光电探测器的几种类型

合集下载

有机光电探测器的定义和分类

有机光电探测器的定义和分类

有机光电探测器的定义和分类有机光电探测器是一种通过有机材料将光信号转化为电信号的器件。

它具有结构简单、加工工艺成本低、可用于大面积器件制备等优点,因此被广泛应用于光电信息处理领域。

根据其工作原理的不同,有机光电探测器可以分为光电导型、光电流型和光电压型三类。

光电导型有机光电探测器是指那些在光照下,其电导率会随着光强度的增加而增加的器件。

这种器件的工作原理是利用光子的能量将有机材料中的电子激发到传导带中,从而形成电导电流。

光电导型有机光电探测器通常由有机半导体材料构成,例如聚合物、小分子化合物等。

这类器件具有响应速度较快、灵敏度较高、制备工艺简单等优点,因此在光通信、光存储、光传感等领域有着广阔的应用前景。

光电流型有机光电探测器是指那些在光照下,其输出信号是光电流的器件。

这种器件的工作原理是利用外界光照下的光子能量将有机材料中的载流子激发到传导带或者价带中,从而产生电流。

光电流型有机光电探测器通常由有机半导体材料构成,例如聚合物、小分子化合物等。

这类器件具有高电流响应、低噪声等特点,适用于光通信、光传感等领域。

光电压型有机光电探测器是指那些在光照下,其输出信号是光电压的器件。

这种器件的工作原理是通过光激发的载流子在有机材料中产生空间电荷分离形成电压信号。

光电压型有机光电探测器通常由有机半导体材料构成,例如聚合物、小分子化合物等。

这类器件具有高电压响应、低噪声等特点,适用于成像传感器、光电转换器等领域。

除了根据工作原理的分类,有机光电探测器还可以根据其器件结构的不同进行分类。

常见的有机光电探测器结构包括有机薄膜型、有机异质结型、有机量子阱型等。

其中,有机薄膜型具有制备工艺简单、成本低廉等优点,适用于大面积器件制备;有机异质结型具有电荷分离效果好、较高的光电转换效率等特点,适用于高性能光电器件制备;有机量子阱型则具有高载流子迁移率、低激子束缚能等特点,适用于光电转换效率、响应速度等要求较高的器件制备。

光电探测器原理及应用

光电探测器原理及应用

光电探测器原理及应用
光电探测器是一种能够将光信号转化为电信号的装置,其基本原理是利用光的能量激发材料中的电子从而产生电流。

根据光电效应的不同机制,光电探测器通常可以分为光电二极管、光电导、光电二极管阵列等多种类型。

光电二极管是最基本的光电探测器之一,其工作原理是光照射到光敏材料表面时,材料中的电子会被光激活并跃迁至导带中,从而形成电流。

光电二极管具有响应速度快、灵敏度高等特点,广泛应用于光通信、光谱分析、光电测量等领域。

光电导是一种利用光照射后材料电阻发生变化的光电探测器,其工作原理是光激发后,光电导材料中的载流子浓度发生改变,从而引起电阻的变化。

光电导具有较高的灵敏度和较宽的光谱响应范围,可广泛应用于光谱分析、光学测量、遥感等领域。

光电二极管阵列是由多个光电二极管组成的阵列结构,可以同时检测多个光信号,具有高灵敏度和高分辨率的特点。

光电二极管阵列常被用于光通信、图像传感、光谱分析等领域,如CCD(电荷耦合器件)摄像头就是经典的光电二极管阵列应
用之一。

此外,光电探测器还广泛应用于激光测距仪、扫描仪、光电子显像、医学诊断、环境监测等领域。

例如,激光测距仪利用光电探测器检测激光脉冲的发射和接收时间差,实现对目标距离的测量;扫描仪利用光电探测器对扫描光线的反射或透射光进行检测,实现图像的数字化处理和存储。

总之,光电探测器通过将光信号转化为电信号,实现了光能量的检测和测量。

其应用领域广泛,并在科学研究、工业生产、医疗诊断等领域发挥着重要的作用。

北京交通大学光电子学作业参考答案

北京交通大学光电子学作业参考答案

变化.阴极在光照下发射光电子,光电子被极间电场加速聚焦,轰击倍增极,倍增极
在高速电子轰击下产生更多的电子,电子数目增大若干倍。
光敏电阻:
4. 光电倍增管的负高压供电方式\噪声特性? 负高压供电方式是指电源正极接地,使阳极输出直接接入放大器输入端而无需隔直流 电容。
优点是便于用直流法测量阳极输出电流,能响应变化非常缓慢的光信号。 缺点是地处于高电位,易受外界电磁干扰,噪声大。 对电磁屏蔽良好的光电倍增管来说,其噪声主要来源是暗电流、光信号电流、背景光 电流以及负载电阻的热噪声。如果光信号变化缓慢,还应考虑 1/f 噪声。
效率η则是对同一个问题的微观 ---宏观描述。现在把量子效率和灵敏度联系起来,
可得 η
=
hv e
Ri
光谱量子效率 η λ
=
hc eλ
Ri
通量阈 Pth 和噪声等效功率 NEP:实际情况告诉我们,当 p=o 时,光电探测器的输出
电流并不为零。这个电流称为暗电流,记为 In=( im2 )1/2,它是瞬时噪声电流的有
1. 描述 CCD 的性能参数有那些?其含义是什么? 一.转移效率:是指电荷包在进行一次转移中的效率,即电荷包从一个栅下势阱转移 到下一个栅下势阱时,有 V 部分电荷转移过去,余下 ε(称为失效率)部分没有转移, η 用公式表示为η=1-ε 二 暗电流:是指在既无光注入又无电注入情况下输出的电流。 三 噪声:散粒噪声、转移噪声和热噪声 四 灵敏度(响应度):指在一定光谱范围内,单位曝光量(光强与光照时间之积)的 输出信号电压(电流)。 五 分辨率:指摄像器对物像中明暗细节的分辨能力。用 MTF 表示分辨率 六 噪声等效功率 NEP:当入射辐射的功率为 NEP 时,则 CCD 输出的 S/N 为 1。NEP 又常常称为探测器的灵敏度。 七 动态范围:光敏元满阱信号/等效噪声信号。 八 峰值波长与截止波长:峰值波长(λp)表示探测器对入射光最灵敏的那个波长, 单位为μm(或 nm)。

光电探测器

光电探测器

2、光电导(PC)探测器
其工作原理基于内光电效应。 光电导效应?
半导体吸收能量足够大的光子后,会把其 中的一些电子或空穴从原来不导电的束缚 态激活到能导电的自由态,从而使半导体 电导率增加。
(1)特点
光电导探测器的结构一般为金属一半导体 一金属(测
一、 光电探测器的定义 及工作原理
光电探测器接收光信号并进行光电转换, 是半导体电子学的重要器件,是光电系统中 的重要组成部分,被称为这类仪器的“心 脏”。
光电探测器是利用入射的光子流与探测 材料中的电子之间直接互相作用,从而改变 电子能量状态的光子效应来制作的一类器件。
二、光电探测器的分类
PE探测器
2001年,美国军方实验室的Liang等人利用 MOCVD方法以蓝宝石为衬底生长ZnO薄膜,制 备出MSM结构肖特基型紫外探测器。
2004年,浙江大学叶志镇等利用磁控溅射生 长的ZnO薄膜,采用Au电极形成肖特基接触, Al电极形成欧姆接触,在Si(100)衬底上制 备出肖特基型ZnO紫外探测器,Si3N4为绝缘 隔离层,器件性能较好。
光电探测器
PC探测器
PV探测器
1、光电子(PE)发射探测器
此探测器的工作原理是基于外光电效应。
当辐射照射在某些金属、金属氧

化物或半导体材料表面时,若光
光 电
子能量hv足够大,则足以使材料

内一些电子完全脱离材料从表面

逸出。
与外光电相对应的则为内光电效应,两 者的不同点在与内光电效应的入射光子并不 直接将光电子从光电材料内部轰击出来,而 只是将光电材料内部电子从低能态激发到高 能态,于是在低能态留下一个空位一空穴对, 而在高能态上产生一自由移动的电子,形成 光生电子一空穴对。通过检测这一性能的变 化,来探测光信号的变化。本节主要讨论的 利用内光电效应的光电探测器的制备及其性 能特点。

光电探测器的研究及薄膜制备工艺优化方法研究

光电探测器的研究及薄膜制备工艺优化方法研究

光电探测器的研究及薄膜制备工艺优化方法研究随着科技的发展,光电科技在各个领域得到广泛应用,例如太阳能、健康检测、军事领域等等。

其中,光电探测器在光电学中扮演了重要角色,对于其研究与制备工艺的优化方法也是迫切需要探究的一方面。

一、光电探测器的类型光电探测器是一种将光输入转变为电信号输出的电子元器件。

其种类根据不同的测量目的和光谱范围,可分为光电二极管、光电晶体管、硅PIN光电二极管、金属半导体光电二极管、热释电光电二极管、电荷耦合器件等。

其中,光电二极管是最基础的光电探测器,可以完成对于波长为200纳米到1100纳米范围内光的探测。

光电晶体管的灵敏度比光电二极管更高,可以用于小光信号的检测。

硅PIN光电二极管则可以探测范围更宽,包括红外波段。

金属半导体光电二极管广泛应用于高速信号扫描和激光雷达。

热释电光电二极管的优点是对于热的抗干扰能力强,可以用于地球物理探测、卫星通信等领域。

电荷耦合器件用于弱光信号的检测,如天文、深海探测。

二、探测器的制备工艺在实际制备中,光电探测器可采用薄膜制备工艺,将材料薄化后用来制做光电探测器。

薄膜制备工艺不仅能够减少材料的消耗,而且还可以实现复杂的三维结构,具有明显的优点。

薄膜制备工艺主要包括溅射法、分子束外延法、金属有机化学气相沉积法等。

其中,溅射法是一种常见的制备工艺,在不同的条件下,能够制造各种薄膜材料。

该方法适用于超薄镀膜和大面积的薄膜生产,且材料膜层质量高,能耐高温、高压、强酸碱腐蚀。

分子束外延法则是另一种高质量的薄膜制备技术,其秉持了熔池外延法的优点同时减少了一些其缺陷。

这种方法的特点是制备出的材料薄层质量非常高,晶格缺陷小,晶体结构比较完美。

金属有机化学气相沉积法是综合利用了化学反应和外延技术的薄膜制备方法,制备出的薄膜场强大,具有良好的镜面平整度和高抛光特性。

三、薄膜制备工艺中的优化方法对于薄膜制备工艺中的优化方法,主要有以下几方面。

1、化学材料的选择。

光电探测器在通信系统中的应用技术分析

光电探测器在通信系统中的应用技术分析

光电探测器在通信系统中的应用技术分析一、光电探测器概述光电探测器是一种能将光信号转换成电信号的器件。

其主要作用是将通过光纤传输的光信号转换为电信号,使其在通信电路中得以传输。

目前光电探测器已经成为了通信电路中的重要组成部分,其应用领域覆盖到了光通信、无线通信、光纤传感等多个领域。

二、光电探测器的分类根据不同的工作方式,光电探测器可分为两类:基于内光电效应的光电探测器和基于外光电效应的光电探测器。

其中基于内光电效应的光电探测器主要有光电二极管、APD和PD等三类。

而基于外光电效应的光电探测器主要有光电导和光致伸缩器等两类。

1. 光电二极管光电二极管是一种具有直接内光电效应的器件,主要是利用光子能量来产生管内电荷的效应。

其工作原理是将光线照射到半导体材料上,光线的能量被转化为电子能量,从而在导体上形成电磁场。

在电子和空穴的作用下,光电二极管上的电荷可以发生反向电流,从而将光信号转变为电信号输出。

2. APDAPD是一种分析内光电效应的器件,其原理与光电二极管类似,但是其内部的电场比光电二极管要强。

当光子进入APD器件的时候,它会产生电子-空穴对,然后这些电子将加速,形成在吸收区内的离子对电流,相对于光电二极管,APD的增量因子接近子级负反馈,因此其灵敏度比光电二极管要高得多。

3. PDPD是一种利用光吸收特性来检测光的器件,主要是通过光子与半导体材料之间的作用产生电流来完成对光信号的检测。

当光子通过PD的半导体介质时,组成介质的电子会被激发,这些电子随后会被电场推动,形成电荷。

然后,这个电荷会产生电流,从而将光信号转换成电信号输出。

4. 光电导光电导是一种利用外光电效应的器件,其工作原理是将光照在导体上,产生电磁场,然后通过电磁场的作用来使光电导的电阻发生变化。

这种变化可以通过电流检测器来检测,从而将光信号转化为电信号输出。

5. 光致伸缩器光致伸缩器是一种利用外光电效应的器件,其工作原理是利用光致伸缩材料的导电性差异来实现光电信号的转换。

光电探测器列表

光电探测器列表

紫外探测器:碳化硅(SiC)材质,响应波段200-400nm。

应用:火焰探测和控制、紫外测量、控制杀菌灯光、医疗灯光的控制等。

————————————————————————————————————————————可见光探测器:硅(Si)材质,响应波段200-1100nm。

有室温、热电制冷两种形式,可以带内置前放,有多种封装形式可选。

主要用在测温、激光测量、激光检测、光通信等领域。

————————————————————————————————————————————红外探测器(1):锗(Ge)材质,响应波段0.8-1.8um,有室温、热电制冷、液氮制冷三种形式,可以带内置前放,有多种封装形式可选。

主要应用在光学仪表、光纤测温、激光二极管、光学通信、温度传感器等————————————————————————————————————————————红外探测器(2):铟钾砷(InGaAs)材质,响应波段0.8-2.6um,波段内可以进行优化。

有室温、热电制冷、液氮制冷三种形式,可以带内置前放,可以配光纤输出,多种封装形式可选。

主要应用在光通信、测温、气体分析、光谱分析、水分分析、激光检测、激光测量、红外制导等领域。

————————————————————————————————————————————红外探测器(3):砷化铟(InAs)材质,响应波段1-3.8um,有室温和热电制冷两种,可以配内置前放,多种封装形式可选。

主要用于激光测量、光谱分析、红外检测、激光检测等领域。

红外探测器(4):锑化铟(InSb)材质,响应波段2-6um,液氮制冷,可以带内置前放,多种封装形式可选。

主要应用在光谱测量、气体分析、激光检测、激光测量、红外制导等领域。

————————————————————————————————————————————红外探测器(5):硫化铅(PbS)材质,响应波段为1-3.5um,有室温和热电制冷两种,可以带内置前放,多种封装形式可选。

光电探测器在光通信中的应用分析

光电探测器在光通信中的应用分析

光电探测器在光通信中的应用分析光通信是指通过光波来传输信息的一种通讯方式。

它具有高速传输、大容量、抗干扰等优点,成为了现代通信领域的热门技术。

在光通信系统中,光电探测器是起到关键作用的设备之一。

它能够将光信号转换为电信号,实现光和电之间的转换,并成为光通信技术发展的重要基础。

一、光电探测器的功能和类型光电探测器是一种将光信号转换为电信号的设备。

其主要功能是通过光电效应产生电子,将光信号电气化。

根据采用的材料和工作原理不同,光电探测器分为四种类型:光电二极管(Photodiode)、光电倍增管(Photomultiplier Tube)、光阴极管(Photocathode Tube)、光电晶体管(Phototransistor)。

其中,光电二极管是最常用的光电探测器之一,它根据光的进入,由p-n结区域的载流子的光电产生,将光信号电气化输出。

而光电倍增管则是通过一系列的电子倍增过程,放大电子的数目,从而提高灵敏度。

光阴极管则利用光阴极材料的光电子发射特性,加速和聚焦光电子,产生电子的输出。

光电晶体管则是一种结合晶体管和光电二极管的器件,能够在充分利用二极管灵敏度的同时,也具有放大特性。

二、光电探测器在光通信中的应用由于光电探测器能够将光信号转换为电信号,因此在光通信系统中具有重要作用。

光电探测器广泛应用于许多光通信场景,如光纤通信、无线光通信等。

1. 光纤通信在光纤通信系统中,光电探测器通常被用作光接收端。

光信号经过光纤传输后,到达接收端,光电探测器将信号转换为电信号,再进行解调和放大。

由于光纤通信具有高速传输、大容量等优点,因此需要高灵敏度、高速响应速度的光电探测器。

近年来,一些新型光电探测器的问世,如单光子探测器、超快速晶体管等,大大提高了光电探测器的性能水平,也使得光纤通信技术更加成熟和稳定。

2. 无线光通信除了光纤通信场景,光电探测器在无线光通信中也有广泛应用。

由于无线光通信需要进行大范围的无线传输,光电探测器需要具有更高的灵敏度和更好的抗干扰性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电探测器的几种类型
红外辐射光子在半导体材料中激发非平衡载流子电子或空穴、,引起电学性能变化。

因为载流子不逸出体外,所以称内光电效应。

量子光电效应灵敏度高,响应速度比热探测器快得多,是选择性探测器。

为了达到性能,一般都需要在低温下工作。

光电探测器可分为:
1、光导型:
又称光敏电阻。

入射光子激发均匀半导体中的价带电子越过禁带进入导带并在价带留下空穴,引起电导增加,为本征光电导。

从禁带中的杂质能级也可激发光生载流子进入导带或价带,为杂质光电导。

截止波长由杂质电离能决定。

量子效率低于本征光导,而且要求更低的工作温度。

2、光伏型:
主要是p-n结的光生伏特效应。

能量大于禁带宽度的红外光子在结区及其附近激发电子空穴对。

存在的结电场使空穴进入p区,电子进入n区,两部分出现电位差。

外电路就有电压或电流信号。

与光导探测器比较,光伏探测器背影限探测率大于40%;不需要外加偏置电场和负载电阻,不消耗功率,有高的阻抗。

这些特性给制备和使用焦平面阵列带来很大好处。

3、光发射-Schottky势垒探测器:
金属和半导体接触,典型的有PtSi/Si结构,形成Schottky势垒,红外光子透过Si层为PtSi吸收,电子获得能量跃上Fermi能级,留下空穴越过势垒进入Si衬底,PtSi层的电子被收集,完成红外探测。

充分利用Si集成技术,便于制作,具有成本低、均匀性好等优势,可做成大规模1024×1024甚至更大、焦平面阵列来弥补量子效率低的缺陷。

有严格的低温要求。

用这类探测器,国内外已生产出具有像质良好的热像仪。

PtSi/Si结构FPA是早制成的IRFPA。

4、量子阱探测器QWIP:
将两种半导体材料A和B用人工方法薄层交替生长形成超晶格,在其界面,能带有突变。

电子和空穴被限制在低势能阱A层内,能量量子化,称为量子阱。

利用量子阱中能级电子跃迁原理可以做红外探测器。

90年代以来发展很快,已有512×512、640×480规模的QWIPGaAs/AlGaAs焦平面制成相应的热像仪诞生。

因为入射辐射中只
有垂直于超晶格生长面的电极化矢量起作用,光子利用率低;量子阱中基态电子浓度受掺杂限制,量子效率不高;响应光谱区窄;低温要求苛刻。

人们正深入研究努力加以改进,可望与碲镉汞探测器一争高低。

标签:
光电探测器。

相关文档
最新文档