初二数学经典题练习及答案
初二数学经典题练习及答案

A PC DBF 初二数学经典题型练习1.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.证明如下。
首先,PA=PD ,∠PAD=∠PDA=(180°-150°)÷2=15°,∠PAB=90°-15°=75°。
在正方形ABCD 之外以AD 为底边作正三角形ADQ , 连接PQ , 则∠PDQ=60°+15°=75°,同样∠PAQ=75°,又AQ=DQ,,PA=PD ,所以△PAQ ≌△PDQ , 那么∠PQA=∠PQD=60°÷2=30°,在△PQA 中,∠APQ=180°-30°-75°=75°=∠PAQ=∠PAB ,于是PQ=AQ=AB , 显然△PAQ ≌△PAB ,得∠PBA=∠PQA=30°,PB=PQ=AB=BC ,∠PBC=90°-30°=60°,所以△PBC 是正三角形。
2.已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .证明:连接AC,并取AC 的中点G,连接GF,GM. 又点N 为CD 的中点,则GN=AD/2;GN ∥AD,∠GNM=∠DEM;(1) 同理:GM=BC/2;GM ∥BC,∠GMN=∠CFN;(2) 又AD=BC,则:GN=GM,∠GNM=∠GMN.故:∠DEM=∠CFN.3、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.证明:分别过E 、C 、F 作直线AB 的垂线,垂足分别为M 、O 、N , 在梯形MEFN 中,WE 平行NF因为P 为EF 中点,PQ 平行于两底 所以PQ 为梯形MEFN 中位线,所以PQ =(ME +NF )/2又因为,角0CB +角OBC =90°=角NBF +角CBO所以角OCB=角NBF 而角C0B =角Rt =角BNFCB=BF所以△OCB 全等于△NBF △MEA 全等于△OAC (同理) 所以EM =AO ,0B =NF 所以PQ=AB/2.4、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .过点P 作DA 的平行线,过点A 作DP 的平行线,两者相交于点E ;连接BE因为DP//AE ,AD//PE所以,四边形AEPD 为平行四边形 所以,∠PDA=∠AEP 已知,∠PDA=∠PBA 所以,∠PBA=∠AEP所以,A 、E 、B 、P 四点共圆 所以,∠PAB=∠PEB因为四边形AEPD 为平行四边形,所以:PE//AD ,且PE=AD 而,四边形ABCD 为平行四边形,所以:AD//BC ,且AD=BC 所以,PE//BC ,且PE=BC即,四边形EBCP 也是平行四边形 所以,∠PEB=∠PCB 所以,∠PAB=∠PCB5.P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC=3a 正方形的边长.解:将△BAP 绕B 点旋转90°使BA 与BC 重合,P 点旋转后到Q 点,连接PQ 因为△BAP ≌△BCQ所以AP =CQ ,BP =BQ ,∠ABP =∠CBQ ,∠BPA =∠BQC 因为四边形DCBA 是正方形 所以∠CBA =90°,所以∠ABP +∠CBP =90°,所以∠CBQ +∠CBP =90°即∠PBQ =90°,所以△BPQ 是等腰直角三角形所以PQ =√2*BP,∠BQP =45 因为PA=a ,PB=2a ,PC=3a所以PQ =2√2a,CQ =a ,所以CP^2=9a^2,PQ^2+CQ^2=8a^2+a^2=9a^2 所以CP^2=PQ^2+CQ^2,所以△CPQ 是直角三角形且∠CQA =90° 所以∠BQC =90°+45°=135°,所以∠BPA =∠BQC =135° 作BM ⊥PQ则△BPM 是等腰直角三角形所以PM =BM =PB/√2=2a/√2=√2a 所以根据勾股定理得: AB^2=AM^2+BM^2=(√2a+a)^2+(√2a)^2 =[5+2√2]a^2所以AB =[√(5+2√2)]a6.一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。
初二数学好的试题及答案

初二数学好的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. 2√3C. √6D. √(-1)2. 一个数的立方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 1, -13. 一个数的相反数是它自己,这个数是?A. 0B. 1C. 2D. -14. 一个数的绝对值是它自己,这个数是?A. 任何数B. 非负数C. 非正数D. 05. 一个数的倒数是它自己,这个数是?A. 0B. 1C. -1D. 1和-16. 一个数的平方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 17. 一个数的平方根是它自己,这个数是?A. 0B. 1C. -1D. 0和18. 一个数的立方根是它自己,这个数是?A. 0B. 1C. -1D. 0, 1, -19. 一个数的四次方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 1, -110. 一个数的五次方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 1, -1二、填空题(每题4分,共20分)1. 一个数的平方是36,这个数是______。
2. 一个数的立方是-27,这个数是______。
3. 一个数的绝对值是5,这个数是______。
4. 一个数的倒数是1/2,这个数是______。
5. 一个数的平方根是4,这个数是______。
三、解答题(每题10分,共50分)1. 计算:(√3 + √2)(√3 - √2)。
2. 计算:(2x - 3)(2x + 3)。
3. 计算:(3x + 2)(3x - 2)。
4. 计算:(2x + 5)(2x - 5)。
5. 已知一个数的平方是25,求这个数。
答案:一、选择题1. A2. D3. A4. B5. D6. D7. D8. D9. D 10. D二、填空题1. ±62. -33. ±54. 25. 16三、解答题1. 3 - 2 = 12. 4x² - 93. 9x² - 44. 4x² - 255. ±5。
初二数学经典试题及答案

初二数学经典试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333...D. √2答案:D2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是4,这个数是?A. 16B. -16C. 4D. 2答案:A4. 一个正数的倒数是1/8,这个正数是?A. 8B. 1/8C. 1/7D. 7答案:A5. 一个二次方程x² - 5x + 6 = 0的解是?A. x = 2, 3B. x = 3, 4C. x = 1, 6D. x = 2, 4答案:A二、填空题(每题2分,共10分)6. 一个数的立方根是2,这个数是______。
答案:87. 一个圆的半径是5厘米,那么它的面积是______平方厘米。
答案:78.58. 如果一个数的绝对值是5,那么这个数可以是______或______。
答案:5,-59. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是______立方米。
答案:2410. 一个数的平方是25,这个数可以是______或______。
答案:5,-5三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) (-2)³ + √4 - 2π答案:-7 + 2 - 6.28 = -11.28(2) √(3² + 4²) - 1/2答案:√(9 + 16) - 0.5 = √25 - 0.5 = 5 - 0.5 = 4.5(3) (-3)² ÷ 2 - 1/3答案:9 ÷ 2 - 1/3 = 4.5 - 0.333... = 4.166...四、解答题(每题10分,共20分)12. 解方程:2x - 5 = 3x + 1答案:首先将方程两边的x项聚集在一边,得到2x - 3x = 1 + 5,即-x = 6,解得x = -6。
八年级数学经典练习题附答案(因式分解)

八年级数学经典练习题附答案(因式分解)因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是( )A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于( )A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( )A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是( )A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是( )A.-12 B.±24C.12 D.±126.把多项式a n+4-a n+1分解得( )A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( )A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( )A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得( )A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得( )A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( )A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( )A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得( )A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为( )A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是( )A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有( )A.1个 B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为( )A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是( )A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为( )A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是( )A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为( )A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果( )A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为( )A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为( )A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为( )A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为( )A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为( )A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为( ) A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是( )A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是( )A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+3..6.提示:a=-18.∴a=-18.。
(完整版)初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。
初二数学试题带解析及答案

初二数学试题带解析及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333D. 1/3解析:无理数是不能表示为两个整数的比值的实数。
选项A是圆周率π的近似值,是无理数;选项B的√2是无理数,因为不能表示为两个整数的比;选项C是有限小数,可以表示为1/3;选项D是分数,也是有限小数。
因此,正确答案是B。
答案:B2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8解析:根据勾股定理,直角三角形的斜边长度等于两直角边的平方和的平方根。
即c = √(a² + b²),其中a和b是直角边,c是斜边。
将3和4代入公式得c = √(3² + 4²) = √(9 + 16) = √25 = 5。
答案:A3. 下列哪个代数式是二次方程?A. x + 2 = 0B. x² + 3x - 2 = 0C. 2x - 5 = 0D. x³ - 4 = 0解析:二次方程是形如ax² + bx + c = 0的方程,其中a、b、c是常数,且a≠0。
选项B符合这个形式,是二次方程。
答案:B4. 一个数的平方根是8,这个数是?A. 64B. 16C. -64D. -16解析:一个数的平方根是8,意味着这个数是8的平方。
即x =8² = 64。
负数没有实数平方根,所以选项C和D不正确。
答案:A5. 如果一个多项式f(x) = ax³ + bx² + cx + d,其中a ≠ 0,那么这个多项式的次数是?A. 1B. 2C. 3D. 4解析:多项式的次数是多项式中最高次项的次数。
在这个多项式中,最高次项是ax³,所以次数是3。
答案:C二、填空题(每题2分,共10分)6. 一个数的相反数是-5,这个数是______。
八年级数学经典练习题附答案

八年级数学经典练习题附答案( 因式分解 )因式分解练习题一、填空题:2.(a- 3)(3-2a)=_______(3-a)(3-2a);12.若 m2- 3m+ 2=(m+ a)(m+b),则 a=______,b=______;15.当 m=______时, x2+2(m- 3)x+ 25 是完好平方式.二、选择题:1.以下各式的因式分解结果中,正确的选项是()A. a2b+ 7ab-b=b(a2+ 7a)B.3x2y- 3xy-6y=3y(x-2)(x+ 1)C.8xyz-6x2y2=2xyz(4-3xy)D.- 2a2+4ab- 6ac=- 2a(a+ 2b-3c)2.多项式 m(n-2)- m2(2-n)分解因式等于 ()A. (n-2)(m+ m2)B. (n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m- 1) 3.在以低等式中,属于因式分解的是()A. a(x-y)+ b(m+n)= ax+bm-ay+bn C.- 4a2+9b2=(-2a+3b)(2a+3b)B.a2-2ab+b2+1=(a-b)2+1 D. x2-7x-8=x(x- 7)-84.以下各式中,能用平方差公式分解因式的是()A. a2+b2B.- a2+b2C.- a2-b2D.- (-a2)+b25.若9x2+mxy+ 16y2是一个完好平方式,那么m 的值是 ()A.- 12B.± 24C.12D.± 126.把多项式 a n+4- a n+1分解得 ()A. a n(a4- a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+ 1)D.a n+1(a-1)(a2+a+ 1) 7.若 a2+ a=- 1,则 a4+2a3-3a2-4a+ 3 的值为 ()A. 8B.7C.10D. 128.已知 x2+ y2+2x- 6y+10=0,那么 x,y 的值分别为 ()A. x=1, y=3B.x=1,y=- 3C.x=- 1, y=3D.x=1,y=- 3 9.把 (m2+3m)4-8(m2+3m)2+16 分解因式得 ( )A. (m+1)4(m+ 2)2B.(m-1)2(m- 2)2(m2+ 3m- 2)C.(m+4)2(m- 1)2D. (m+1)2(m+ 2)2(m2+ 3m- 2)210.把 x2-7x- 60 分解因式,得 ()A. (x- 10)(x+ 6)B.(x+5)(x- 12)C. (x+3)(x-20)D.(x- 5)(x+12) 11.把 3x - 2xy-8y分解因式,得 ()22A. (3x+4)(x- 2)B.(3x- 4)(x+2) C.(3x+4y)(x-2y)D.(3x-4y)(x+2y)12.把 a +8ab-33b2分解因式,得 ()2A. (a+11)(a-3) B.(a- 11b)(a-3b) C.(a+ 11b)(a-3b)D.(a- 11b)(a+3b)13.把x4-3x2+2 分解因式,得()A. (x2-2)(x2-1)B. (x2-2)(x+ 1)(x-1)C.(x2+2)(x2+1)D. (x2+ 2)(x+1)(x- 1)14.多项式x2- ax-bx+ab 可分解因式为()A.- (x+a)(x+b)B.(x-a)(x+b)C. (x- a)(x-b)D. (x+a)(x+b)15.一个关于 x 的二次三项式,其x2项的系数是 1,常数项是- 12,且能分解因式,这样的二次三项式是()A. x2-11x-12 或 x2+11x-12B.x2- x-12或x2+x-12C.x2-4x-12 或x2+4x- 12D.以上都能够16.以下各式 x3-x2- x+ 1,x2+ y- xy-x,x2-2x-y2+1,(x2+3x)2- (2x+ 1)2中,不含有 (x -1)因式的有 ( )A. 1 个B.2 个C.3 个D.4 个17.把9- x2+12xy-36y2分解因式为()A. (x- 6y+3)(x- 6x-3)B.- (x- 6y+3)(x- 6y-3)C.- (x-6y+ 3)(x+6y-3)D.- (x- 6y+3)(x- 6y+3)18.以下因式分解错误的选项是()A. a2-bc+ ac-ab=(a-b)(a+ c)B. ab-5a+3b- 15=(b-5)(a+3)C.x2+3xy-2x- 6y=(x+ 3y)(x- 2)D.x2-6xy-1+9y2=(x+3y+ 1)(x+3y- 1)19.已知 a2x2± 2x+b2是完好平方式,且a, b 都不为零,则 a 与 b 的关系为 ()A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对 x4+4 进行因式分解,所得的正确结论是 ( )A.不能够分解因式B.有因式 x2+2x+2C. (xy+2)(xy- 8) D.(xy-2)(xy-8)21.把 a +2a b2+ b -a b 分解因式为 ()42422A. (a2+b2+ab)2B. (a2+ b2+ab)(a2+b2-ab) C.(a2-b2+ab)(a2- b2-ab)D.(a2+b2-ab)222.- (3x-1)(x+ 2y)是以下哪个多项式的分解结果()A. 3x + 6xy- x- 2y B.3x -6xy+ x-2y 22C.x+2y+3x2+6xy D.x+2y- 3x2-6xy 23.64a8-b2因式分解为 ()A. (64a4- b)(a4+ b)B. (16a2- b)(4a2+b)C.(8a4-b)(8a4+ b)D. (8a2-b)(8a4+ b) 24.9(x-y) +12(x -y)+4(x+y) 因式分解为 ()2222A. (5x-y)2 B. (5x+ y)2C.(3x-2y)(3x+2y) D. (5x- 2y)2 25.(2y-3x)2- 2(3x-2y)+1 因式分解为 ()A. (3x-2y-1)2B.(3x+2y+ 1)2C.(3x-2y+1)2D.(2y-3x- 1)226.把 (a+ b) - 4(a -b )+4(a-b) 分解因式为 ()2222A. (3a- b)2B.(3b+a)2C.(3b-a)2D. (3a+ b)227.把 a (b+c) -2ab(a-c)(b+ c)+b (a- c) 分解因式为 ( )2222A. c(a+b)2B. c(a- b)2C.c2(a+b)2D.c2(a- b)28.若 4xy-4x2-y2-k 有一个因式为 (1- 2x+y),则 k 的值为 ()A. 0B. 1C.- 1D. 429.分解因式 3a2x-4b2y-3b2x+4a2y,正确的选项是 ()A.- (a2+ b2)(3x+4y)B. (a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y)D.(a-b)(a+b)(3x-4y) 30.分解因式 2a2+ 4ab+2b2-8c2,正确的选项是 ()A. 2(a+ b-2c)B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c)D.2(a+b+2c)(a+b-2c)三、因式分解:1.m2(p-q)- p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+ xy3;4.abc(a2+b2+ c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c- a)+c2(a- b);6. (x2- 2x)2+2x(x- 2)+1;7.(x- y)2+12(y-x)z+36z2;8.x2- 4ax+ 8ab-4b2;9.(ax+by)2+(ay- bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2- 1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+ b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m- 2n)3+(3m+ 2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3- b3-c3;20.x2+ 4xy+3y2;21.x2+ 18x- 144;22.x4+2x2-8;23.- m4+18m2- 17;24.x5- 2x3- 8x;25.x+ 19x -216x ;26.(x -7x) +10(x -7x)-24;85222227.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x- 1)-2;29.x2+ y2-x2y2- 4xy- 1;30.(x- 1)(x-2)(x-3)(x- 4)-48;四、证明 (求值 ):1.已知 a+b=0,求 a3- 2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,必然是一个完好平方数.3.证明: (ac-bd)2+(bc+ ad)2=(a2+ b2)(c2+d2).4.已知 a=k+ 3, b=2k+2,c=3k-1,求 a2+b2+ c2+2ab- 2bc- 2ac 的值.5.若 x2+mx+n=(x-3)(x+4),求 (m+ n)2的值.6.当 a 为何值时,多项式x2+7xy+ay2-5x+43y-24 能够分解为两个一次因式的乘积.7.若 x,y 为任意有理数,比较6xy 与 x2+9y2的大小.8.两个连续偶数的平方差是 4 的倍数.参照答案 :一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+ 5,- 212.- 1,- 2(或- 2,- 1)14.bc+ ac,a+b,a-c15.8 或- 2二、选择题:1.B2.C 3.C 4.B 5.B6.D7.A8.C 9.D10.B11.C12.C 13.B14.C 15.D16.B 17.B18.D19.A 20.B 21.B 22.D 23.C 24.A25.A 26.C27. C 28.C29.D30. D三、因式分解:1.(p- q)(m- 1)(m+1).8.(x- 2b)(x- 4a+2b).11.4(2x- 1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+ 24).27.(3+2a)(2- 3a).四、证明 (求值 ):2.提示:设四个连续自然数为n,n+1,n+2,n+3八年级数学经典练习题附答案6.提示: a=-18.∴a=-18.11 / 11。
初二数学经典题目精选(附答案)

数学经典题目(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)APCDB AFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M中点,AD 、BC 的延长线交MN 于E 、F 求证:∠DEN =∠F .D 2C 2B 2 A 2D 1C 1B 1CBDAA 1B数学经典题目(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM ⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A线,交圆于B、C及D、E,直线EB及CD 求证:AP=AQ.(初二)F3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点AEB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 求证:点P 到边AB 的距离等于AB数学经典题目(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.4、如图,PC切圆O于C,AC与直线PO相交于B、D.求证:AB数学经典题目(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC =5.2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)数学经典题目(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.APCBACBPD3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a方形的边长.4、如图,△ABC 中,∠ABC =∠ACB=800,D 、E 分别是点,∠DCA =300,∠EBA =200,求∠BED 的度数.数学经典题目(一)1.如下图做GH ⊥AB,连接EO 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A PC DBF 初二数学经典题型练习1.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.证明如下。
首先,PA=PD ,∠PAD=∠PDA=(180°-150°)÷2=15°,∠PAB=90°-15°=75°。
在正方形ABCD 之外以AD 为底边作正三角形ADQ , 连接PQ , 则∠PDQ=60°+15°=75°,同样∠PAQ=75°,又AQ=DQ,,PA=PD ,所以△PAQ ≌△PDQ , 那么∠PQA=∠PQD=60°÷2=30°,在△PQA 中,∠APQ=180°-30°-75°=75°=∠PAQ=∠PAB ,于是PQ=AQ=AB , 显然△PAQ ≌△PAB ,得∠PBA=∠PQA=30°,PB=PQ=AB=BC ,∠PBC=90°-30°=60°,所以△PBC 是正三角形。
2.已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .证明:连接AC,并取AC 的中点G,连接GF,GM. 又点N 为CD 的中点,则GN=AD/2;GN ∥AD,∠GNM=∠DEM;(1) 同理:GM=BC/2;GM ∥BC,∠GMN=∠CFN;(2) 又AD=BC,则:GN=GM,∠GNM=∠GMN.故:∠DEM=∠CFN.3、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.证明:分别过E 、C 、F 作直线AB 的垂线,垂足分别为M 、O 、N , 在梯形MEFN 中,WE 平行NF因为P 为EF 中点,PQ 平行于两底 所以PQ 为梯形MEFN 中位线,所以PQ =(ME +NF )/2又因为,角0CB +角OBC =90°=角NBF +角CBO所以角OCB=角NBF 而角C0B =角Rt =角BNFCB=BF所以△OCB 全等于△NBF △MEA 全等于△OAC (同理) 所以EM =AO ,0B =NF 所以PQ=AB/2.4、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .过点P 作DA 的平行线,过点A 作DP 的平行线,两者相交于点E ;连接BE因为DP//AE ,AD//PE所以,四边形AEPD 为平行四边形 所以,∠PDA=∠AEP 已知,∠PDA=∠PBA 所以,∠PBA=∠AEP所以,A 、E 、B 、P 四点共圆 所以,∠PAB=∠PEB因为四边形AEPD 为平行四边形,所以:PE//AD ,且PE=AD 而,四边形ABCD 为平行四边形,所以:AD//BC ,且AD=BC 所以,PE//BC ,且PE=BC即,四边形EBCP 也是平行四边形 所以,∠PEB=∠PCB 所以,∠PAB=∠PCB5.P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC=3a 正方形的边长.解:将△BAP 绕B 点旋转90°使BA 与BC 重合,P 点旋转后到Q 点,连接PQ 因为△BAP ≌△BCQ所以AP =CQ ,BP =BQ ,∠ABP =∠CBQ ,∠BPA =∠BQC 因为四边形DCBA 是正方形 所以∠CBA =90°,所以∠ABP +∠CBP =90°,所以∠CBQ +∠CBP =90°即∠PBQ =90°,所以△BPQ 是等腰直角三角形所以PQ =√2*BP,∠BQP =45 因为PA=a ,PB=2a ,PC=3a所以PQ =2√2a,CQ =a ,所以CP^2=9a^2,PQ^2+CQ^2=8a^2+a^2=9a^2 所以CP^2=PQ^2+CQ^2,所以△CPQ 是直角三角形且∠CQA =90° 所以∠BQC =90°+45°=135°,所以∠BPA =∠BQC =135° 作BM ⊥PQ则△BPM 是等腰直角三角形所以PM =BM =PB/√2=2a/√2=√2a 所以根据勾股定理得: AB^2=AM^2+BM^2=(√2a+a)^2+(√2a)^2 =[5+2√2]a^2所以AB =[√(5+2√2)]a6.一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。
向容器中注满水的全过程共用时间t 分。
求两根水管各自注水的速度。
解:设小水管进水速度为x ,则大水管进水速度为4x 。
由题意得:t xv x v =+82解之得:t v x 85= 经检验得:tvx 85=是原方程解。
∴小口径水管速度为t v 85,大口径水管速度为tv25。
7.如图11,已知正比例函数和反比例函数的图像都经过点M (-2,1),且P (1,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B . (1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.解:(1)设正比例函数解析式为y kx =,将点M (2-,1-)坐标代入得12k,所以正比例函数解析式为12yx 同样可得,反比例函数解析式为2y x(2)当点Q 在直线DO 上运动时, 设点Q 的坐标为1()2Q m m ,, 于是211112224OBQ S OB BQ m m m △, 而1(1)(2)12OAP S △,所以有,2114m ,解得2m =±所以点Q 的坐标为1(21)Q ,和2(21)Q , (3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ =PC ,图而点P (1-,2-)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值.因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标为2()Q n n,, 由勾股定理可得222242()4OQ n nn n,所以当22()0nn即20nn时,2OQ 有最小值4,又因为OQ 为正值,所以OQ 与2OQ 同时取得最小值,所以OQ 有最小值2.由勾股定理得OP OPCQ 周长的最小值是8.如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB .(1)求证:① PE=PD ; ② PE ⊥PD ; (2)设AP =x , △PBE 的面积为y .① 求出y 关于x 的函数关系式,并写出x 的取值范围; ② 当x 取何值时,y 取得最大值,并求出这个最大值. 解:(1)证法一:① ∵ 四边形ABCD 是正方形,AC 为对角线, ∴ BC=DC , ∠BCP =∠DCP=45°. ∵ PC =PC ,∴ △PBC ≌△PDC (SAS ).∴ PB = PD , ∠PBC =∠PDC .又∵ PB = PE ,∴ PE =PD . ② (i )当点E 在线段BC 上(E 与B 、C 不重合)时, ∵ PB =PE ,∴ ∠PBE =∠PEB , ∴ ∠PEB =∠PDC ,∴ ∠PEB +∠PEC =∠PDC +∠PEC =180°,∴ ∠DPE =360°-(∠BCD +∠PDC +∠PEC )=90°, ∴ PE ⊥PD . )(ii )当点E 与点C 重合时,点P 恰好在AC 中点处,此时,PE ⊥PD . (iii )当点E 在BC 的延长线上时,如图. ∵ ∠PEC =∠PDC ,∠1=∠2, ∴ ∠DPE =∠DCE =90°, ∴ PE ⊥PD . 综合(i )(ii )(iii ), PE ⊥PD .(2)① 过点P 作PF ⊥BC ,垂足为F ,则BF =FE .DA B C D PE12 H∵ AP =x ,AC =2, ∴ PC =2- x ,PF =FC =x x 221)2(22-=-. BF =FE =1-FC =1-(x 221-)=x 22. ∴ S △PBE =BF ·PF =x 22(x 221-)x x 22212+-=. 即 x x y 22212+-= (0<x <2).② 41)22(21222122+--=+-=x x x y .∵ 21-=a <0,∴ 当22=x 时,y 最大值41=.(1)证法二:① 过点P 作GF ∥AB ,分别交AD 、BC 于G 、F . 如图所示. ∵ 四边形ABCD 是正方形,∴ 四边形ABFG 和四边形GFCD 都是矩形,△AGP 和△PFC 都是等腰直角三角形. ∴ GD=FC =FP ,GP=AG =BF ,∠PGD =∠PFE =90°.又∵ PB =PE ,∴ BF =FE , ∴ GP =FE ,∴ △EFP ≌△PGD (SAS ).∴ PE =PD . ② ∴ ∠1=∠2.∴ ∠1+∠3=∠2+∠3=90°. ∴ ∠DPE =90°.∴ PE ⊥PD . (2)①∵ AP =x , ∴ BF =PG =x 22,PF =1-x 22.∴ S △PBE =BF ·PF =x 22(x 221-)x x 22212+-=. 即 x x y 22212+-= (0<x <2).② 41)22(21222122+--=+-=x x x y .∵ 21-=a <0,∴ 当22=x 时,y 最大值41=. A B CPDE F G 1239、如图,直线y=k 1x+b 与反比例函数 y=k2x 的图象交于A (1,6),B (a ,3)两点. (1)求k 1、k 2的值.(2)直接写出 k1x+b-k2x >0时x 的取值范围;(3)如图,等腰梯形OBCD 中,BC ∥OD ,OB=CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.10、如图12,已知直线12y x=与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.图12Ox AyB。