)2=3C.x2+(y﹣)2=D.x2+(y﹣2)2=45.(5分)已知直线m,n和平面α,β,使m⊥α成立的一个充分条件是()A.m⊥n,n∥αB.m∥β,β⊥αC.m∥n,n⊥αD.m⊥n,n⊂α6.(5分)一空间几何体的三视图如图所示,该几何体的体积为12π+,则正视图与侧视图中x的值为()A.5B.4C.3D.27.(5分)将函数的图象向左平移个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在的最大值为()A.0B.C.D.18.(5分)二项式(ax+)6的展开式的第二项的系数为﹣,则∫x2dx的值为()A.B.C.3或D.3或9.(5分)某个家庭有2个孩子,其中有一个孩子为女孩,则另一个孩子也为女孩的概率为()A.B.C.D.10.(5分)在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且=5,则△ABC的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.上述三种情况都有可能11.(5分)对正整数n,有抛物线y2=2(2n﹣1)x,过P(2n,0)任作直线l交抛物线于A n,B n两点,设数列{a n}中,a1=﹣4,且a n=(其中n>1,n∈N),则数列{a n}的前n项和T n=()A.4n B.﹣4n C.2n(n+1)D.﹣2n(n+1)12.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”,现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足;④要使得分段函数的图象具有“可平行性”,当且仅当m=1.其中的真命题个数有()A.1B.2C.3D.4二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a =.14.(5分)若随机变量ξ~N(2,1),且P(ξ>3)=0.158 7,则P(ξ>1)=.15.(5分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;附:.16.(5分)设等差数列{a n}的前n项和为S n,且S n=na n+a n﹣c(c是常数,n∈N*),a2=6,又b n=,数列{b n}的前n项和为T n,若2T n>m﹣2对n∈N*恒成立,则正整数m的最大值是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.18.(12分)在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是.(Ⅰ)求油罐被引爆的概率;(Ⅱ)如果引爆或子弹打光则停止射击,设射击次数为ξ.求ξ的分布列及数学期望E (ξ).(结果用分数表示)19.(12分)如图,P A⊥平面ADE,B,C分别是AE,DE的中点,AE⊥AD,AD=AE=AP =2.(Ⅰ)求二面角A﹣PE﹣D的余弦值;(Ⅱ)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.20.(12分)已知定点F(1,0),定直线l:x=4,动点P到点F的距离与到直线l的距离之比等于.(Ⅰ)求动点P的轨迹E的方程;(Ⅱ)设轨迹E与x轴负半轴交于点A,过点F作不与x轴重合的直线交轨迹E于两点B、C,直线AB、AC分别交直线l于点M、N.试问:在x轴上是否存在定点Q,使得?若存在,求出定点Q的坐标;若不存在,请说明理由.21.(12分)已知函数g(x)=x sinθ﹣lnx﹣sinθ在[1,+∞)单调递增,其中θ∈(0,π)(1)求θ的值;(2)若,当x∈[1,2]时,试比较f(x)与的大小关系(其中f′(x)是f(x)的导函数),请写出详细的推理过程;(3)当x≥0时,e x﹣x﹣1≥kg(x+1)恒成立,求k的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.[选修4-5:不等式选讲]23.已知不等式2|x﹣3|+|x﹣4|<2a,(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.2017-2018学年四川省成都七中高三(上)入学数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由,得:,∴a=﹣1,b=3,则ab=﹣3.故选:D.2.【解答】解:根据表中数据,计算=×(2+3+4+5+6)=4,=×(3+4+6+10+12)=7,且回归直线方程为=2.4x+,∴=7﹣2.4×4=﹣2.6,∴回归方程为=2.4x﹣2.6;当x=9时,=2.4×9﹣2.6=19,即据此模型预测广告费用为9万元时,销售轿车台数为19.故选:C.3.【解答】解:把大于60的数找出来,根据流程图可知当满足条件时输出x,故判断框中应填x>60°?,处理框用来计数的,则处理框应填i=i+1.故选:C.4.【解答】解:设圆C的方程为x2+(y﹣a)2=a2(a>0),圆心坐标为(0,a),∵双曲线的渐近线方程为,圆被双曲线的渐近线截得的弦长为,∴,∴a=1,∴圆C的方程为x2+(y﹣1)2=1.故选:A.5.【解答】解:∵已知直线m,n和平面α,β,故由n∥n,n⊥α,可得m⊥α,故“n∥n,n⊥α”是“m⊥α”的一个充分条件,故选:C.6.【解答】解:由三视图知,该空间几何体为圆柱及四棱锥,且圆柱底面半径为2,高为x,四棱锥底面为正方形,边长为2,高为=,故体积为4πx+×(2)2×=12π+,故x=3,故选:C.7.【解答】解:将函数的图象向左平移个单位长度后,可得函数g(x)=sin(2x++φ)的图象,根据所得图象关于原点对称,可得+φ=π,∴φ=,f(x)=sin(2x+).在上,2x+∈[,],故当2x+=时,f(x)=sin(2x+)取得最大值为1,故选:D.8.【解答】解:∵二项式(ax+)6的展开式的第二项的系数为×a5×=a5=﹣,∴a=﹣1,x2dx=×(﹣1)3﹣×(﹣2)3=.故选:A.9.【解答】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A为“其中一个是女孩”,事件B为“另一个也是女孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(女,女)},AB={(女,女)}.于是可知P(A)=,P(AB)=.问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A)===,故选:A.10.【解答】解:在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵,,由=5,则()==﹣•=5,即﹣•()=5,则,又BC=5,则有||2=||2+||2>||2+||2,由余弦定理可得cos C<0,即有C为钝角.则三角形ABC为钝角三角形.故选:B.11.【解答】解:设直线方程为x=ty+2n,代入抛物线方程得y2﹣2(2n﹣1)ty﹣4n(2n﹣1)=0,设A n(x n1,y n1),B n(x n2,y n2),则=x n1x n2+y n1y n2=(t2+1)y n1y n22nt+(y n1+y n2)+4n2,①,由根与系数的关系得y n1+y n2=2(2n﹣1)t,y n1y n2=﹣4n(2n﹣1),代入①式得=﹣4n(2n﹣1)t2+4n2=4n﹣4n2,故(n>1,n∈N),故数列{}的前n项和为﹣2n(n+1).故选:D.12.【解答】解:①函数y=(x﹣2)2+lnx,则y′=2(x﹣2)+=,(x>0),方程==a,即2x2﹣(4+a)x+1=0,当a=﹣4+2时有两个相等正根,不符合题意;②定义在(﹣∞,0)∪(0,+∞)的奇函数,如y=x,x∈(﹣∞,0)∪(0,+∞)在各点处没有切线,∴②错误;③三次函数f(x)=x3﹣x2+ax+b,则f′(x)=3x2﹣2x+a,方程3x2﹣2x+a﹣m=0在判别式△=(﹣2)2﹣12(a﹣m)≤0时不满足方程y′=a(a 是导数值)至少有两个根.命题③错误;④函数y=e x﹣1(x<0),y′=e x∈(0,1),函数y=x+,y′=1﹣,则由1﹣∈(0,1),得∈(0,1),∴x>1,则m=1.故要使得分段函数f(x)的图象具有“可平行性”,当且仅当实数m=1,④正确.∴正确的命题是④.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:先根据约束条件画出可行域,设z=2x+y,将最大值转化为y轴上的截距,当直线z=2x+y经过点B时,z最小,由得:,代入直线y=a(x﹣3)得,a=;故答案为:14.【解答】解:∵随机变量ξ~N(2,1),∴正态曲线关于x=2对称,∵P(ξ>3)=0.1587,∴P(ξ>1)=P(ξ<3)=1﹣0.1587=0.8413.故答案为:0.841315.【解答】解:根据表中数据,计算观测值,对照临界值知,有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.16.【解答】解:∵S n=na n+a n﹣c(c是常数,n∈N*),a2=6,∴n=1,2,a1=a1+a1﹣c,a1+6=+6﹣c,解得a1=4,c=2.∴公差d=a2﹣a1=6﹣4=2.∴a n=4+2(n﹣1)=2n+2.b n==,∴数列{b n}的前n项和为T n=+++…+,=+…++,∴T n=+…+﹣=﹣,∴T n=2﹣.2T n>m﹣2,∴2(2﹣)>m﹣2,化为:m<6﹣,对n∈N*恒成立,由于=>0,∴数列{}单调递减.∴m<6﹣3=3,则正整数m的最大值是2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.【解答】解:(I)设命中油罐的次数为X,则当X=0或X=1时,油罐不能被引爆.,,∴(II)射击次数ξ的取值为2,3,4,5.,,,P(ξ=5)=1﹣P(ξ=2)﹣P(ξ=3)﹣P(ξ=4)=.因此,ξ的分布列为:∴19.【解答】解:以{,,}为正交基底建立空间直角坐标系Axyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2)(Ⅰ)∵AD⊥平面P AB,∴是平面P AB的一个法向量,=(0,2,0).∵=(1,1,﹣2),=(0,2,﹣2).设平面PED的法向量为=(x,y,z),则•=0,•=0,即,令y=1,解得z=1,x=1.∴=(1,1,1)是平面PCD的一个法向量,计算可得cos<,>==,∴二面角A﹣PE﹣D的余弦值为;(Ⅱ)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),∴cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为.因为y=cos x在(0,)上是减函数,此时直线CQ与DP所成角取得最小值,又∵BP==,∴BQ=BP=20.【解答】解:(Ⅰ)设点P(x,y),依题意,有=两边平方,整理得=1.所以动点P的轨迹E的方程为=1.(Ⅱ)设BC的方程为x=my+1,代入椭圆方程,整理得(3m2+4)y2+6my﹣9=0,设B(my1+1,y1),C(my2+1,y2),Q(x0,0),则y1+y2=﹣,y1y2=﹣,∵A(﹣2,0),∴直线AB的方程为y=(x+2),直线AC的方程为y=(x+2),从而M(4,),N(4,),∴=+=﹣9,∴=9即x0,=1或7时,=0,综上所述,在x轴上存在定点Q(1,0)或(7,0),使得=0.21.【解答】解:(1)∵g(x)在[1,+∞)单调递增,∴在[1,+∞)上恒成立,即恒成立.∵当x≥1时,≤1,∴sinθ≥1,又θ∈(0,π),∴0<sinθ≤1∴sinθ=1,∴.(2)由(1)可知g(x)=x﹣lnx﹣1,∴,∴,∴,令h(x)=x﹣lnx,,∴,,∴h(x)在[1,2]上单调递增,∴h(x)≥h(1)=1,令φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]单调递减,∵φ(1)=1,φ(2)=﹣10,∴∃x0∈(1,2),使得H(x)在(1,x0)单调递增,在(x0,2)单调递减,∵H(1)=0,H(2)=﹣,∴,∴,又两个函数的最小值不同时取得;∴,即:.(3)∵e x﹣x﹣1≥kg(x+1)恒成立,即:e x+kln(x+1)﹣(k+1)x﹣1≥0恒成立,令F(x)=e x+kln(x+1)﹣(k+1)x﹣1,则,由(1)得:g(x)≥g(1)即x﹣lnx﹣1≥0(x≥1),∴x+1≥ln(x+1)+1(x≥0),即:x≥ln(x+1)(x≥0),∴e x≥x+1,∴当k=1时,∵x≥0,∴,∴F(x)单调递增,∴F(x)≥F(0)=0,符合题意;当k∈(0,1)时,y=(x+1)+﹣(k+1)在[0,+∞)上单调递增,∴,∴F(x)单调递增,∴F(x)≥F(0)=0,符合题意;当k≤0时,F′(x)在[0,+∞)上是增函数,∴≥F′(0)=1+k﹣(k+1)=0,∴F(x)单调递增,∴F(x)≥F(0)=0符合题意,当k>1时,F″(x)=e x﹣,∴F″(x)在[0,+∞)上单调递增,又F″(0)=1﹣k<0,且x→+∞,F″(x)>0,∴F″(x)在(0,+∞)存在唯一零点t0,∴F′(x)在(0,t0)单调递减,在(t0,+∞)单调递增,∴当x∈(0,t0)时,F′(x)<F′(0)=0,∴F(x)在(0,t0)单调递减,∴F(x)<F(0)=0,不合题意.综上:k≤1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.【解答】解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴t=,代入y=t sinα,得:直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(﹣6,0),半径r=5,圆心到直线的距离d=.∴圆心C(﹣6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)若a=1,不等式即2|x﹣3|+|x﹣4|<2,①若x≥4,则3x﹣10<2,x <4,∴舍去.②若3<x<4,则x﹣2<2,∴3<x<4.③若x≤3,则10﹣3x<2,∴.综上,不等式的解集为.(Ⅱ)设f(x)=2|x﹣3|+|x﹣4|,则,故当x=3时,f(x)取得最小值为1,∴f(x)≥1,根据题意,2a>1,解得a>.。
四川省成都七中2017届高三上学期入学数学试卷(理科) 含解析

2016—2017学年四川省成都七中高三(上)入学数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.设全集U=R,若集合A={x∈N||x﹣2|<3},B={x|y=lg(9﹣x2)},则A∩∁R B()A.{x|﹣1<x<3}B.{x|3≤x<5} C.{0,1,2} D.{3,4}2.已知复数z=x+yi(x,y∈R),且有=1+yi,是z的共轭复数,则的虚部为()A.B.i C.D.i3.已知x,y取值如表:x01456y 1.3m3m5。
67。
4画散点图分析可知,y与x线性相关,且回归直线方程=x+1,则实数m的值为()A.1.426 B.1。
514 C.1。
675 D.1.7324.已知函数f(x)的部分图象如图所示.向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为33,由此可估计f(x)dx的值约为( )A.B.C.D.5.已知点P(3,3),Q(3,﹣3),O为坐标原点,动点M(x,y)满足,则点M所构成的平面区域的内切圆和外接圆半径之比为()A.B. C.D.6.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=AB=AD=,若∠A1AD=∠A1AB=45°,∠BAD=60°,则点A1到平面ABCD的距离为()A.1 B.C.D.7.在△ABC中,若4(sin2A+sin2B﹣sin2C)=3sinA•sinB,则sin2的值为()A.B. C.D.8.若直线xcosθ+ysinθ﹣1=0与圆(x﹣cosθ)2+(y﹣1)2=相切,且θ为锐角,则这条直线的斜率是()A. B. C.D.9.定义在R上的函数f(x)满足f(x﹣2)=﹣f(x),且在区间[0,1]上是增函数,又函数f(x﹣1)的图象关于点(1,0)对称,若方程f(x)=m在区间[﹣4,4]上有4个不同的根,则这些根之和为()A.﹣3 B.±3 C.4 D.±410.设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λ•μ=,则该双曲线的离心率为()A.B.C. D.11.已知函数f(x)=,g(x)=,则函数h(x)=g(f(x))﹣1的零点个数为()个.A.7 B.8 C.9 D.1012.若对任意的x1∈[e﹣1,e],总存在唯一的x2∈[﹣1,1],使得lnx1﹣x1+1+a=x22e x2成立,则实数a的取值范围是()A.[,e+1] B.(e+﹣2,e]C.[e﹣2,) D.(,2e﹣2]二、填空题13.已知P1(x1,x2),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若sin()=,则的x1x2+y1y2值为.14.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x i(i=1,2,3,4)(单位:立方米).根据如图所示的程序框图,若知x1,x2,x3,x4分别为1,1.5,1.5,3,则输出的结果S为.15.已知a<b,二次不等式ax2+bx+c≥0对任意实数x恒成立,则M=的最小值为.16.设x∈R,定义[x]表示不超过x的最大整数,如[]=0,[﹣3。
成都七中2017年外地生招生考试题解析(标准)

成都七中外地生招生考试数学试题考试时间:120分钟 满分:150分一、填空题(1-6题每题5分,7-12题每题7分,13-18题每题8分,共120分) 1、若0732=-+-b a ,则b a += .难度:★ 原理:“非负数和为零,则各加数均为零” 答案:73± 2、设b a ≠,且43322=+=+b b a a ,则b a ab 22+= . 难度:★★ 原理:一元二次方程根与系数的关系解析:由题意,b a 、为方程0432=-+x x 的两相异实根,则.43-=-=+ab b a , 进而得.12)3()4()(22=-⨯-=+=+a b ab b a ab3、如图,在长方体1111D C B A ABCD -中,已知4=AB ,,3=AD 21=AA ,则三棱锥DB A C 11的体积为 . 难度:★★★ 原理:棱锥的体积公式Sh V 31=方法:间接法 解析:观察图可得,三棱锥DB A C 11的体积为长方体1111D C B A ABCD -的体积减去4个三棱锥ABD A 1的体积.即8)2342131(4234=⨯⨯⨯⨯⨯-⨯⨯ 4、将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数4相差2的概率是 .难度:★ 原理:机会均等事件发生的概率 答案:31 5、抛物线224,2bx y ax y -=-=与坐标轴恰好有4个交点,这4个交点组成的筝形面积为12,则b a += .难度:★★ 原理:抛物线的轴对称性及筝形面积公式 解析:由题意作图.根据筝形面积为12,可得两抛物线 与横轴交点为(-2,0)和(2,0).联立两抛物线解析式得2242bx ax -=-,即6)(2=+x b a .故.23=+b a6、设251-=x ,则331x x -= .难度:★★ 原理:二次根式的化简及立方差、完全平方公式的应用 解析:由251-=x 得2511+-=x ,则12512511=++-=-x x故243)1()11)(1(122233==+-=++-=-xx x x x x x xxyOD 1 C 1 A BA 1B 1D C7、已知关于x 的方程032=--x x 的两实数根为1x 、2x ,则21112x x += . 难度:★★ 原理:一元二次方程根与系数的关系及方程、代数式的变形 解析:由方程032=--xx 变形得0232=--x x ,由韦达定理得,,232121-=⋅=+x x x x 故21112x x +=.343)2(222121-=-⨯=+x x x x8、化简)1)(3(25)4)(3)(2)(1()22(22+----++-+-a a a a a a a a = .难度:★★★ 原理:代数式的恒等变形及整体思想解析:原式)1)(3(25)]4)(2[()]3)(1[()22(22+---+⋅-+-+-=a a a a a a a a)1)(3(25)]82()32[()22(2222+----⋅---+-=a a a a a a a a)1)(3(25]24)2(11)2[(4)2(4)2(222222+--+----+-+-=a a a a a a a a a a )1)(3(45)2(152+---=a a a a )1)(3()32(152+---=a a a a15=9、已知n m 、为正整数,若424n m =,则m 的最小值为 .难度:★★ 原理:数的整除性,分解质因数解析:由322224⨯⨯⨯=,则n 能被6整除,所以n 最小为6,故m 的最小值为54. 10、如图,在边长为3的正△ABC 中,E D 、分别在边AB AC 、上,且AC AD 31=, AB AE 32=,CE BD 、相交于点F ,则F D A 、、所在圆的半径为 . 难度:★★★ 原理:圆的有关性质,三角形的全等 解析:由已知易证△ABD ≌△BCE ,则∠ADF=∠BEF ,从而得A 、E 、F 、D 四点共圆. 连结DE ,易得∠ADE=90○, 故AE 是圆的直径,半径为1.11、若y x ≠,且12,1222+=+=y y x x ,则66y x += .难度:★★ 原理:一元二次方程根与系数的关系及配方法DAB CE F解析:由题意,y x 、为方程0122=--m m 的两相异实根,则.1,2-==+xy y x 故1982)]32(2[2)])([(2)(222223323366=++⨯=++-+=-+=+y xy x y x y x y x y x 12、在△ABC 中,边BC 上的高为1,点D 为AC 的中点,则BD 的最小值为 . 难度:★★ 原理:平行线的有关性质提示:由作图发现不确定点A 的轨迹,从而得到AC 中点D 的轨迹. 答案:21. 13、方程3232222=++++x x x x 的所有实数解的和为 .难度:★★ 原理:换元法解根式方程 解析:由方程变形得0623)23(222=-+++++x x x x ,令m x x =++232,则原方程 为0622=-+m m ,即0)2)(32(=+-m m ,解得2,2321-==m m (舍去).则 49232=++x x ,即0432=-+x x .根据韦达定理,得该方程的实数根之和为-1. 14、若方程0122=--x x 的根都满足方程023=+++c bx ax x ,则c b a ++3= . 难度:★★★ 原理:方程的同解原理及高次方程降次求解解析:由0122=--x x 得122+=x x ,带入三次方程得0)1()2(2=++++c x b x a ,再由两方程同解得12112-=-+=+cb a ,得122-=--=c b c a ,,代入 3a +2b +c=3(-c -2)+(2c -1)+c=-3c -6+2c -1+c=-7方法二:根据方程的同解原理得x 3+ax 2+bx+c=(x 2-2x -1)(x -c ),展开对比系数得. 15、将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为 .难度:★★★ 原理:不定方程讨论求解解析:由设三种盒子的个数分别为a 、b 、c ,则由题意得10a +9b +6c =108.显然a 为3的整数倍,则a 可取值为3、6、9. 当a=3时,9b +6c =78,即3b +2c =26,此时b 为偶数,共有4种组合装法;当a=6时,9b +6c =48,即3b +2c =16,同理可得共有2种组合装法;当a=9时,9b +6c =18,即3b +2c =6,此时无整数解.综上所述,共有6种装法.16、如图,在圆心为O 的圆中,点C 、D 分别位于圆O 的直径AB 两侧,若△OCD 的面积是△BCD 的面积的两倍,又CD=CA ,则OCB ∠cos = .难度:★★★★ 原理:圆的有关知识综合应用解析:设CD 、OB 的交点为G ,则由△OCD 和△BCD 的面积关系 得GO =2GB . 延长CO 交AD 于点E ,易得CE ⊥AD ,则∠AEC = ∠ADB =90°,进而得EC ∥DB ,可得CO=2DB=4EO . 在Rt △OEA 中,令EO=1,则AE=15.在Rt △CEA 中,AC=102.又∠CAD =∠ABC =∠OCB ,故cos ∠OCB=cos ∠CAD=46. B CDA O BA C D17、设1≤n ≤100,若8n +1为完全平方数,则整数n 的个数为 . 难度:★★★ 原理:完全平方数、数的整除性及不等式性质解析:由题意,设8n +1=m 2(m 为正整数),则812-=m n .由1≤n ≤100,得9≤m 2≤801.显然m 为奇数,则奇数3≤m ≤27.故对应的整数n 的个数为13.18、从1,2,3,...,2017中任选k 个数,使得所选的k 个数中一定能找到能构成三角形边长的三个数(要求互不相等),则满足条件的k 的最小值是 .难度:★★★★★ 原理:三角形三边长关系及数论的知识 答案:17 解析:根据三角形三边长关系,从1,2,3,...,2017中找出下面的数:1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597.一共有16个.上述数中任选三个不能构成三角形,从剩下的数中任找一个数,一定能和上述16个数中某两个构成三角形. 二、解答题:19、已知曲线x y 2=与直线3+-=x y 相交于A 、B 两点,C 、D 两点在曲线xmy =(m >2)上,四边形ABCD 是正方形.(1)求m 的值;(2)若点P 在函数xmy =的图象上,且AP =BP ,求△ABP 的面积.难度:★★★★★ 原理:以函数为主体的综合知识应用详解:(1)联立⎪⎩⎪⎨⎧+-==32x y xy 得A (1,2)、B (2,1),如图. 设正方形ABCD 对角线的交点为G ,易得G (2,2), 则C (3,2),代入xmy =得m=6. (2)∵AP =BP ,∴点P 在线段AB 的垂直平分线y=x 上.联立⎪⎩⎪⎨⎧==xy x y 6得)6,6(P 或)6,6(--P .易得2=AB ,AB 的中点Q 坐标为)2323(,.当)6,6(P 时,22332)236(2)236()236(22-=-⋅=-+-=PQ .此时236)22332(22121-=-⋅⋅=⋅=∆PQ AB S ABP ; 当)6,6(--P 时,22332)236(2)236()236(22+=+⋅=+++=PQ .此时236)22332(22121+=+⋅⋅=⋅=∆PQ AB S ABP . 综上得△ABP 的面积为236±.PyABCD OxP Q20、已知关于x 的方程053222=-+-+q p px x ,其中p 、q 都是实数. (1) 若q =0时,方程有两个不同的实数根、x 12x ,且711121=+x x ,求实数p 的值. (2) 若方程有三个不同的实数根1x 、2x 、3x ,且0111321=++x x x ,求实数p 和q 的值. (3) 是否同时存在质数p 和整数q ,使得方程有四个不同的实数根1x 、2x 、3x 、4x ,且443214321)4(3x x x x x x x x +++=⋅⋅⋅若存在,求出所有满足条件的p 、q ;若不存在,请说明理由.难度:★★★★★★ 原理:以方程为主体的综合知识应用详解:(1)若q =0,则方程为053222=+-+p px x .因该方程有两个不同的实数根、x 12x , 可得2016)53(4)2(222-=+--=∆p p p >0,解得2p >45;p x x 221-=+,22135p x x -= 由711121=+x x ,得71352112211221=--=+=+p p x x x x x x ,解得p =5或31-.(注意0352≠-p ) 因为2p >45,所以p =5. (2)显然q >0.方程可写成q p px x ±=+-+53222.因该方程有三个不同的实数根, 即函数532221+-+=p px x y 与q y ±=2的图象有三个不同的交点,如图.由图可得,22234544)35(4p p p q p x -=--=--=,,即542-=p q .21x x 、是方程q p px x =+-+53222的两根,即0107222=+-+p px x .则p x x 221-=+,221710p x x -=,p x -=3.4032)107(4)2(222-=+--=∆p p p >0,解得2p >45. 由0111321=++x x x ,得0)107(51017102122232112=--=-+--=++pp p p p p x x x x x ,得22=p >45, 所以2±=p ,3542=-=p q .(3)存在,方程有四个不同的实数根1x 、2x 、3x 、4x ,由(2)知0<q <542-p . 设1x 、2x 是方程053222=-+-+q p px x 的两根,3x 、4x 是053222=++-+q p px x 的两根,则p x x 221-=+,q p x x -+-=53221;p x x 243-=+,q p x x ++-=53243.x 1Oy=q yxy=-qx 2x 3得p x x x x 44321-=+++,=4321x x x x )53)(53(22q p q p ++--+-)53)(53(22q p q p --+-= 所以4223)53)(53(p q p q p =--+-.由于p 是质数,则p ≥2. 因为q p +-532>q p --532>0,所以q p +-532>23p >2p . 分解22334443333133p p p p p p p p p ⨯=⨯=⨯=⨯=⨯=.分四种情况讨论:⎪⎩⎪⎨⎧=--=+-153353)1(242q p pq p 得0116324=+-p p ,此方程无解;⎪⎩⎪⎨⎧=--=+-35353)2(242q p pq p 得013624=+-p p ,此方程无解; ⎪⎩⎪⎨⎧=--=+-pq p p q p 35353)3(232得0103623=++-p p p , 即0)5)(2)(1(=--+p p p ,得521,,-=p ;⎪⎩⎪⎨⎧=--=+-222253353)4(pq p p q p 得52=p ,得5±=p .又p ≥2,则52,=p .所以存在满足条件的q p 、,当2=p 时,1=q ;当5=p 时,55=q .。
成都七中数学考试真题试卷

成都七中数学考试真题试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333D. √42. 已知函数f(x) = 2x - 3,求f(5)的值。
A. 7B. 8C. 9D. 103. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项是3,公差是2,求第10项的值。
A. 23B. 21C. 19D. 175. 一个长方体的长、宽、高分别是2米、3米和4米,求它的体积。
A. 12立方米B. 24立方米C. 36立方米D. 48立方米6. 已知一个点的坐标是(3,4),求这个点到原点的距离。
A. 5B. 4C. 3D. √57. 一个直角三角形的两条直角边分别是3和4,求斜边的长度。
A. 5B. 6C. 7D. 88. 已知一个二次方程x^2 - 5x + 6 = 0,求它的根。
A. x = 2, 3B. x = 3, 4C. x = 4, 5D. x = 6, 79. 一个数的平方根是4,求这个数。
A. 16B. 8C. 12D. 2010. 已知一个等比数列的首项是2,公比是3,求第5项的值。
A. 486B. 243C. 81D. 162二、填空题(每题2分,共20分)11. 将分数 3/4 转换为小数是 _______。
12. 一个圆的周长是2πr,其中 r 代表 _______。
13. 函数 y = x^2 + 2x + 1 可以化简为 y = (x + _______)^2。
14. 一个数的立方根是 -2,那么这个数是 _______。
15. 一个直角三角形的斜边长是 5,一个锐角的正弦值是 3/5,求这个锐角的余弦值。
16. 如果一个数的对数为 2,底数是 10,那么这个数是 _______。
17. 一个长方体的表面积是 54 平方米,长、宽、高分别是 3 米、2 米和 1 米,求它的体积。
成都七中高2017届数学考试卷

成都七中高2017届数学考试卷届数学考试卷命题人:刘在廷命题人:刘在廷 审题人:周莉莉审题人:周莉莉一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求)分,在每小题给出的四个选项中,只有一项是符合要求)1.0cos13cos17sin17sin13-=( )A. 23-B. 21-C. 21 D. 232.已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 1等于( ) A.2 B .1 C .-1 D .-2 3.已知2cos 23q =,则44cos sin q q -的值为(的值为( )A .23-B .23C .49D .1 4.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( ) A . ﹣2 B . ﹣3 C . ﹣4 D . ﹣55. 在△ABC 中,已知A tan ,B tan 是方程01832=-+x x 的两个根,则C tan 等于(等于( ) A.4- B.2- C.2 D.46. 下列命题中不正确...的是(的是( ) A .存在这样的a 和b 的值,使得b a b a b a sin sin cos cos )cos(+=+ B .不存在无穷多个a 和b 的值,使得b a b a b a sin sin cos cos )cos(+=+ C .对于任意的a 和b ,都有b a b a b a sin sin cos cos )cos(-=+ D .不存在这样的a 和b 值,使得b a b a b a sin sin cos cos )cos(-¹+ 7. 若b a ,均为锐角,==+=b b a a cos ,53)(sin ,552sin 则( ) A. 552 B. 2552 C. 2552552或D. 552-8. 48cos 78sin 24cos 6sin ×××的值为(的值为( ). A .161B .161-C .321 D .819. 已知不等式()2632sin cos 6cos 04442x x x f x m =+--£对于任意的566x p p -££恒成立,则实数m的取值范围是(的取值范围是( ). A.3m ³B.3m £C.3m £-D.33m -££10.已知数列2(31)4(3)2(3)n a n a n a n an n -+£ì=í+>î为单调递增的数列,则实数a 的取值范围为(的取值范围为( ) A 1(,)3+¥ B 119(,)35 C 16(,)37 D 16(,]3711.已知ABC D 的内角,A B 及其对边,a b 满足tan tana ba b A B -=-,则ABC D 为(为( ) A.等腰三角形等腰三角形 B.直角三角形直角三角形 C.等腰或直角三角形等腰或直角三角形 D.不能确定不能确定 12.已知函数()sin cos 2017g x x a x =++满足7()()40343g x g x p +-=,又()s i n c o s f x a x x =+对任意x 恒有0()|()|f x f x £,则满足条件的0x 可以是(可以是( )A.3p B. 4pC. 56p D. D. 以上选项均不对以上选项均不对以上选项均不对 二、填空题:(每小题4分,共16分)分) 13.数列{}n a 满足111(1)n n a n a -=->且114a =-,则5a =_____________._____________. 14. 一艘船以32海里/小时的速度向正北航行,在A 处看灯塔S 在船的北偏东300,半小时后航行到B 处,在B 处看到灯塔S 在船的北偏东750,则灯塔S 与B 点的距离为______海里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
10. 如 图 , 在 边 长 为 3 的 正 △ABC 中 , D , E 分 别 在 边 AC , AB 上 , 且
AD 1 AC,AE 2 AB , BD,CE 相交于点 F,则 A,D,F 所在圆的半径
3
3
为
.
11.若 x≠y, 且 x2=2x+1,y2=2y+1, 则 x6+y6=
.
Байду номын сангаас
15.将 108 个苹果放到一些盒子中,盒子有三种规格:一种可以装 10 个苹果,一
种可以装 9 个苹果,一种可以装 6 个苹果,要求每种规格都要有且每个盒子
均恰好装满,则不同的装法总数为
.
16.如图,在圆心为 O 的圆中,点 C,D 分别位于圆 O 的直径 AB 两侧,若△OCD
的面积是△BCD 的面积的两倍,又 CD=CA,则 cos∠OCB=
7.已知关于 x 的方程 x 2 3 0 的两实数根为 x1,x2,则 x
1
2
1
=
.
x1 x2
8.化简 a2 2a 22 a 1 a 2 a 3 a 4 25 =
.
a 3 a 1
9.已知 m,n 为正整数,若 24m=n4,则 m 的最小值为
Math Lee]
(1)若 q=0 时方程有两个不同的实数根 x1,x2,且 1 1 1 ,求实数 p 的值;
x1 x2 7
(6 分)
(2)若方程只有三个不同的实数根 x1,x2,x3 且 1 1 1 0 ,求实数 p 和 q 的
x1 x2 x3
值;(6 分)
(3)是否同时存在质数 p 和整数 q 使得方程有四个不同的实数根 x1,x2,x3,x4
且
x1x2 x3 x4
3
x1
x2
4
x3
x4
4
?若存在,求出所有满足条件的
p,q,若不存
在,说明理由.(6 分)
19.已知曲线 y 2 与直线 y=-x+3 相交于 A,B 两点,C,D 两点在曲线 y m m 2
x
x
的上,四边形 ABCD 是正方形. (1)求 m 的值;(6 分)
(2)若点 P 在函数 y m 的图象上,且 AP=BP,求△ABP 的面积.(6 分) x
20.已知关于 x 的方程 x2 2 px 3 p2 5 q 0 ,其中 p,q 都是实数.[By:Geek
的体积为
.
4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数 4 相差 2 的
概率是
.
5.抛物线 y=ax2-2,y=4-bx2,且 ab>0,两抛物线与坐标轴恰有 4 个交点,这 4 个
交点组成的筝形面积为 12,则 a+b=
.
6.设 x 1 5 ,则
2
x3 1 =
x3
.
二、填空题(每小题 7 分,共 42 分)
.
17.设 1≤n≤100,若 8n+1 为完全平方数,则整数 n 的个数为
.
18.从 1,2,3,…,2017 中任选 k 个数,使得所选的 k 个数中一定可以找到能构
成三角形边长的三个数(要求互不相等),则满足条件的 k 的最小值
是
.
四、解答题(第 19 题 12 分,第 20 题 18 分,共 30 分)
.
12.在△ABC 中,边 BC 上的高为 1,点 D 为 AC 的中点,则 BD 的最小值
.
三、填空题(每小题 8 分,共 48 分)
13.方程 2 x2 2 x x2 x 3 3 的所有实数解的和为
.
2
14.若方程 x2-2x-1=0 的根也是方程 x3+ax2+bx+c=0 的根,则 3a+b+c=
2017 年成都七中外地生入学考试数学试题
数学(总分:150 分 时间:90 分钟)
一、填空题(每小题 5 分,共 30 分)
1.若 a 3 b 7 0 ,则 a+b=
.
2.设 a≠b,且 a2+3a=b2+3b=5,则 ab2+a2b=
.
3.如图,在长方体 ABCD-A1B1C1D1 中,已知 AB=4,AD=3,AA1=2,则三棱锥 C1A1DB