实数全章复习与巩固基础巩固练习
70《解析几何初步》全章复习与巩固(基础)-巩固练习_《解析几何初步》全章复习与巩固 -基础 (1)

【巩固练习】1.经过点P(2,-1),且在y 轴上的截距等于它在x 轴上的截距的2倍的直线l 的方程是()A.2x+y=2B.2x+y=4C.2x+y=3D.2x+y=3或x+2y=02.已知A(3,2)和B(-1,4)两点到直线mx+y+3=0的距离相等,则m 的值为()A.0或12-B.12或-6C.12-或12D.0或123.直线l 的方程为Ax+By+C=0,若l 过原点和第二、四象限,则有()A.C=0且B>0B.C=0且B>0,A>0C.C=0且A·B<0D.C=0且A·B>04.经过圆2220x x y ++=的圆心C,且与直线x+y=0垂直的直线方程是()A.10x y -+=B.10x y --=C.10x y +-=D.10x y ++=5.若圆心在x C 位于y 轴左侧,且与直线x+2y=0相切,则圆C 的方程是()A.22(5x y +=B.22(5x y +=C.22(5)5x y -+=D.22(5)5x y ++=6.直线x+y=1与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是()1)1-,在1+)C.(11-)1+)7.圆22460x y x y +-+=和圆2260x y x +-=交于A,B 两点,则线段AB 的垂直平分线的方程是()A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.x-3y+7=08.由直线y=x+1上的一点向圆(x-3)2+y 2=1引切线,则切线长的最小值为()A.1B.D.39.如果圆(x -a )2+(y -a )2=4上总存在两个点到原点的距离为1,那么实数a 的取值范围是_____.10.过点P (2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的方程为_________.11.若直线x =1与直线2103a x y ⎛⎫-++= ⎪⎝⎭垂直,则a =_________.12.若圆x 2+y 2=4与圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程是__________.13.过点M (0,1)作直线,使它被直线l 1:x -3y +10=0和l 2:2x +y -8=0所截得的线段恰好被M 平分,求此直线方程.14.已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为;③圆心在直线x -3y =0上,求圆C 的方程.15.已知方程x 2+y 2-2x -4y +m =0.(1)若此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M 、N 两点,且OM ⊥O N(O 为坐标原点),求m ;(3)在(2)的条件下,求以M N 为直径的圆的方程.16.已知圆C :x 2+y 2-2x +4y -4=0.是否存在斜率是1的直线l ,使l 被圆C 截得的弦AB ,且以AB 为直径的圆经过原点?若存在,写出直线l 的方程;若不存在,请说明理由.【答案与解析】1.【答案】D 【解析】当直线不过原点时,设直线方程为12x y a a +=,将P 点代入可得32a =,即直线方程为2x+y=3;当直线过原点时直线方程为x+2y=0.2.【答案】B 【解析】若A、B 在直线同侧,则有4213m --=--,解得12m =;若A、B 在直线异侧,可求得其中点(1,3),代入直线方程得m+3+3=0,得m=-6.3.【答案】D【解析】由直线过原点,知C=0,过第二、四象限知0AB-<,即A·B>0.4.【答案】A【解析】设所求直线方程为x-y+m=0,又过(-1,0)点,代入得m=l,故直线方程为10x y -+=.5.【答案】D【解析】设圆心为(a,0)(a<0).因为直线x+2y=0==,解得5a =-.所以圆C 的方程为22(5)5x y ++=.6.【答案】A【解析】由题意知,直线与圆相离,圆心(0,a)到1x y +=的距离a >,解得11a -<<.又0a >,故选A.7.【答案】C【解析】公共弦的垂直平分线为两圆的连心线,两圆心分别为(2,-3),(3,0),可得直线方程为3x-y-9=0.8.【答案】C【解析】设满足条件的点为(a ,a+1),则切线长l ==a=1时,min l =.9.【答案】2222⎛⎫⎫ ⎪⎪⎪⎪⎝⎭⎝⎭10.【答案】=2或3-4-2=0【解析】圆的标准方程为(x -1)2+(y +1)2=1,当切线斜率不存在时,x =2满足条件;当切线斜率存在时,可设直线方程为y -1=k (x -2),利用圆心到直线的距离等于半径,即=1,得k =34,∴切线方程为3x -4y -2=0.11.【答案】23【解析】x =1斜率不存在,若要垂直,则23a x ⎛⎫-⎪⎝⎭+y +1=0的斜率为0.12.【答案】x -y +2=0【解析】由已知得两圆的圆心坐标分别为(0,0)和(-2,2).所以直线l 的斜率为1,并过点(-1,1).所以直线l 的方程是y -1=x +1,即x -y +2=0.13.【解析】解法一:直线斜率不存在时,即过点M 且与x 轴垂直的直线是y 轴,它和两已知直线的交点分别是100,3⎛⎫⎪⎝⎭和(0,8),显然不满足中点是点M (0,1)的条件.故可设所求直线方程为y =kx +1,与已知两直线l 1,l 2分别交于A ,B 两点,联立方程组1,3100,y kx x y =+⎧⎨-+=⎩①1,280,y kx x y =+⎧⎨+-=⎩②由①解得x A =731k -,由②解得x B =72k +.∵点M 平分线段AB ,∴x A +x B =2x M ,即731k -+72k +=0.解得k =-14.故所求直线方程为x +4y -4=0.解法二:设所求直线与已知直线l 1,l 2分别交于A ,B 两点.∵点B 在直线l 2:2x +y -8=0上,故可设B(t ,8-2t ),M (0,1)是AB 的中点.由中点坐标公式,得A (-t ,2t -6).又∵点A 在直线l 1:x -3y +10=0上,∴(-t )-3(2t -6)+10=0,解得t =4.∴B (4,0),A (-4,2).故所求直线方程为x +4y -4=0.14.【解析】设所求圆的方程:222()()x a y b r -+-=,∵所求圆与y 轴相切,∴||a r =①.又圆心在30x y -=上,∴a =3b ,圆心到直线x -y =0的距离||3d a ==②,|3a ==,∴|a |=3,∴a =±3,b =±1,即圆心坐标为(3,1)或(-3,-1),半径r =3,所求圆的方程为22(3)(1)9x y -+-=或22(3)(1)9x y +++=.15.【解析】(1)(x -1)2+(y -2)2=5-m ,∴m <5.(2)设M (x 1,y 1),N (x 2,y 2),则x 1=4-2y 1,x 2=4-2y 2,∴x 1x 2=16-8(y 1+y 2)+4y 1y 2.∵OM ⊥ON ,∴x 1x 2+y 1y 2=0,∴16-8(y 1+y 2)+5y 1y 2=0.①由2242,240x y x y x y m =-⎧⎨+--+=⎩得5y 2-16y +m +8=0,∴y 1+y 2=165,y 1y 2=85m +,代入①得,m =85.(3)以MN 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0,即x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.∴所求圆的方程为x 2+y 2-85x -165y =0.16.【解析】假设存在直线l 满足题设条件,且设l 的方程为y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则AB 中点N 是两直线x -y +m =0与y +2=-(x -1)的交点,即N 11,22m m +-⎛⎫-⎪⎝⎭.∵以AB 为直径的圆经过原点,∴|AN |=|O N |.又CN ⊥AB ,|CN∴|AN .又|O N |=由|AN |=|O N |,解得m =-4或m =1.∴存在直线l ,其方程为y =x -4或y =x +1.。
实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

专题6.12 实数(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.在下列各数中,无理数是( ) A .237B 38-C 916D .4π 2.下列说法正确的是( ) A .117是无理数 B 5 C .π2是无理数D .22是有理数 3.下列等式正确的是( ) A .()255-- B 93=± C 382±D 3355--4.一个长、宽,高分别为50cm 、8cm 、20cm 的长方体铁块锻造成一个立方体铁块,则锻造成的立方体铁块的棱长是( )A .20cmB .200cmC .40cmD 80cm5.若32x =-( ) A .32x =-B .32x =-C .(-x)3=-2D .x=(-2)36.已知x ,y 为实数,且22994y x x --,则x y -=( ) A .﹣1B .﹣7C .﹣1或﹣7D .1或﹣77.若24,a =31b =-,则a b +的值是( ) A .1B .-3C .1或-3D .-1或38.已知x ,y 两个实数在数轴上位置如图所示,则化简()2y x x y --( )A .2xB .2yC .22x y -D .22y x -9.如图,在数轴上点A 表示的实数是( )A 5B 51C 31D 310.如图,数轴上表示12A 、B ,点B 关于点A 的对称点是C ,设C 点表示的数为x ,则2x )A .12B .1+2C 21D .2二、填空题1149的算术平方根是______64______. 128x -3x ____________.13()2460x y -+=,那么2x y -的平方根为_______. 14.已知:23+m ,小数部分为n ,则2m n -=_____.15.已知实数a 、b 在数轴上的对应点如图,化简||a a b c b -++-=_________.16101-89.(填“>”或“<”)17.设 a 、b 是有理数,且满足等式2322152a b b ++=-则a+b=___________. 18.对于能使式子有意义的有理数,a b ,定义新运算:a △b 22a ba b+=-.如果1230x y xz -++=则x △(y △z )= _____ .三、解答题19.在数轴上表示下列各数,并将这些数按从小到大的顺序用“<”连接起来. 2,52,038-π-.20.求下列各式中x 的值: (1) 240x -=;(2) 3(1)8x +=.21.化简求值:(1) 已知a 1713b =54ab +(2) 已知:实数a ,b 323(1)2(1)||a b a b -----.22.计算:(1) 2338125(2)---(2) 2722(7)π-(3) 331631270.1251464--(4) 233416(3)22--.23.如图,每个小正方形的边长均为1.(1) 图中阴影部分的面积是______;阴影部分正方形的边长a 是______. (2) 估计边长a 的值在两个相邻整数______与______之间.(3) 我们知道π是无理数,而无理数是无限不循环小数,因此π的小数部分我们不可能全部写出来,我们可以用3来表示它的整数部分,用()3π-表示它的小数部分.设边长a 的整数部分为x ,小数部分为y ,求()x y -的相反数.24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:3表示的点与数表示的点重合;②若数轴上A、B两点之间距离为8(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是__________________;操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.参考答案1.D【分析】先对个选项进行化简,再由无理数的概念进行判断即可. 解:237是有理数,故选项A 不符合题意; 382--是有理数,故选项B 不符合题意;93164=是有理数,故选项C 不符合题意; 4π符合无理数的概念,故选项D 符合题意;. 故选:D .【点拨】此题考查的是算术平方根、立方根及无理数的概念,能够根据算术平方根的概念及立方根进行正确化简是解决此题关键.2.C【分析】根据有理数和无理数的定义,逐一判定即可,有理数包括整数和分数,无理数是无限不循环小数.解:A. 117是有理数,故A 选项说法错误; B. 5B 选项说法错误;C. π2是无理数,故C 选项说法正确; D.2D 选项说法错误. 故选:C .【点拨】本题主要考查了有理数和无理数,解决问题的关键是熟练掌握有理数和无理数的定义.3.D【分析】利用平方根与立方根的定义,逐个计算得结论.解: A 、()22555---,故选项错误,不符合题意;B 9=3,故选项错误,不符合题意;C 38=2,故选项错误,不符合题意;D 335=5--,故选项正确,符合题意. 故选:D .【点拨】本题考查了平方根、算术平方根和立方根的性质与化简,掌握平方根和立方根的定义解决本题的关键.4.A【分析】先求出体积,再求立方根即可. 解:∵铁块体积是3508208000(cm )⨯⨯=∴3800020(cm), 故选:A .【点拨】本题考查立方根的应用,会求立方根是解题的关键. 5.B【分析】利用立方根的定义分析得出答案. 解:∵3-2, ∴x 3=-2, 故选B .【点拨】本题考查立方根的定义,正确把握定义是解题关键. 6.C直接利用二次根式的性质得出x ,y 的值,然后讨论进而得出答案. 解:∵22994y x x --, ∴229090x x -≥-≥, ∴290x∴y =4, ∴3x =±,当3,4x y ==时,341x y -=-=-; 当3,4=-=x y 时,347x y -=--=-; ∴1x y -=-或7x y -=-, 故选:C .【点拨】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x 、y 的值.7.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 解:24,a =31,b =-2,a ∴=±1b,∴当2,a =-1b时,213a b +=--=-; ∴当2,a =1b 时,211a b +=-=.故选:C .【点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.8.D【分析】根据点在数轴的位置判断式子的正负,然后化简. 解:根据图示可知:0x y <<∴0y x∴()2y x x y -+-y x y x 22y x =-故选:D .【点拨】此题的考查了数轴,绝对值的性质,合并同类项法则,解题的关键是根据点在数轴的位置判断式子的正负.9.B【分析】先根据勾股定理求出PQ 的长,即可求出点A 所表示的数. 解:如图,22125PQ =+由图可知5PA PQ ==, 所以点A 51, 故点A 51. 故选:B【点拨】本题考查勾股定理以及数轴表示数的意义和方法,掌握解答的方法是关键.。
沪教版八年级下册数学 第二十一章 《代数方程》全章复习与巩固 知识讲解(提高)

《代数方程》全章复习与巩固知识讲解(提高)【学习目标】1.知道一元整式方程与高次方程的有关概念,知道一元整式方程的一般形式. 理解含字母系数的一元一次方程、一元二次方程的概念,掌握它们的基本解法.2.理解和掌握二项方程的意义以及二项方程的解法,理解双二次方程的意义,了解高次方程求解的基本方法是降次,会用换元法把双二次方程转化为一元二次方程;学会判断双二次方程的根的个数.3.会用“换元法”解特殊的分式方程(组).4.理解无理方程的概念,会识别无理方程,知道有理方程及代数方程的概念,领会无理方程“有理化”的化归思想. 会解简单的无理方程(方程中只含一个或两个关于未知数的二次根式).5.知道二元二次方程的概念和二元二次方程组的概念.6.掌握由“代入法”解由一个二元一次方程和二元二次方程组成的方程组;掌握用“因式分解法”解由两个二元二次方程组成的方程组.7.能熟练地列出方程组解应用题.并能根据具体问题的实际意义,检查结果是否合理.通过将实际生活中的问题抽象为方程模型,让学生形成良好思维习惯,学会从数学角度提出问题、理解问题.运用所学知识解决问题,发展应用意识,体会数学的情感与价值.【知识网络】【要点梳理】要点一、整式方程1. 一元整式方程:如果方程中只有一个未知数且两边都是关于未知数的整式,这个方程叫做一元整式方程;2.一元n次方程:一元整式方程中含未知数的项的最高次数是n(n是正整数),这个方程叫做一元n次方程.3.一元高次方程:一元整式方程中含有未知数的项的最高次数是n,若次数n是大于2的正整数,这样的方程统称为一元高次方程.要点诠释:一元高次方程应具备:整式方程;只含一个未知数;含未知数的项最高次数大于2次.4.二项方程概念:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程.要点诠释:注:①nax=0(a≠0)是非常特殊的n次方程,它的根是0.②这里所涉及的二项方程的次数不超过6次.5.解的情况:当n为奇数时,方程有且只有一个实数根,x=;当n为偶数时,如果ab<0,那么方程有两个实数根,且这两个根互为相反数;如果ab>0,那么方程没有实数根.6.双二次方程概念:只含有偶数次项的一元四次方程.要点诠释:当常数项不是0时,规定它的次数为0.7.解双二次方程的常用方法:因式分解法与换元法(目的是降次,使它转化为一元一次方程或一元二次方程)通过换元,把双二次方程转化为一元方程体现了“降次”的策略.要点诠释:解高于一次的方程,基本思想就是“降次”,对有些高次方程,可以用因式分解的方法降次.用因式分解的方法时要注意:一定要使方程的一边为零,另一边可以因式分解.要点二、分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程看联系:分式方程可以转化为整式方程.2.分式方程的解法1、解分式的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.2、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点诠释:1、熟练掌握用“去分母”法求解分式方程的方法.2、了解用“换元法”解特殊的分式方程(组).3、领会分式方程“整式化”的化归思想和方法.3.解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点三、无理方程1.无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.要点诠释:简单说,根号下含有未知数的方程,就是无理方程.2.有理方程:整式方程和分式方程统称为有理方程.3.代数方程:有理方程和无理方程统称为代数方程.要点诠释:代数方程的共同点是:其中对未知数所涉及的运算是加、减、乘、除、乘方、开方等基本运算.4.含有一个根式(根式内有未知数的)的无理方程的解题步骤:①移项,使方程左边是含未知数的根式,其余都移到另一边;②两边同时乘方(若二次根式就平方,三次根式就立方)得整式方程;③解整式方程;④验根;⑤写答案.要点诠释:解简单无理方程的一般步骤,用流程图表示为:5.含有两个根式(根式内含有未知数)的无理方程的解题步骤:①移项,使方程等式的左边只含一个根式,其余移到另一边;②两边同时平方,得到只含有一个根式的无理方程;以下与1步骤相同.要点诠释:解无理方程的关键在于把它转化为有理方程,转化的基本方法是对方程两边同时乘方从而去掉根号,对于简单的无理方程,可通过“方程两边平方”来实施.要点四、二元二次方程组1. 二元二次方程定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.要点诠释:22ax bxy cy dx ey f o +++++=(a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不为零),其中22,,ax bxy cy 叫做这个方程的二次项,a 、b 、c 分别叫做二次项系数,,dx ey 叫做这个方程的一次项,d 、e 分别叫做一次项系数,f 叫做这个方程的常数项.2.二元二次方程的解能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.要点诠释:二元二次方程有无数个解;二元二次方程的实数解的个数有多种情况.3.二元二次方程组概念:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,这样的方程组叫做二元二次方程组.要点诠释:不能认为由两个二元二次方程组成的方程组才叫二元二次方程组,由一个二元一次方程和一个二元二次方程组成的方程组,也是二元二次方程组.4. 二元二次方程组的解:方程组中所含各方程的公共解叫做这个方程组的解.1. 代入消元法代入消元法解“二·一”型二元二次方程组的一般步骤:①把二元一次方程中的一个未知数用另一个未知数的代数式表示;②把这个代数式代入二元二次方程,得到一个一元二次方程;③解这个一元二次方程,求得未知数的值;④把所求得的未知数的值分别代入二元一次方程,求得另一个未知数的值;⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解; ⑥写出原方程组的解.要点诠释:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组;(2)“二·一”型方程组最多有两个解,要防止漏解和增解的错误.2. 因式分解法(1) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解.(2) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.5.方程(组)的应用应用二元二次方程组解应用题的一般步骤:(1)审题;(2)设未知数(2个);(3)列二元二次方程组;(4)解方程组;(5)检验是否是方程的解以及是否符合实际;(6)写出答案.要点诠释:一定要检验一下结果是否符合实际问题的要求.【典型例题】类型一、方程的判断1.下列方程中,哪些是二元二次方程?是二元二次方程的请指出它的二次项、一次项和常数项.2222(1) 1 ; (2)320;1(3)20 ; (4)3 1.x y y y y x x y xy+=-+=+-=++= 【思路点拨】该题主要依据二元二次方程的定义.【答案与解析】(1)是,二次项2x 、一次项y ,常数项-1.(2)不是,因为只含一个未知数.(3)不是,因为不是整式方程.(4)不是,因为不含二次项.【总结升华】对于二元二次方程的定义要加深全面的理解.举一反三:【变式】(2015秋•黄浦区期中)在方程2x 2﹣3x=4,xy=1,x 2﹣4y 2=9,中,是二元二次方程的共有( ) A .1个 B .2个 C .3个 D .4个【答案】B.解:2x 2﹣3x=4是一元二次方程;xy=1,x 2﹣4y 2=9是二元二次方程;是分式方程.故是二元二次方程的只有:xy=1,x 2﹣4y 2=9.故选B .2.(2016春•上海校级月考)下列关于x 的方程中,无理方程是( )A .B .C .D .+2x=7 【思路点拨】根号下含有未知数的方程是无理方程,依据定义即可作出判断.【答案】C .【解析】解:A 、x 2+x+1=0是一元二次方程,选项错误;B 、x+1=0是一元一次方程,选项错误;C 、+=0是无理方程,选项正确;D 、+2x=7是关于x 的一元一次方程,选项错误.故选C .【总结升华】本题考查了无理方程的定义,无理方程与整式方程的区别在于被开方数中是否含有未知数,理解定义是关键.举一反三:【变式】(2015春•闵行区期末)已知下列关于x 的方程:①;②+1=0;③+2x=7;④﹣7=0;⑤+=2;⑥﹣=.其中,是无理方程的有()A.2个 B.3个 C.4个 D.5个【答案】B.解:①根号内不含未知数,所以,不是无理方程;故本项不符合题意;②根号内含未知数,所以,是无理方程;故本项符合题意;③根号内不含未知数,所以,不是无理方程;故本项不符合题意;④根号内含未知数,所以,是无理方程;故本项符合题意;⑤根号内含未知数,所以,是无理方程;故本项符合题意;⑥根号内不含未知数,所以,不是无理方程;故本项不符合题意;所以,②④⑤是无理方程;故选B.类型二、判断方程解的情况3.(2016春•上海校级月考)下列关于x的方程中,一定有实数根的是()A. B.x2+x+1=0 C. D.【思路点拨】根据表示a的算术平方根,一定是非负数,以及一元二次方程根的判别式即可作出判断.【答案】C.【解析】解:A、≥0,4>0,则原式一定不成立,则方程没有实数根,选项错误;B、a=1,b=1,c=1,则△=b2﹣4ac=1﹣4=﹣3<0,则方程无实数根,选项错误;C、当x=0时,=﹣x一定成立,即方程有实数根0,选项正确;D、≥0,≥0,则+≥0,因而+=﹣1一定不成立,没有实数根,选项错误.故选C.【总结升华】本题考查了算术平方根的定义以及一元二次方程根的判别式,理解任何非负数的算术平方根是非负数是关键.举一反三:【变式】(2016春•南京校级月考)下列方程中,有实数根的是()A.x2﹣3x+5=0 B.C. D.【答案】C.解:A、△=9﹣20=﹣11<0,方程没有实数解,所以A选项错误;B、方程=﹣1没有实数解,所以B选项错误;C 、解得x=﹣1,正确;D 、去分母得x=1,经检验x=1是不是原方程的解,所以D 选项错误;故选C .类型三、解方程4. 解关于x 的方程:1mx nx -=【思路点拨】解含字母系数的方程时,先化为最简形式ax b =,再考虑有解、无解、无穷多解的模式.然后进行分类讨论.【答案与解析】原方程可化为:()1m n x -=当0m n -≠,即m n ≠时,方程有唯一解为:1x m n=-; 当0m n -=,即m n =时,方程无解.【总结升华】解含字母系数的方程时,先化为最简形式ax b =,再根据x 系数a 是否为零进行分类讨论. 举一反三:【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.【答案】解:∵原方程有解,∴ 40k -≠原方程的解为:64x k =-为正整数,∴4k -应为6的正约数,即4k -可为:1,2,3,6 ∴k 为:5,6,7,10答:自然数k 的值为:5,6,7,105.(2016春•长宁区期末)解方程:2220383x x x x +-=+. 【思路点拨】根据换元法,设213u x x=+,可得关于u 的分式方程,根据解方程,可得答案. 【答案与解析】解:设213u x x =+,则原方程化为:1208u u-=, 解得:1211102u ,u ==-, 当110u =时,2310x x +=,解得:1252x ,x =-=,经检验1252x ,x =-=是原分式方程的解; 当12u =-时,232x x +=-,解得:12317317x -+--==,经检验12317317x ,x -+--==是原分式方程的解; 所以原方程的解为:1252x ,x =-=,3431731722x ,x -+-==.【总结升华】本题考查了解分式方程的应用,能正确换元是解此题的关键,难度适中.6. 解方程 223152512x x x x ++++=【答案与解析】 251x x y ++=,则2222513153(1)x x y x x y ++=⇒+=-原方程可化为:23(1)22y y -+=,即23250y y +-=,解得:1y =或53y =-.(1)当1y =225115010x x x x x x ++=⇒+=⇒=-=或;(2)当53y =-2510x x y ++=≥,所以方程无解.检验:把1,0x x =-=分别代入原方程,都适合. 所以,原方程的解是1,0x x =-=.【总结升华】本题若直接平方,会得到一个一元四次方程,难度较大.注意观察方程中含未知数的二次根式与其余有理式的关系,可以发现:2231533(51)x x x x ++=++.因此,251x x y ++=,这样就可将原方程先转化为关于y 的一元二次方程进行处理.举一反三: 【变式】解方程()223323532x x x x +-+=+ 【答案】解:原方程变形为,22352354022x x x x -++-+=, 2235x x -+,则23522x x -+=22y , 则方程可化为,22y +y-4=0, 整理得,2280y y +-=,解得,122,4,y y ==-当y=22235x x -+,解得,1211,2x x ==; 当y=-42235x x -+=-4,无解. 经检验,1211,2x x ==都是原方程的解,所以原方程的解为1211,2x x ==. 7、解方程49324492x x x x +-=+. 【答案与解析】解:设494x y x +=,则214+9x x y=, 原方程可化为,y-1y =32, 整理得,22320y y --=,解得,12,y =21,2y =-当y=2时,492,4x x +=解得,x=34; 当y=-12时,491,42x x +=-无解; 经检验,x=34是原方程的解, 所以原方程的解为x=34. 【总结升华】本题中494x x +与24+9x x 之间互为倒数,采用倒数换元法是本题的最佳选择. 举一反三:【变式】(杨浦区校级期中)解方程:4x 2﹣10x+=17. 【答案】解:方程变形为2(2x 2﹣5x+2)﹣﹣21=0 设=t ,则原方程转化为2t 2+t ﹣21=0,(t ﹣3)(2t+7)=0,解得t 1=3,t2=﹣,当t=3时,=3,则2x 2﹣5x+2=9, 整理得2x 2﹣5x ﹣7=0,解得x 1=,x 2=﹣1;当t=﹣时,=﹣,则方程无解,经检验原方程的解为x 1=,x 2=﹣1.类型四、解方程组 8. 解方程组【答案与解析】解:设1=+u x y ,1=-v x y,则原方程组可化为 80+42=7,40+70=7.u v u v ⎧⎨⎩解得 1=,201=.14u v ⎧⎪⎪⎨⎪⎪⎩ 于是,得 11=,+2011=.-14x y x y ⎧⎪⎪⎨⎪⎪⎩ 因此 +=20,-=14.x y x y ⎧⎨⎩解得 =17,=3.x y ⎧⎨⎩检验:把x=17,y=3代入原方程组中所含各分式的分母,各分母的值都不为零. 所以,原方程组的解是=17,=3.x y ⎧⎨⎩【总结升华】本题中直接去分母解比较麻烦,通过观察发现两个方程所含的分式的分母分别是x+y 和x-y ,所以想到“换元”,设1=+u x y ,1=-v x y,则原方程得以简化. 【变式】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩【答案与解析】根据一元二次方程的根与系数的关系,把x 、y 看成是方程211280z z -+=的两根,解方程得:4z =或z=7.∴ 原方程组的解是:1147x y =⎧⎨=⎩或2274x y =⎧⎨=⎩.【总结升华】本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程211280z z -+=的两根,则更容易求解. (1) 对于这种对称性的方程组x y a xy b+=⎧⎨=⎩,利用一元二次方程的根与系数的关系构造方程时,未知数要换成异于x 、y 的字母,如z . (2) 对称形方程组的解也应是对称的,即有解47x y =⎧⎨=⎩,则必有解74x y =⎧⎨=⎩. 9.(2016•黄浦区二模)解方程式:.【答案与解析】解:由②可得,(x+y )(x ﹣5y )=0,即x+y=0或x ﹣5y=0,∴x=﹣y 或x=5y ,当x=﹣y 时,把x=﹣y 代入①,得:2y 2=26, 解得:y=±, 故方程组的解为:或; 当x=5y 时,把x=5y 代入①,得:25y 2+y 2=26,解得:y=±1, 故方程组的解为:或; 综上,该方程组的解为:或或或.【总结升华】本题主要考查解高次方程的能力,解高次方程的根本思想是化归思想,次数较高可通过因式分解再代入等方法降幂求解即可.类型五、应用10.(2016•黄埔区模拟)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.【思路点拨】设甲乙两人原来每小时各加工零件分别为x 个、y 个,根据各加工30个零件甲比乙少用1小时完成任务,改进操作方法之后,乙完成30个零件的时间比甲完成24个零件所用的时间少1小时,列方程组求解.【答案与解析】解:设甲乙两人原来每小时各加工零件分别为x个、y个,由题意得,,解得:.经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.【总结升华】本题考查了二元一次方程组和分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解,注意检验.举一反三:【变式】甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?【答案与解析】解:设乙每小时走x千米,那么甲每小时走(x+1)千米,根据题意,得去分母,整理,得 x2+x-30=0.解这个方程,得 x1=5,x2=-6.经检验,x1=5,x2=-6都是原方程的根.但速度为负数不合题意,所以只取x=5,这时x+1=6.答:甲每小时走6千米,乙每小时走5千米.【总结升华】本题当中要特别注意理解“甲结果比乙早到半小时”这句话,说明乙用的时间长,要在乙的时间上减去12小时,才和甲所用的时间相等.11.k为何值时,方程组.(1)有两组相等的实数解;(2)有两组不相等的实数解;(3)没有实数解.【答案与解析】解:将(2)代入(1),整理得k2x2+(2k-4)x+1=0 (3)(1)当时,方程(3)有两个相等的实数根.即解得:,∴k=1.∴当k=1时,原方程组有两组相等的实数根.(2)当时,方程(3)有两个不相等的实数根.即解得:,∴k<1且k ≠0.∴当k<1且k ≠0时,原方程组有两组不等实根.(3)①若方程(3)是一元二次方程,无解条件是 ,即解得:, ∴k >1.②若方程(3)不是二次方程,则k=0,此时方程(3)为-4x+1=0,它有实数根x=. 综合①和②两种情况可知,当k>1时,原方程组没有实数根.【总结升华】因为在(1)、(2)中已知方程组有两组解,可以确定方程(3)是一元二次方程,但在(3)问中不能确定方程(3)是否是二次方程,所以需要分两种情况讨论.使用判别式“Δ”的前提条件是能确定方程为一元二次方程,不是一元二次方程不能使用Δ.12. 求直角坐标平面内到()()0,15,0,9P Q -的距离都等于15的点的坐标.【答案与解析】解:设满足题意的点为A(x,y),由题意得,2222(15)15(9)15x y x y ⎧+-=⎪⎨++=⎪⎩, 解得,93x y =⎧⎨=⎩或93x y =-⎧⎨=⎩, 经检验,两组都是方程组的解,所以A (9,3)或A (-9,3).答:直角坐标平面内到()()0,15,0,9P Q -的距离都等于15的点的坐标为(9,3)或(-9,3).。
35《函数应用》全章复习与巩固(提高)-巩固练习_《函数应用》全章复习巩固_ 提高 (1)

【巩固练习】1.若函数y=f(x)在区间(-2,2)上的图象是连续不断的曲线,且方程f(x)=0在(-2,2)上仅有一个实数根,则f(-1)·f(1)的值()A.大于0B.小于0C.无法判断D.等于零2.下列给出的四个函数f(x)的图象中能使函数y=f(x)-1没有零点的是()3.方程x 3+3x-3=0的解在区间()A.(0,1)内B.(1,2)内C.(2,3)内D.以上均不对4.已知f(x)、g(x)均为[-1,3]上连续不断的曲线,根据下表能判断方程f(x)=g(x)有实数解的区间是()x -10123f(x)-0.677 3.011 5.432 5.9807.651g(x)-0.530 3.451 4.890 5.241 6.892A .(-1,0)B .(0,1)C .(1,2)D .(2,3)5.若方程0xa x a --=有两个实数解,则a 的取值范围是()A .(1,)+∞B .(0,1)C .(0,2)D .(0,)+∞6.3()21f x x x =--零点的个数为()A .1B .2C .3D .47.若方程310x x -+=在区间(,)(,,1)a b a b Z b a ∈-=且上有一根,则a b +的值为()A .1-B .2-C .3-D .4-8.据报道,青海湖的湖水在最近50年内减少了10%,如果按此规律,设2008年的湖水量为m,从2008起,过x 年后湖水量y 与x 的函数关系式为()A .y=0.950x B .y=(1-0.150x)m C .y=0.950x·m D .y=(1-0.150x )m9.若函数f(x)=x 2-ax-b 的两个零点是2和3,则函数g(x)=bx 2-ax-1的零点是________.10.若一元二次方程f(x)=ax 2+bx +c =0(a>0)的两根x 1、x 2满足m<x 1<n<x 2<p ,则f(m)·f(n)·f(p)________0.(填“>”、“=”或“<”)11.下表列出了一项试验的统计数据,表示将皮球从高h 米处落下,弹跳高度d 与下落高度h 的关系.h(米)5080100150…d(米)25405075…写出一个能表示这种关系的式子为________.12.我国股市中对股票的股份实行涨、跌停制度,即每天的股价最大的涨幅或跌幅均为10%.某股票连续四个交易中日前两日每天涨停,后两日每天跌停,则该股票现在的股价相对于四天前的涨跌情况是________.13.用二分法求方程x 3+3x-5=0的一个近似解(精确度0.1).14.若方程x 2-ax +2=0有且仅有一个根在区间(0,3)内,求a 的取值范围.15.已知函数f (x )=1x +212x -2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).16.某农产品从5月1日起开始上市,通过市场调查,得到该农产品种植成本Q (单位:元/102kg)与上市时间t (时间:天)的数据如下表:时间t 50110250种植成本Q 150108150(1)根据上表数据,从下列函数中选取一个函数描述该农产品种植成本Q 与上市时间t 的变化关系:Q=at +b ,Q =at 2+bt +c ,Q =ab t,Q =a log b t ;(2)利用你选取的函数,求该农产品种植成本最低时的上市时间及最低种植成本.【答案与解析】1.【答案】C【解析】由题意不能断定零点在区间(-1,1)内部还是外部.2.答案C【解析】把y=f(x)的图象向下平移1个单位后,只有C 图中图象与x 轴无交点.3.【答案】A【解析】将函数y 1=x 3和y 2=3-3x 的图象在同一坐标系中画出,可知方程的解在(0,1)内.4.【答案】B【解析】令φ(x)=f(x)-g(x),φ(0)=f(0)-g(0)<0.φ(1)=f(1)-g(1)>0且f(x),g(x)均为[-1,3]上连续不断的曲线,所以φ(x)的图象.在[-1,3]上也连续不断,因此选B .5.【答案】A【解析】作出图象,发现当1a >时,函数xy a =与函数y x a =+有2个交点6.【答案】A【解析】令3221(1)(221)0x x x x x --=-++=,得1x =,就一个实数根7.【答案】C【解析】容易验证区间(,)(2,1)a b =--8.【答案】C【解析】设湖水量每年为上一年的q%,则(q%)50=0.9,所以q%=0.9150,即x 年后湖水量为y=0.950x·m.9.【答案】-12和-13【解析】2和3是方程x 2-ax-b=0的两根,所以a=5,b=-6,∴g(x)=-6x 2-5x-1.令g(x)=0得x 1=-12,x 2=-13.10.【答案】<【解析】∵a>0,∴f(x)的图象开口向上,∴f(m)>0,f(n)<0,f(p)>0,∴f(m)·f(n)·f(p)<0.11.【答案】d=2h 12.【答案】跌了1.99%【解析】(1+10%)2·(1-10%)2=0.9801,而0.9801-1=-0.0199,即跌了1.99%.13.解f(0)=-5,f(1)=-1,f(2)=9,f(3)=31.所以f(x)在区间(1,2)内存在零点x 0.区间中点m f(m)的符号区间长度(1,2) 1.5+1(1,1.5) 1.25+0.5(1,1.25) 1.125-0.25(1.125,1.25) 1.1875+0.125(1.125,1.1875)0.0625∵|1.875-1.125|=0.0625<0.1,∴x 0可取为1.125(不唯一).14.【解析】令f (x )=x 2-ax +2,则方程x 2-ax +2=0有且仅有一个根在区间(0,3)内⇔203280a a ⎧<<⎪⎨⎪∆=-=⎩或f (0)·f (3)<0⇔a 或a >113.15.【解析】由f(x)=0,得21122x x =-+,令11y x =,22122y x =-+,分别画出它们的图象如图,其中抛物线顶点为(0,2),与x 轴交于点(-2,0)、(2,0),y 1与y 2的图象有3个交点,从而函数y=f(x)有3个零点.由f(x)的解析式知x≠0,f(x)的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线,且f(-3)=613>0,f(-2)=21-<0,f ⎪⎭⎫ ⎝⎛21=81>0,f(1)=21-<0,f(2)=21>0,即f (-3)·f (-2)<0,1(2f ·f (1)<0,f (1)·f (2)<0,∴三个零点分别在区间(-3,-2)、1,12⎛⎫⎪⎝⎭、(1,2)内.16.【解析】(1)由表中提供的数据知道,描述该农产品种植成本Q 与上市时间t 的变化关系的函数不可能是常函数,从而用函数Q =at +b ,Q =ab t,Q =a log b t 中的任一个进行描述时都应有a ≠0,而此时上述三个函数均为单调函数,这与表格所提供的数据不符合,所以,应选取二次函数Q =at 2+bt +c (a ≠0,当a=0时,为单调函数)进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到:150250050 10812100110 150********a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩.解上述方程组得a=1200,b=-32,c=4252,所以,描述该农产品种植成本Q与上市时间t的变化关系的函数为Q=1200t2-32t+4252.(2)当t=-3212200-⨯=150(天)时,该农产品种植成本最低为Q=1200×1502-32×150+4252=100(元/102kg).所以,该农产品种植成本最低时的上市时间为150天,最低种植成本为100元/102kg.。
实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.11 实数(全章复习与巩固)(基础篇)(专项练习)一、单选题1.4的算术平方根是( ) A .2±B .2C .2D 22.下列实数是无理数的是( ) A 327-B .13C .3.14159D 63.下列说法不正确的是( ) A .0的平方根是0 B .一个负数的立方根是一个负数 C .﹣8的立方根是﹣2D .8的算术平方根是24.若3m x y -和35n x y 的和是单项式,则()3m n +的平方根是( ) A .8B .8-C .4±D .8±5.估计463 ) A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .32C .23D .87.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .22-2B .2+2C .2D .28.若320a =10b =3c =,则a b c 、、的大小关系为( ) A .a c b <<B .a b c <<C .c<a<bD .c b a <<9.若a 、b 为实数,则下列说法正确的是( )A aB .有理数与无理数的积一定是无理数C .若a 、b 均为无理数,则a b +一定为无理数D .若a 为无理数,且()()220a b ++=,则2b =-10.下面是李华同学做的练习题,他最后的得分是( )姓名 李华 得分______填空题(评分标准,每道题5分) (1)16的平方根是4±(2)立方根等于它本身的数有0和1(3)38-的相反数是2(4)3=3--ππA .5分B .10分C .15分D .20分二、填空题11.16的平方根是___________. 12.计算327________.1321的相反数是__________,3.14π-=____________ 14.若实数a 、b 满足:2a b +,32a b.则()()a b a b +-的值是_____________.15.四个实数2-,023中,最小的实数是______. 16.实数a 在数轴上的位置如图,则|3a =_________.171032(填“>”,“<”或“=”)18.找规律填空:02,262103…,______(第n 个数).三、解答题19.求下列各式中的x : (1) 2481x =(2) ()3227x +=-20.计算(1) 20223113274-+-(2) 223(3)(3)1664---21.已知:9的平方根是3和5x +,y 13 (1) 求x y +的值;(2) 求22x y +的算术平方根.22.如图,长方形ABCD 的长为2cm ,宽为1cm .(1)将长方形ABCD 进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.23.【观察】请你观察下列式子. 第111.第2132+=. 第31353++. 第413574+++=. 第5135795++++. 【发现】根据你的阅读回答下列问题: (1) 写出第7个等式 .(2) 135(21)n +++++= .(3) 利用(241220284452++++++24.阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π2等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料一:479<273<<, ∵1712<. 71的整数部分为1. 7172.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2221>21x =+,可画出如图示意图.由图中面积计算,2211S x x =+⨯⋅+正方形,另一方面由题意知2S =正方形,所以22112x x +⨯⋅+=.略去2x ,得方程212x +=,解得0.5x =2 1.5. 解决问题:(1) 85(2) 5(画出示意图,标明数据,并写出求解过程)参考答案1.C【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根. 解:∵22=4, ∵4的算术平方根是2;故选:C .【点拨】本题考查了求一个数的算术平方根,平方与开平方互为逆运算是求一个正数的算术平方根的关键.2.D【分析】无理数即为无限不循环小数,初中阶段接触的无理数的表现形式主要有:∵开方开不尽的数;∵含有π的数;∵0.010010001...(每两个1之间依次多个0)这样的数;据此解答即可.解:A 3273--,属于整数,不是无理数,不符合题意; B 、13为分数,不是无理数,不符合题意;C 、3.14159为有限小数,不是无理数,不符合题意;D 6 故选:D .【点拨】本题考查了无理数的定义以及求一个数的立方根,熟练掌握初中阶段无理数的主要表现形式是解本题的关键.3.D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案. 解:A 、0的平方根是0,原说法正确,故此选项不符合题意;B 、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C 、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D 、8的算术平方根是2 故选:D .【点拨】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4.D【分析】根据题意可得3m x y -和35n x y 是同类项,从而得到3,1m n ==,再代入,即可求解.解:∵3m x y -和35n x y 的和是单项式, ∵3m x y -和35n x y 是同类项,∵3,1m n ==,∵()()333164m n +=+=, ∵()3m n +的平方根是8±. 故选:D .【点拨】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到3m x y -和35n x y 是同类项是解题的关键.5.C【分析】先把46332“夹逼法”即可求解. 解:463232== ∵253236<<, ∵5326<<, 故选:C【点拨】本题考查了无理数的估值问题,“夹逼法”的应用是解题的关键. 6.A解:由题中所给的程序可知:把64取算术平方根,结果为8, ∵8是有理数, ∵8 ∵y 82 故选A . 7.A2,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.解:∵矩形内有两个相邻的正方形面积分别为 4 和 2, ∵2,2,∵阴影部分的面积(22224222=⨯--=. 故选A .【点拨】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.8.C10320的值的范围,再进行比较即可得出答案. 解:82027<<, 32203∴<<,3104<<,320310<故选:A .【点拨】本题考查了实数大小比较,估算无理数的大小,熟练掌握估算无理数的大小是解题的关键.9.D【分析】A a B 、有理数与无理数的积不一定是无理数,举例说明; C 、a 、b 均为无理数,a b +不一定还是无理数,举例说明;D 、利用两数相乘积为0,两因式中至少有一个为0求出b 的值,即可做出判断. 解:A a 42=,错误;B 、有理数与无理数的积不一定是无理数,例如:020,错误;C 、a 、b 均为无理数,a b +不一定还是无理数,,例如:220-=,错误;D 、若a 为无理数,且()()220a b ++=,得到20a +≠,20b +=,解得:2b =-,正确,故选:D .【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 10.B【分析】直接利用平方根、立方根、绝对值、相反数的性质分别判断得出答案. 解:(1164=的平方根是2±,故此选项错误;(2)立方根等于它本身的数有0和1、 1-,故此选项错误;(3382--的相反数是2,故此选项正确;(4)()3=3=3----πππ,故此选项正确. 李华最后得分为10分, 故选:B .【点拨】此题主要考查了实数的性质,绝对值的性质,平方根和立方根概念,正确化简各数是解题关键.11.4±【分析】根据平方根的定义即可求解. 解:即:16的平方根是16=4± 故填:4±【点拨】此题主要考查平方根,解题的关键是熟知平方根的定义. 12.-3【分析】根据立方根的性质计算即可. 解:327--3, 故答案为:-3.【点拨】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.13. 12- 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.14.32【分析】根据算术平方根和立方根的性质得到a +b =4,a -b =8,进而直接代入求解即可.解:∵实数a 、b 2a b +=32a b ,∵a +b =4,a -b =8, ∵()()a b a b +-=4×8=32, 故答案为:32.【点拨】本题考查了算式平方根、立方根、代数式求值,理解算式平方根和立方根的性质是解答的关键.15.-2【分析】根据实数大小比较的方法解答即可. 解:∵2-2<3, ∵最小的实数是-2 故答案为:-2.【点拨】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.163a【分析】根据数轴上点的位置判断出3a 利用绝对值的代数意义化简即可得到结果.解:∵a <0,∵30a <,则原式3a , 3a 17.>103>,进而即可求解. 解:∵109>, 103>, 1032>, 故答案为:>.10 18()21n -【分析】除第一个数外,其他数变成二次根式后,根号下面的数都是2的倍数,第二个数为2的1倍,第三个数为2的2倍,依此类推,第n 个数为2的()1n -倍,从而得出答案.解:由题意得:由题意得: 第一项:00200==⨯=; 2212⨯ 第三项:24224=⨯= 6236=⨯……第n ()()2121n n ⨯-=-()21n -【点拨】本题考查了算术平方根,解题的关键是发现题目中数据的变化规律,要熟练掌握.19.(1)92x =± (2)5x =-【分析】(1)利用平方根解方程即可;(2)利用立方根解方程.(1)解:2481x =,∵2814x =, ∵81942x =±=±; (2)解:()3227x +=-,∵3227x +=-23x,解得:5x =-.【点拨】本题考查开方法解方程.熟练掌握平方根和立方根的定义,是解题的关键. 20.33 (2)8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+++33;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.21.(1)5- 73【分析】(1)先根据平方根的意义可得350x ++=,从而求出x 的值,13值的范围,从而求出y 的值,然后代入式子中进行计算即可解答;(2)把x ,y 的值代入式子中求出22xy +的值,然后再利用算术平方根的意义,进行计算即可解答.(1)解:9的平方根是3和5x +, 350x ∴++=,解得:8x =-,91316<<,3134∴<<,y 133y ∴=,835x y ∴+=-+=-,x y ∴+的值为5-;(2)当8x =-,3y =时,2222(8)364973x y +=-+=+=,22x y ∴+73【点拨】本题考查了估算无理数的大小,平方根,熟练掌握估算无理数的大小是解题的关键.22.(1)分割方法不唯一,如图,见分析;(22cm .【分析】(1)根据AB=2AD ,可找到CD 的中点,即可分成两个正方形,再沿对角线分割一次,即可补全成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据面积相等得到方程,即可求解.解:(1)如图,∵AB=2AD ,找到CD,AB 的中点,如图所示,可把矩形分割成4个等腰直角三角形,再拼成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,∵2x2cm .【点拨】此题主要考查实数性质的应用,解题的关键是根据图形的特点进行分割. 23.135791113++++++7 (2)n +1(3)14 【分析】(1)根据规律直接写出式子即可;(2135(21)n +++++n +1个式子,根据规律即可得; (3)41220283644524(1357891113)+++++++++++++利用规律即可得.(1)解:根据材料可知,第七个式子的被开方数为1+3+5+7+9+11+13, ∵第7135711137+++++,135711137+++++=; (2(21)1135(21)12n n n +++++++=+,故答案为:1n +;(3)解:根据(2)中的规律知, 11341220283644524(1357891113)4142++++++++++++++=. 【点拨】本题考查了数字变化规律类,解题的关键是掌握是式子的规律.24.859 (2)2.25【分析】(1)根据材料一中的方法求解即可;(2)利用材料二中的方法画出图形,写出过程即可.(1)解:8185100<98510<<,859. 85859.(2)解:我们知道面积是5552>,52x =+,可画出如图示意图.由图中面积计算,2224S x x =+⨯+正方形,另一方面由题意知5S =正方形,所以2445x x ++=.略去2x ,得方程410x -=,解得0.25x =5 2.25.【点拨】本题考查了无理数的估算,解题关键是准确理解题目给出的方法,熟练进行计算.。
专题1第一章集合与函数的概念知识点与基础巩固题(原卷版)高一数学复习巩固练习(人教A版)

专题1人教A 版集合与函数的概念知识点与基础巩固题——寒假作业1(原卷版)集合部分考点一:集合的定义及其关系 基础知识复习 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.考点二:集合的基本运算 基础知识复习1.交集的定义:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A ∩B(读作”A 交B ”),即A ∩B={x|x ∈A ,且x ∈B}.2、并集的定义:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集。
记作:A ∪B(读作”A 并B ”),即A ∪B={x|x ∈A ,或x ∈B}.3、交集与并集的性质:A ∩A = A ,A ∩φ= φ, A ∩B = B ∩A ,A ∪A = A ,A ∪φ= A , A ∪B = B ∪A.4、全集与补集(1)全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U 来表示。
(2)补集:设S 是一个集合,A 是S 的一个子集(即A ⊆S ),由S 中 所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集)。
浙教版初一上册数学实数全章复习与巩固(基础)重点题型巩固练习

浙教版七年级上册初中数学知识点梳理及重点题型巩固练习【巩固练习】一.选择题1. 下列说法正确的是( )A .数轴上任一点表示唯一的有理数B .数轴上任一点表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间都有无数个点2.(2015•日照)的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( )A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2bD .若3a >3b ,则2a >2b 4. 3387=-a ,则a 的值是( ) A. 87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( ) A.3a 中的a 可以是正数、负数或零. B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个.7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( )A.0>+b aB. 0ab >C.0a b ->D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间二.填空题9. a ,则其小数部分用a 表示为 .10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 .14.(2015春•罗山县期末)﹣64的立方根与的平方根之和是 .15. 1- ,-22 , 33 16. 数轴上离原点距离是5的点表示的数是 .三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18.(2015春•桃园县校级期末)已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y2的平方根. 19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题. 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】一.选择题1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数.2. 【答案】C3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b .4. 【答案】B ;【解析】==. 5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根.7. 【答案】C ;8. 【答案】B ;【解析】45<<,627<<.二.填空题9. a ;10.【答案】为任意实数 ;【解析】任何实数都有立方根.11.【答案】25.0-;【解析】0.25==-.12.【答案】3;【解析】x -12=15, x =3=.13.【答案】7± ;【解析】 3343=7,7的平方根是7±. 14.【答案】﹣2或﹣6.【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=-20.【解析】解:∵11<10+3<12∴x =11,y =10+3-111∴()11112x y y x --=-=-=.。
人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】实数全章复习与巩固(基础)责编:康红梅【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】【:389318 实数复习,知识要点】 类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固练习】
一.选择题
1. 下列说法正确的是( )
A .数轴上任一点表示唯一的有理数
B .数轴上任一点表示唯一的无理数
C .两个无理数之和一定是无理数
D .数轴上任意两点之间都有无数个点
2.(2015•日照)的算术平方根是( )
A .2
B .±2
C .
D .±
3.已知a 、b 是实数,下列命题结论正确的是( )
A .若a >b ,则2a >2b
B .若a >|b |,则2a >2b
C .若|a |>b ,则2a >2b
D .若3a >3b ,则2a >2b 4. 3387=-a ,则a 的值是( ) A. 87 B. 87- C. 8
7± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ).
A.21≥x
B. 1≤x
C.12
1≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( ) A.3a 中的a 可以是正数、负数或零. B.a 中的a 不可能是负数.
C. 数a 的平方根有两个.
D.数a 的立方根有一个.
7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( )
A.0>+b a
B. 0ab >
C.0a b ->
D.||||0a b ->
8. 估算219+的值在 ( )
A. 5和6之间
B.6和7之间
C.7和8之间
D.8和9之间
二.填空题
9. 2005a ,则其小数部分用a 表示为 .
10.当x 92x -.
11. =--32
)125.0( .
12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 12234-⎛⎫ ⎪⎝⎭
=_________ .
14.(2015春•罗山县期末)﹣64的立方根与
的平方根之和是 . 15. 比较大小:2
1 12- ,5- 22- , 33
2 16. 数轴上离原点距离是5的点表示的数是 .
三.解答题
17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?
18.(2015春•桃园县校级期末)已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根.
19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-
20. 阅读题:阅读下面的文字,解答问题.
大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.
请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.
【答案与解析】
一.选择题
1. 【答案】D ;
【解析】数轴上任一点都表示唯一的实数.
2.【答案】C
3. 【答案】B ;
【解析】B 答案表明,||||a b a b >>且,故2a >2b .
4. 【答案】B ;
【解析】33378a a ⎛⎫-=
-=-- ⎪⎝⎭
. 5. 【答案】A ;
6. 【答案】C ;
【解析】数a 不确定正负,负数没有平方根.
7. 【答案】C ;
8. 【答案】B ;
【解析】4195<<,61927<+<.
二.填空题
9. 【答案】2005a -;
10.【答案】为任意实数 ;
【解析】任何实数都有奇次方根.
11.【答案】25.0-;
【解析】2333(0.125)(0.25)0.25--=--=-.
12.【答案】3;
【解析】x -12=15, x =27,3273=.
13.【答案】2
32-;
【解析】 12
2
233
42--⎛⎫= ⎪⎝⎭. 14.【答案】﹣2或﹣6.
【解析】∵﹣64的立方根是﹣4,
=4,
∵4的平方根是±2,
∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6, ∴﹣64的立方根与的平方根之和是﹣2或﹣6.
15.【答案】>;<;>;
16.【答案】5
【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.
三.解答题
17.【解析】
解:∵一个正数x 的平方根是32-a 与a -5,
∴32-a 与a -5互为相反数,
即32-a +a -5=0,解得2a =-.
18.【解析】
解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,
∴x ﹣2=22,2x+y+7=27,
解得x=6,y=8,
∴x 2+y 2=62+82=100,
∴x 2+y 2的平方根是±10.
19.【解析】
解:∵b <a <0
∴()2
b a b a ++-
()
||
2a b a b a b a b b
=-++=--+=-
20.【解析】
解:∵11<10+3<12
∴x =11,y =10+3-11
1
∴
(
)11112x y y x --=-=-=.。