植物缺少氮磷钾等营养元素的症状 (2)
植物生长需要的16种元素及缺乏过剩症状

植物生长需要的16种元素及缺乏过剩症状(有图有真相)植物整个生长期内所必需的营养元素是:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(CL)氮生理功能:●氮是蛋白质、核酸、磷脂的主要成分;●氮在物质和能量代谢中起重要作用;●氮对生命活动起调节作用;●氮是叶绿素的成分,与光合作用有密切关系。
缺氮症状:●缺氮时,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;●缺氮时影响叶绿素的合成,使枝叶变黄,叶片早衰,甚至干枯,从而导致产量降低;●因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩的组织中去重复利用,所以缺氮时叶片发黄,并由下部叶片开始逐渐向上。
氮素过多的症状:●营养体徒长,叶面积增大,叶色浓绿,叶片下披;●茎杆软弱,抗病虫、抗倒伏能力差;●根系发育不良,根短而少,早衰。
磷●磷在遗传变异中具有重要的功能;●磷参与碳水化合物的代谢和运输;●磷对氮代谢有重要作用;●提高植物的抗旱、抗寒、抗病、抗倒伏和耐酸碱的能力;●促进植物的生长发育,促进花芽分化和缩短花芽分化的时间,促进作物提早开花,提前成熟;缺磷症状:●生长停滞,植株瘦小,分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟;●叶呈暗绿色或紫红色,无光泽,叶子呈现不正常的暗绿色或紫红色;●缺磷时老叶中的磷能大部分转移到正在生长的幼嫩组织中去。
因此,缺磷的症状首先在下部老叶出现,并逐渐向上发展。
磷素过多的症状:●茎叶生长受到抑制,引起植株早衰;●叶片肥厚而密集,繁殖器官过早发育;●阻碍硅的吸收,水稻易生“稻瘟病”;●磷素过多引发的症状,常以缺锌、缺铁、缺镁等失绿症表现出来。
钾●酶的活化剂。
钾在碳水化合物代谢、呼吸作用以及蛋白质代谢中起重要作用;●促进蛋白质与糖的合成,并能促进糖类向贮藏器官运输;●促进光合作用。
植物缺素症状大全

作物缺素症大全玉米一、缺氮,幼苗矮化、瘦弱、叶丛黄绿;叶片从叶尖开始变黄,沿叶片中脉发展,形成一个“V”形黄化部分;致全株黄化,后下部叶尖枯死且边缘黄绿色;缺氮严重的或关键期缺氮,果穗小,顶部籽粒不充实,蛋白质含量低。
二、缺磷,嫩株敏感,植株矮化;叶尖、叶缘失绿呈紫红色,后叶端枯死或变成暗紫褐色;根系不发达,雌穗授粉受阻,籽粒不充实,果穗少或歪曲。
三、缺钾,下部叶片的叶尖、叶缘呈黄色或似火红焦枯,后期植株易倒伏,果穗小,顶部发育不良。
四、缺镁,幼苗上部叶片发黄。
叶脉间出现黄白相间的褪绿条纹,下部老叶片尖端和边缘呈紫红色;缺镁严重的叶边缘、叶尖枯死,全株叶脉问出现黄绿条纹或矮化。
五、缺锌,严重的幼苗出土后在2周内显症,叶片具浅白条纹,后中脉两侧出现1个白化宽带组织区,且中脉和边缘仍为绿色,有时叶缘、叶鞘呈褐色或红色。
六、缺硫植株矮化、叶丛发黄,成熟期延迟,与缺氮症状相似。
七、缺铁,上部叶片叶脉间出现浅绿色至白色或全叶变色。
八、缺硼,嫩叶叶脉间出现不规则白色斑点,各斑点可融合成白色条纹;严重的节间伸长受抑或不能抽雄及吐丝。
九、缺钙,当土壤缺钙时,幼苗叶片不能抽出或不展开,有的叶尖粘合在一起呈梯状,植株呈轻微黄绿色或引致矮化。
十、缺锰,幼叶脉问组织慢慢变黄,形成黄绿相间条纹,叶片弯曲下披,别于缺镁。
缺素病因:一、缺氮,是因有机质含量少,低温或淹水,特别是中期干旱或大雨易出现缺氮症。
二、缺磷,低温、土壤湿度小利于发病,酸性土、红壤、黄壤易缺有效磷。
三、缺钾,一般沙土含钾低,如前作为需钾量高的作物,易出现缺钾,沙土、肥土、潮湿或板结土易发病。
四、缺镁,土壤酸度高或受到大雨淋洗后的沙土易缺镁,含钾量高或因施用石灰致含镁量减少土壤易发病;五、缺锌,系土壤或肥料中含磷过多,酸碱度高、低温、湿度大或有机肥少的土壤易发生缺锌症。
六、缺硫,酸性沙质土、有机质含量少或寒冷潮湿的土壤易发病。
七、缺铁,碱性土壤中易缺铁。
八、缺硼,干旱、土壤酸度高或沙土易出现缺硼症。
简述氮磷钾的生理功能及缺素症状。

简述氮磷钾的生理功能及缺素症状。
氮磷钾是植物生长发育所必需的三种主要营养元素。
它们在植物体内具有重要的生理功能,对植物的生长和发育起着至关重要的作用。
下面将分别介绍氮、磷和钾的生理功能及缺素症状。
首先是氮(N)。
氮是构成植物蛋白质和核酸的重要组成元素,对植物的生长具有重要影响。
氮营养充足时,植物能够合成足够的蛋白质和核酸,促进植物的生长和发育。
氮还参与了植物体内的许多代谢过程,如光合作用、呼吸作用和养分转运等。
当植物缺乏氮时,会出现一系列的症状。
叶片的颜色变黄是氮缺乏的典型症状之一,这是因为叶绿素的合成受到抑制。
此外,植株的生长迟缓、叶片变小、叶片老化加快等也是氮缺乏的表现。
其次是磷(P)。
磷是植物体内能量转化及遗传物质合成的重要组成元素,对植物的生长和发育至关重要。
磷在植物体内主要以磷酸盐的形式存在,参与了ATP(三磷酸腺苷)和ADP(二磷酸腺苷)的合成,以及DNA和RNA的构建等关键过程。
磷还参与了植物体内的许多代谢反应,如光合作用、呼吸作用和氮代谢等。
当植物缺乏磷时,会出现一系列的症状。
叶片的颜色变暗是磷缺乏的典型症状之一,这是因为叶绿素的合成受到抑制。
此外,植株的生长迟缓、根系发育不良、果实质量下降等也是磷缺乏的表现。
最后是钾(K)。
钾是植物体内的主要阳离子之一,对植物的正常生长和发育起着重要作用。
钾在植物体内调节细胞渗透压,维持细胞的稳定性和正常功能。
钾还参与了许多重要的生理过程,如光合作用、养分转运、水分调节和抗逆性等。
当植物缺乏钾时,会出现一系列的症状。
叶缘焦枯是钾缺乏的典型症状之一,这是因为钾是调节水分平衡的重要元素,缺乏钾会导致植物无法正常吸收和利用水分。
此外,植株的生长迟缓、叶片变小、果实质量下降等也是钾缺乏的表现。
氮磷钾是植物生长发育所必需的重要营养元素,它们在植物体内具有重要的生理功能。
氮负责植物的生长和代谢过程,磷参与能量转化和遗传物质合成,钾调节细胞渗透压和维持水分平衡。
植物营养元素缺乏及病害

6种大量元素:碳、氢、氧、氮、磷、钾 3种中量元素:钙、镁、硫 7种微量元素:铁、锰、硼、锌、铜、钼、氯
大量元素的作用:
• 氮:各种物质的基本组成成分,最基本的生命物质,植物在任何一个生长发 育过程离不开氮。叶菜类需氮多。
• 磷:是核酸,磷酸腺苷,肌醇六磷酸的组成部分。磷酸腺苷是能量载体,肌 醇六磷酸使植物形成种子和果实等繁殖器官,所以磷促使籽粒饱满,促进品 质。
顶芽、幼叶呈淡绿色, 继而叶尖出现典型的 钩状,随后坏死。钙 是不易被运转和重复 利用的元素,故缺素 症状首先表现在幼茎、 幼叶上。
钙过剩
钙过剩症状:施用过多会降低硼、锌等微量营养元素 的有效性和造成土壤板结。
苹果苦痘病和水心病
缺镁实例
缺镁症状:由于叶绿素合成受阻,使叶片贫绿,首先从叶边缘开 始枯黄,叶中央可保持一定绿色。这是与缺氮症的主要区别。
3.氮过量导致缺钾、钙、镁硼症状
缺磷实例
缺磷症状:叶子呈现不正常的暗绿色或紫红色。因磷可运转,
故症状首先在老叶出现。
辣椒缺磷
磷过剩
磷过剩症状:1.磷过量抑制了对锌的吸收,表现缺 锌症状。
2.严重磷过量还会导致缺铁、镁、铜等症状。
缺钾实例
缺钾症状:叶色变黄,叶边缘焦枯,而叶组织逐渐坏死。由于叶 中部生长仍较快,叶子会形成杯状弯曲或发生皱缩。钾是可
• 锌:1.是已知59种酶的构成成分,在光合、呼吸、蛋白质合成、激素合成中 起重要作用。2.促进生长素(吲哚乙酸)的合成,促进新器官的生长。3.保护 根表和根内细胞膜的作用,提高植物抗旱能力。
• 锰:1.是许多酶的组成成分。2.缺锰抑制蛋白质的合成,造成硝酸盐在植物体 内积累,使植物变的有害。3.能促进吲哚乙酸氧化,高浓度的锰促进生长素 分解,过量锰会抑制植物生长。
植物缺素

一般植物缺乏氮、磷、钾等大量营养元素时,往往首先是从植株下部老叶上开始出现症状,并向上部逐步发展;而缺乏微量营养元素时,症状往往首先是在上部新叶上表现出来。
1、缺氮症状表现:发育不良,植株矮小。
叶片薄而小。
叶色均匀失绿,变黄无斑点。
植株下部叶片首先缺绿变黄,逐步向上扩展。
顶梢新叶逐渐变小同时易落叶。
花小色淡,组织坏死。
发病叶序:植物缺氮时老叶先表现症状。
易发土质:强酸性缺乏有机质的土壤。
2、缺磷症状表现:生长停滞,形态苍老。
茎纤弱,节间缩短且分枝少。
叶小,叶片呈深绿或灰绿、无光泽,具有紫色素,后转为紫铜色。
叶脉(尤其是叶柄)呈黄中带紫色,后枯死掉落。
缺磷下叶先表现,逐渐向上再发展。
发病叶序:植物缺磷时老叶先表现症状。
易发土质:生荒土或粘重板结的土壤。
一品红缺磷。
植株矮小,叶片脱落3、缺钾症状表现:新叶片常呈皱缩,叶缘卷曲枯焦,像火烧过一样。
老叶由叶尖沿着叶边缘出现黑褐色斑点,叶周围变黄,而中部及叶脉仍呈绿色。
根少短小无抗性,感染真菌易得病。
严重时叶尖叶缘枯焦,叶片皱曲,老叶叶缘卷曲呈黄色及火烧色并易脱落。
发病叶序:植物缺钾时老叶先表现症状,先叶缘,后脉间。
易发土质:红壤土。
柑橘缺钾桃树缺钾缺钾时老叶先表现症状,先叶缘,后脉间4、缺铁症状表现:叶片脉间失绿,呈清晰的网纹状,叶脉保持绿色,严重时整个叶片(幼叶)呈淡黄白色,并出现枯斑,严重时枯焦死亡。
发病叶序:植物缺铁时幼叶先表现症状。
易发土质:碱性土壤。
缺镁引起的黄化表现为:与缺铁症相反,它是先从植株下部的叶片开始褪绿,出现黄化,逐渐由下向上部叶片蔓延,最初叶脉保持绿色,及至叶肉变黄(这一点与缺铁相似)。
不久后,下部叶片变褐枯死,有的脱落,同时枝条细长且脆,根系长、须根少,开花少、花色泛白。
究其原因是碱性土壤影响到植物根系对镁的吸收,从而导致叶绿素合成受阻,光合作用强度下降。
对于患有“缺镁症”的花卉植株,可通过调节土壤pH值,喷施或浇施浓度为0.5%的硫酸镁溶液来补救。
植株缺少氮、磷、钾的表现

植株缺少氮、磷、钾的表现以植株缺少氮、磷、钾的表现为题,我们将分别讨论植物缺少这三种关键营养元素的表现。
一、植株缺少氮的表现:氮是植物生长所必需的主要营养元素之一,它参与合成蛋白质、核酸和叶绿素等生物分子。
当植株缺少氮时,通常会表现出以下几个方面的特征:1. 叶片变黄:植物叶片由于缺少氮而变得黄绿或黄色,这是由于叶绿素合成减少所致。
叶片黄化通常从老叶开始,逐渐向年轻叶扩展。
2. 生长受限:氮是植物生长的关键元素,缺少氮会导致植物整体生长迟缓,植株高度矮小,叶片数量减少。
3. 叶片变小:植物缺少氮时,新生叶片会变得较小,形态畸形,这是因为氮参与蛋白质合成,而蛋白质是细胞分裂和组织发育的关键组分。
4. 果实质量降低:氮是植物果实中氨基酸和蛋白质的重要组成部分,缺乏氮元素会导致果实的品质下降,质量减轻。
二、植株缺少磷的表现:磷是植物生长所必需的关键元素之一,它参与能量转化、DNA和RNA合成以及许多代谢过程。
当植株缺少磷时,通常会表现出以下几个方面的特征:1. 叶片发紫:植物叶片由于缺少磷而呈现紫色或深紫色,这是由于磷参与叶绿素合成和细胞色素的合成。
2. 根系受限:磷是根系生长所必需的关键元素,缺少磷会导致根系发育受限,根系生长缓慢,根毛数量减少。
3. 花芽分化受阻:磷是花芽分化和开花过程中的关键元素,缺少磷会导致花芽分化受阻,花期延迟。
4. 产量下降:磷是植物脱落酸的组成部分,脱落酸参与果实的生长和发育,缺少磷会导致果实数量减少,产量下降。
三、植株缺少钾的表现:钾是植物生长所必需的关键元素之一,它参与调节植物体内的水分平衡、光合作用和营养转运等生理过程。
当植株缺少钾时,通常会表现出以下几个方面的特征:1. 叶缘枯焦:植物叶片边缘由于缺少钾而出现枯焦的现象,这是由于钾参与细胞内的渗透调节,缺少钾会导致细胞失去水分平衡,叶缘脱水枯萎。
2. 生长受限:钾是植物细胞分裂和组织发育的关键元素,缺少钾会导致植株整体生长迟缓,株型矮小,茎叶数量减少。
玉米缺少氮、磷、钾有什么症状,应当如何补救

玉米缺少氮、磷、钾有什么症状,应当如何
补救
氮磷钾是玉米生长所需的最基本的三大营养元素,必须保证充足的供应。
那么,玉米缺少氮、磷、钾会有什么症状呢,应当如何补救呢?下面我们就来回答这个问题。
1、玉米缺氮有何症状
玉米缺氮的症状幼苗生长缓慢,植株矮小细弱,最明显的症状是由叶尖开始变黄,最先表现在老叶上,但中脉仍保持绿色。
玉米缺氮的矫正方法:春玉米,要施足底肥,分期追施氮肥;夏玉米来不及施底肥的,要分次追施苗肥、拔节肥和攻穗肥。
用2%的尿素溶液进行叶面喷施,3~5天内连喷两次。
2、玉米缺磷有何症状
玉米苗期缺磷时,表现为生长缓慢,根系生长差,茎秆细弱,叶色暗绿,缺乏光泽,叶片尖端或边缘呈现紫红色。
中后期缺磷,紫红色叶片转变成黄色,果穗发育不良,穗顶缢缩,产生空穗、秃顶、缺粒或不饱满的现象,抽穗晚、或成熟期推迟。
玉米缺磷的补救措施是:及时追施磷肥,或每亩用磷酸二氢钾150~ 200克对水75升在晴天下午叶面喷施。
3、玉米缺钾有何症状
玉米苗期缺钾时,最明显的症状是幼嫩叶片呈淡绿色,自叶尖向叶基部出现黄色条纹,叶尖和叶缘发黄,通常称之为“镶金边”。
缺钾严重时会呈现灼烧状,但靠近中脉的两侧起初仍然保持绿色,植株根系发育受阻,茎秆的机械组织发育不良,节间缩短,容易感染根腐病、茎腐病而出现早衰和倒伏,果穗发育不良,秃顶严重,籽粒瘦瘪,粒重降低,品质下降。
玉米缺钾的补救措施是:每亩追施氯化钾7-8千克,或撒草木灰75-100千克;也可用0.3%磷酸二氢钾溶液,连续叶面喷施2~3次。
植物缺肥的表现

植物缺肥的表现一般来说,花卉植物缺肥多指缺少氮磷钾这三种大量元素。
由于这三种元素的缺乏会严重影响花卉植物的正常生长,所以栽培花卉时要经常观察,发现花卉植物缺肥时,要在初期阶段就及时补充,以减少对花卉植物的影响。
从花卉所表现的症状上辨别,花卉对肥料的元素缺乏表现如下:1.缺氮:氮素缺乏时,初期表现为叶色变为浅黄绿色,然后变黄,严重时从基部开始向上叶片脱落。
植株生长缓慢,叶片明显变小,节间缩短。
早期氮严重缺乏造成的生长不良到后期都无法完全弥补。
氮素供应充足时,叶色深绿,叶表光泽度高,植株生长旺盛。
但过多的氮素会造成植株徒长,影响植株生殖生长,对花蕾的育成不利。
尤其是秋季,植株氮肥过量时,植株贪青,不休眠,茎干不充实,木质化程度低,不耐严寒,容易冻害。
氮素可从腐熟的有机肥及化学肥料中汲取补充,需要及时补充如尿素、硫酸铵等氮肥。
2.缺磷:磷元素的缺乏时,植株生长缓慢,上部叶片变成深绿色,下部叶片从边缘向里变黄,呈紫红色,叶脉间的组织起皱,不平整,质地粗糙。
植株高度、干重、叶片数目及叶片的大小均会减量。
严重者甚至死亡。
磷过量时会导致微量元素的缺乏,磷肥可以从有机肥中获得部分,但出现症状时最好选择化学肥料补充会快些,如磷酸二氢钾、过磷酸钙、磷酸二铵等。
3.缺钾:钾缺乏时会造成植株下部的叶片变黄,边缘干枯、焦枯,甚至叶片枯死。
但死亡的叶片还附着于植株上,短时间内不凋零。
除生长点的嫩叶外,其他的叶片均会受到影响。
钾素过量时,会造成镁元素的缺乏或盐分中毒,会影响新细胞的形成,使植株生长点发育不完全,近新叶的叶尖及叶缘枯死。
钾充足时可促进光合作用的速率,促进植株对氮磷等营养元素的吸收。
钾肥在草木灰中含量较多。
但家庭中需要的钾肥大多来源于化学肥料,如磷酸二氢钾、硫酸钾、氯化钾等。
4.缺硫:硫缺乏时幼叶内的叶绿素明显下降,叶色变为淡黄绿色,严重时呈黄白色。
但硫元素在植株体内很少移动。
补充硫元素时,一般选择含有硫元素的化学肥料即可,如石膏、硫酸铵、硫酸钾等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物缺少氮磷钾等营养元素的症状(一)氮根系吸收的氮主要就是无机态氮,即铵态氮与硝态氮,也可吸收一部分有机态氮,如尿素。
氮就是蛋白质、核酸、磷脂的主要成分,而这三者又就是原生质、细胞核与生物膜的重要组成部分,它们在生命活动中占有特殊作用。
因此,氮被称为生命的元素。
酶以及许多辅酶与辅基如NAD+、NADP+、FAD等的构成也都有氮参与。
氮还就是某些植物激素如生长素与细胞分裂素、维生素如B1、B2、B6、PP等的成分,它们对生命活动起重要的调节作用。
此外,氮就是叶绿素的成分,与光合作用有密切关系。
由于氮具有上述功能,所以氮的多寡会直接影响细胞的分裂与生长。
当氮肥供应充足时,植株枝叶繁茂,躯体高大,分蘖(分枝)能力强,籽粒中含蛋白质高。
植物必需元素中,除碳、氢、氧外,氮的需要量最大,因此,在农业生产中特别注意氮肥的供应。
常用的人粪尿、尿素、硝酸铵、硫酸铵、碳酸氢铵等肥料,主要就是供给氮素营养。
缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。
因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩组织中去重复利用,所以缺氮时叶片发黄,由下部叶片开始逐渐向上,这就是缺氮症状的显著特点。
氮过多时,叶片大而深绿,柔软披散,植株徒长。
另外,氮素过多时,植株体内含糖量相对不足,茎秆中的机械组织不发达,易造成倒伏与被病虫害侵害。
(二)磷磷主要以H2PO4-或HPO42-的形式被植物吸收。
吸收这两种形式的多少取决于土壤pH。
pH<7时,H2P O4-居多;pH>7时,HPO42-较多。
当磷进入根系或经木质部运到枝叶后,大部分转变为有机物质如糖磷脂、核苷酸、核酸、磷脂等,有一部分仍以无机磷形式存在。
植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。
磷就是核酸、核蛋白与磷脂的主要成分,它与蛋白质合成、细胞分裂、细胞生长有密切关系;磷就是许多辅酶如NAD+、NADP+等的成分,它们参与了光合、呼吸过程;磷就是AMP、ADP与ATP的成分;磷还参与碳水化合物的代谢与运输,如在光合作用与呼吸作用过程中,糖的合成、转化、降解大多就是在磷酸化后才起反应的;磷对氮代谢也有重要作用,如硝酸还原有NAD+与FAD的参与,而磷酸吡哆醛与磷酸吡哆胺则参与氨基酸的转化;磷与脂肪转化也有关系,脂肪代谢需要NADPH、ATP、CoA与NAD+的参与。
由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。
由于磷促进碳水化合物的合成、转化与运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯与禾谷类作物施磷后有明显的增产效果。
由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。
只有氮磷配合施用,才能充分发挥磷肥效果。
总之,磷对植物生长发育有很大的作用,就是仅次于氮的第二个重要元素。
缺磷会影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟;缺磷时,蛋白质合成下降,糖的运输受阻,从而使营养器官中糖的含量相对提高,这有利于花青素的形成,故缺磷时叶子呈现不正常的暗绿色或紫红色,这就是缺磷的病症。
磷在体内易移动,也能重复利用,缺磷时老叶中的磷能大部分转移到正在生长的幼嫩组织中去。
因此,缺磷的症状首先在下部老叶出现,并逐渐向上发展。
磷肥过多时,叶上又会出现小焦斑,系磷酸钙沉淀所致;磷过多还会阻碍植物对硅的吸收,易招致水稻感病。
水溶性磷酸盐还可与土壤中的锌结合,减少锌的有效性,故磷过多易引起缺锌病。
(三)钾ﻩ钾在土壤中以KCl、K2SO4等盐类形式存在,在水中解离成K+而被根系吸收。
在植物体内钾呈离子状态。
钾主要集中在生命活动最旺盛的部位,如生长点,形成层,幼叶等。
钾在细胞内可作为60多种酶的活化剂,如丙酮酸激酶、果糖激酶、苹果酸脱氢酶、琥珀酸脱氢酶、淀粉合成酶、琥珀酰CoA合成酶、谷胱甘肽合成酶等。
因此钾在碳水化合物代谢、呼吸作用及蛋白质代谢中起重要作用。
钾能促进蛋白质的合成,钾充足时,形成的蛋白质较多,从而使可溶性氮减少。
钾与蛋白质在植物体中的分布就是一致的,例如在生长点、形成层等蛋白质丰富的部位,钾离子含量也较高。
富含蛋白质的豆科植物的籽粒中钾的含量比禾本科植物高。
钾与糖类的合成有关。
大麦与豌豆幼苗缺钾时,淀粉与蔗糖合成缓慢,从而导致单糖大量积累;而钾肥充足时,蔗糖、淀粉、纤维素与木质素含量较高,葡萄糖积累则较少。
钾也能促进糖类运输到贮藏器官中,所以在富含糖类的贮藏器官(如马铃薯块茎、甜菜根与淀粉种子)中钾含量较多。
此外,韧皮部汁液中含有较高浓度的K+,约占韧皮部阳离子总量的80%。
从而推测K+对韧皮部运输也有作用。
K+就是构成细胞渗透势的重要成分。
在根内K+从薄壁细胞转运至导管,从而降低了导管中的水势,使水分能从根系表面转运到木质部中去;K+对气孔开放有直接作用。
离子态的钾,有使原生质胶体膨胀的作用,故施钾肥能提高作物的抗旱性。
缺钾时,植株茎杆柔弱,易倒伏,抗旱、抗寒性降低,叶片失水,蛋白质、叶绿素破坏,叶色变黄而逐渐坏死。
缺钾有时也会出现叶缘焦枯,生长缓慢的现象,由于叶中部生长仍较快,所以整个叶子会形成杯状弯曲,或发生皱缩。
钾也就是易移动可被重复利用的元素,故缺素病症首先出现在下部老叶。
N、P、K就是植物需要量很大,且土壤易缺乏的元素,故称它们为“肥料三要素”。
农业上的施肥主要为了满足植物对三要素的需要。
(四)钙植物从土壤中吸收CaCl2、CaSO4等盐类中的钙离子。
钙离子进入植物体后一部分仍以离子状态存在,一部分形成难溶的盐(如草酸钙),还有一部分与有机物(如植酸、果胶酸、蛋白质)相结合。
钙在植物体内主要分布在老叶或其它老组织中。
钙就是植物细胞壁胞间层中果胶酸钙的成分,因此,缺钙时,细胞分裂不能进行或不能完成,而形成多核细胞。
钙离子能作为磷脂中的磷酸与蛋白质的羧基间联结的桥梁,具有稳定膜结构的作用。
钙对植物抗病有一定作用。
据报道,至少有40多种水果与蔬菜的生理病害就是因低钙引起的。
苹果果实的疮痂病会使果皮受到伤害,但如果供钙充足,则易形成愈伤组织。
钙可与植物体内的草酸形成草酸钙结晶,消除过量草酸对植物(特别就是一些含酸量高的肉质植物)的毒害。
钙也就是一些酶的活化剂,如由ATP水解酶、磷脂水解酶等酶催化的反应都需要钙离子的参与。
植物细胞质中存在多种与Ca2+有特殊结合能力的钙结合蛋白(calcium binding proteins,CBP),其中在细胞中分布最多的就是钙调素(Calmodulin,CaM)。
Ca2+与CaM结合形成Ca2+-CaM复合体,它在植物体内具有信使功能,能把胞外信息转变为胞内信息,用以启动、调整或制止胞内某些生理生化过程。
缺钙初期顶芽、幼叶呈淡绿色,继而叶尖出现典型的钩状,随后坏死。
钙就是难移动,不易被重复利用的元素,故缺素症状首先表现在上部幼茎幼叶上,如大白菜缺钙时心叶呈褐色。
(五)镁镁以离子状态进入植物体,它在体内一部分形成有机化合物,一部分仍以离子状态存在。
镁就是叶绿素的成分,又就是RuBP羧化酶、5-磷酸核酮糖激酶等酶的活化剂,对光合作用有重要作用;镁又就是葡萄糖激酶、果糖激酶、丙酮酸激酶、乙酰CoA合成酶、异柠檬酸脱氢酶、α酮戊二酸脱氢酶、苹果酸合成酶、谷氨酰半胱氨酸合成酶、琥珀酰辅酶A合成酶等酶的活化剂,因而镁与碳水化合物的转化与降解以及氮代谢有关。
镁还就是核糖核酸聚合酶的活化剂,DNA与RNA的合成以及蛋白质合成中氨基酸的活化过程都需镁的参加。
具有合成蛋白质能力的核糖体就是由许多亚单位组成的,而镁能使这些亚单位结合形成稳定的结构。
如果镁的浓度过低或用EDTA(乙二胺四乙酸)除去镁,则核糖体解体,破裂为许多亚单位,蛋白质的合成能力丧失。
因此镁在核酸与蛋白质代谢中也起着重要作用。
缺镁最明显的病症就是叶片贫绿,其特点就是首先从下部叶片开始,往往就是叶肉变黄而叶脉仍保持绿色,这就是与缺氮病症的主要区别。
严重缺镁时可引起叶片的早衰与脱落。
(六)硫硫主要以SO42-形式被植物吸收。
SO42-进入植物体后,一部分仍保持不变,而大部分则被还原成S,进而同化为含硫氨基酸,如胱氨酸,半胱氨酸与蛋氨酸。
这些氨基酸就是蛋白质的组成成分,所以硫也就是原生质的构成元素。
辅酶A与硫胺素、生物素等维生素也含有硫,且辅酶A中的硫氢基(-SH)具有固定能量的作用。
硫还就是硫氧还蛋白、铁硫蛋白与固氮酶的组分,因而硫在光合、固氮等反应中起重要作用。
另外,蛋白质中含硫氨基酸间的-SH基与-S-S-可互相转变,这不仅可调节植物体内的氧化还原反应,而且还具有稳定蛋白质空间结构的作用。
由此可见,硫的生理作用就是很广泛的。
硫不易移动,缺乏时一般在幼叶表现缺绿症状,且新叶均衡失绿,呈黄白色并易脱落。
缺硫情况在农业上很少遇到,因为土壤中有足够的硫满足植物需要。
(七)铁铁主要以Fe2+的螯合物被吸收。
铁进入植物体内就处于被固定状态而不易移动。
铁就是许多酶的辅基,如细胞色素、细胞色素氧化酶、过氧化物酶与过氧化氢酶等。
在这些酶中铁可以发生Fe3++e-=Fe2+的变化,它在呼吸电子传递中起重要作用。
细胞色素也就是光合电子传递链中的成员(Cytf与Cytb559、Cytb563),光合链中的铁硫蛋白与铁氧还蛋白都就是含铁蛋白,它们都参与了光合作用中的电子传递。
铁就是合成叶绿素所必需的,其具体机制虽不清楚,但催化叶绿素合成的酶中有两三个酶的活性表达需要Fe2+。
近年来发现,铁对叶绿体构造的影响比对叶绿素合成的影响更大,如眼藻(Euglena)缺铁时,在叶绿素分解的同时叶绿体也解体。
另外,豆科植物根瘤菌中的血红蛋白也含铁蛋白,因而它还与固氮有关。
铁就是不易重复利用的元素,因而缺铁最明显的症状就是幼芽幼叶缺绿发黄,甚至变为黄白色,而下部叶片仍为绿色。
土壤中含铁较多,一般情况下植物不缺铁。
但在碱性土或石灰质土壤中,铁易形成不溶性的化合物而使植物缺铁。
(八)铜在通气良好的土壤中,铜多以Cu2+的形式被吸收,而在潮湿缺氧的土壤中,则多以Cu+的形式被吸收。
Cu2+以与土壤中的几种化合物形成螯合物的形式接近根系表面。
铜为多酚氧化酶、抗坏血酸氧化酶、漆酶的成分,在呼吸的氧化还原中起重要作用。
铜也就是质蓝素的成分,它参与光合电子传递,故对光合有重要作用。
铜还有提高马铃薯抗晚疫病的能力,所以喷硫酸铜对防治该病有良好效果。
植物缺铜时,叶片生长缓慢,呈现蓝绿色,幼叶缺绿,随之出现枯斑,最后死亡脱落。
另外,缺铜会导致叶片栅栏组织退化,气孔下面形成空腔,使植株即使在水分供应充足时也会因蒸腾过度而发生萎蔫。