空调系统冷冻水循环水泵的节能设计方法

合集下载

空调系统水泵变频运行的节能分析

空调系统水泵变频运行的节能分析

Q/Q1= /n】;H/H1=( /n】) ;N/N1=( /n】)30由于流 量与 小,则降低频率,减慢水泵转速。控制原理如图 2所示 。
转速成正 比 ,因此 当调节流量 时可 以通过 调节转 速来进行 。 由电
温度传感器
磁学原理 三相异步电动机的转速与供 电电源的频率 有如下关系 : =60f(1 S)/P。
6O%。空调负荷主要 来 自围护结 构传 热 和新 风 负荷 ,是 随 室外 相似理论 ,水泵的 Q— H 性能 曲线将平行 下移 到曲线 n2,n2和设
气象条件 的变化 而变化 。空调 系统设 计通 常 是根据 空调 的最 大 计工况时 的管路特性 曲线 R 的交点 3为调速调节 时水泵的工况 负荷 设计 的 ,且 空调水 系统 流量不 变 ,即按 定流量设 计 。而 在整 点 ,相 应的流量和水泵 的扬程 为 Q2和 H3。由于水 泵的流量 与转
耗的 4O%-60%。文献 [1]表 明 ,大型 中央空调 系统 中冷冻 、冷 用变 频调速时 ,保持 阀门的 开度 不变 ,也 就是管 路 的水利特 性 曲
却水泵 的耗 电量 占整 个 系统 电量 的 30%左 右 ,冷水 机 组 约 占 线不变 ,通过改变水泵 的转速 达到调节 流量的 目的。根 据水泵 的
个空调季节的大部分时间,用户冷负荷都偏离设计状态,为保证 速成正比,而水泵的输入功率与转速成立方关系。当水泵流量为
空调质量 ,必须根据室外气象 条件 的变化而 对空调 系统 的冷 冻水 原来 的 7O%时 ,水 泵消耗功率仅为原来 的 34.3%,节约 65.7%。 供回水温度和循环水量进行调节 ,使用户末 端空调设 备放 出 的冷 故使用水泵变频技术 ,节能效果显 著 。
量与用户负荷 的变化相适应 ,避免 出现 室温过 高或过低 。空调系

冷冻水列间空调解决方案

冷冻水列间空调解决方案

冷冻水列间空调解决方案概述冷冻水列间空调是一种广泛应用于建筑物中的空调系统,它采用冷冻水作为传热介质,通过冷冻水管道将冷水和热水分别传输到不同的列间,从而实现空调的供暖和降温功能。

本文将介绍冷冻水列间空调的基本原理、优势和应用场景,并提供一些解决方案供参考。

基本原理冷冻水列间空调系统基于冷冻水的传热原理,通过水泵将冷水和热水分别送入不同的列间。

在降温模式下,冷水通过冷水管道流入列间,吸收室内热量后变热,再通过冷冻水机组冷却后再次循环。

而在供暖模式下,热水通过热水管道流入列间,释放热量后变冷,再通过热泵机组加热后再次循环。

通过这种方式,冷冻水列间空调可以实现整个建筑的供暖和降温。

优势相比其他空调系统,冷冻水列间空调具有以下优势:1.节能高效:冷冻水列间空调采用水作为传热介质,传热效率高,能耗较低,节能效果明显。

2.温度控制精度高:冷冻水列间空调系统可以根据实际需求精确控制室内温度,在不同季节和环境变化下保持舒适的温度。

3.系统稳定可靠:冷冻水列间空调系统采用模块化设计,各部件互相独立,故障不会影响整个系统的运行,提供了更高的可靠性和稳定性。

4.设计灵活性强:冷冻水列间空调系统可以根据建筑的不同需求进行灵活设计,包括风管的布局、水管的选择等,能够满足各类建筑的需求。

应用场景冷冻水列间空调适用于以下场景:1.商业办公楼:商业办公楼大多需要满足大面积的供暖和降温需求,冷冻水列间空调可以提供高效、稳定的空调效果,满足办公环境的舒适性需求。

2.酒店:酒店有较高的供暖和降温需求,冷冻水列间空调可以通过调节冷水和热水的供给来满足客房的舒适性需求。

3.医院:医院需要保持稳定的温度和湿度,冷冻水列间空调可以提供高精度的温度和湿度控制,满足医院各区域的需求。

解决方案冷冻水列间空调的解决方案可以根据具体需求和建筑特点进行灵活设计。

以下是一些常见的解决方案:1.单冷冻水系统:适用于较小的空间,仅需使用冷水进行降温的空调系统。

水泵节能控制方案

水泵节能控制方案

10
KMS-HB
中央空调调速节能原理
1)由于目前冷却水循环泵为工频满负荷运转,在制 冷周期的前期和后期,环境温度较低,冷却水回水温度 较低,会造成溴化锂结晶,导致空调机组效率降低,甚 至保护。采用变频恒温差控制后,回水温度得到有效控 制,将大大提高空调机组的效率,达到节能目地。 2)由于冷冻水循环泵也在工频满负荷运转,而不能 根据室内温度的要求自动调节流量,而通过变频改造后 冷冻泵能根据室外温度及室内温度要求能自动调节流量, 提高效率,达到节能目地。
15
KMS-HB
Байду номын сангаас
14
KMS-HB
〔2〕制热模式下冷冻水泵系统的闭环控制 该模式是在中中央空调中热泵运行(即制热)时冷冻水 泵系统的控制方案。同制冷模式控制方案一样,在保证 最末端设备冷冻水流量供给的情况下,确定一个冷冻泵 变频器工作的最小工作频率,将其设定为下限频率并锁 定,变频冷冻水泵的频率调节是通过安装在冷冻水系统 回水主管上的温度传感器检测冷冻水回水温度,再经由 温度控制器设定的温度来控制变频器的频率增减。不同 的是:冷冻回水温度小于设定温度时频率无极上调,当 温度传感检测到的冷冻水回水温越高,变频器的输出频 率越低。
3
KMS-HB
能源工业是国民经济的基础产业,也是技 术密集型产业。目前,我国能源生产量和消 费量己居世界前列,但在能源供给和利用方 式上存在一系列突出问题,如能源结构不合 理,能源利用效率低,可再生能源开发利用 率低等。 安全、高效、低碳是当今世界发展的主题, 我们每个人身上都有义务和责任。
4
KMS-HB
13
KMS-HB
冷冻水泵系统的闭环控制
〔1〕制冷模式下冷冻水泵系统的闭环控制 该方案在保证最末端设备冷冻水流量供给的情况下,确 定一个冷冻泵变频器工作的最小工作频率,将其设定为 下限频率并锁定,变频冷冻水泵的频率调节是通过安装 在冷冻水系统回水主管上的温度传感器检测冷冻水回水 温度,再经由温度控制器设定的温度来控制变频器的频 率增减,控制方式是:冷冻回水温度大于设定温度时频 率无极上调。

水冷式中央空调的节能措施

水冷式中央空调的节能措施

水冷式中央空调的节能措施摘要:近年来随着社会经济的持续快速发展,我国建筑行业呈现出蓬勃发展的态势。

各类建筑中,中央空调系统的应用日益普及,由此造成的能源消耗已成为影响国家能源战略的重要方面。

文章根据实际经验,对中央空调能耗进行了分析,并对中央空调节能措施以及空调施工中的注意点提出了一些看法。

标签:中央空调;建筑节能;耗能;措施一、中央空调能耗分析(一)水冷式中央空调系统中能耗最大的设备属冷水机组,冷水机组按照压缩机的类型分为:往复式(也称活塞式)机组、螺杆式机组和离心式机组,其动力能源为电能和热能,按照其额定制冷量和制冷效率,一般的额定输入功率从100KW到1000KW。

冷水机组的目的是生产低温(7°C)的冷冻水,所以供水温度的高低直接影响机组的负荷。

而末端空气处理机起动的多少也会影响冷冻水的回水温度,回水温度越高,机组负荷越大。

(二)冷冻水循环泵(简称冷冻泵)主要提供冷冻水循环的动力,其输入功率一般从11KW到132KW,传统的设计冷冻泵为定量泵,输出功率恒定不变;冷却水循环泵(简称冷却泵)主要提供冷却水循环的动力,其输入功率一般从11KW到132KW,传统的设计冷却泵为定量泵,输出功率恒定不变。

(三)冷却塔风机主要为冷却水降温提供风力,其输入功率一般从3KW到15KW,传统的设计冷却塔风机为恒速风机,输出功率恒定不变。

(四)空气处理机是进行室内空气温度调节的末端设备,其中风机提供了室内空气循环所需要的动力,通常采用恒速定风量风机,额定功率从0.5KW到15KW,但数量较多。

(五)中央空调的设计往往是按照当地的气象资料和建筑物的特点而设计的,并考虑到最大能量需求,还要预留10%至20%的设计余量,所以主机、水泵、风机都有很大的余量。

(六)由于季节的轮转和时间的变化,中央空调全年以最大功率运行的时间很短,一般不足1%,所以大量恒速电机存在很大的节能潜力。

(七)用户的维护意识淡薄也是造成中央空调效率降低的原因之一。

中央空调智能节能控制系统设计与实现

中央空调智能节能控制系统设计与实现

中央空调智能节能控制系统设计与实现摘要:空调能耗正成为广大暖通设计者关注和研究的重要课题,本文分析了影响空调系统能源消耗的关键因素,并从系统的选择、设备的选配及系统的运行管理等方面提出了切实可行的空调节能方案,对空调系统的设计及运行管理中的节能具有一定参考价值。

关键词:中央空调;系统;设计;节能1.中央空调系统的构成1.1冷冻机组这是中央空调的“制冷源”,通往各个房间的循环水由冷冻机组进行“内部热交换”,降温为“冷冻水”。

1.2冷冻水循环系统由冷冻泵及冷冻水管道组成。

从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各房间内进行热交换,带走房间热量,使房间内的温度下降。

从冷冻机组流出、进入房间的冷冻水简称为“出水”,流经所有的房间后回到冷冻机组的冷冻水简称为“回水”。

1.3冷却水循环系统由冷冻泵、冷却水管道及冷却塔组成。

冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量。

该热量被冷却水吸收,使冷却水温度升高。

冷却泵将升了温的冷却水压人冷却塔,使之在冷却塔与大气进行热交换,然后在将降了温的冷却水,送回到冷却机组。

如此不断循环,带走了冷冻机组释放的热量。

流进冷冻机组的冷却水简称为“进水”,从冷冻机组流回冷却塔的冷却水简称为“回水”。

1.4冷却风机冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。

可以看出,中央空调系统是工作过程室一个不断地进行热交换的能量转换过程。

在这里,冷冻水和冷却水循环系统是能量的主要传递者。

冷却水温度过高、过低都会影响冷冻机组使用寿命,因为温度过低影响机组润滑,但温度过高将导致制冷剂高压过高。

因此,对冷却风机的控制便是中央空调控制系统的重要组成部份。

变频控制冷却风机的转速使冷却水出水温度保持在28~30℃之间,既节能又延长冷冻机组使用寿命。

!中央空调系统的组成和控制思想中央空调与家用独立空调的温度传递方式不同:家用独立空调直接吹风到散热器上获得冷风或者热风。

中央空调工程制冷及空调节能技术措施

中央空调工程制冷及空调节能技术措施

中央空调工程制冷及空调节能技术措施变频技术中央空调工程能源中心的冷冻水系统采用二次泵形式,二次泵为变流量,根据二次侧末端负荷的变化,在满足某一最不利水环路所需使用压力的条件下,通过改变二次水泵电机的运转频率或水泵的运行台数,以达到节能目的。

各场馆的用户侧水系统均采用变流量水系统,可根据负荷变化变频调节水泵流量和扬程,以达到最大节能运行。

热回收技术中央空调工程采用热回收技术,利用排风对新风进行预热(或预冷),节能空调通风工程的能耗。

水蓄冷技术中央空调工程采用水蓄冷的集中能源中心方式,总蓄冷能力为25500RT.H.蓄冷可起到“削峰填谷”的作用,缓解用电紧张,提高能源利用效率,减少装机容量。

充分利用峰谷电价,节省运行费用。

蓄冷水罐共2个,蓄冷水罐单个有效容积为4500立方米,蓄冷能力为12750RT.H.经测算,水蓄冷运行费比常常规制冷可节约203.45万元/年。

大温差水系统,水系统采用大温差9℃,减小循环水泵装机容量,降低暖通空调工程运行费用。

新风利用中央空调工程过渡季节尽量利用新风,可进行全新风运行,减少空调通风工程的运行。

冬季内区的消除余热,可采用室外免费能源-新风,减少能源的浪费。

分层空调和置换通风中央空调工程在大空间采用分层空调和置换通风工程,尽量减少无效空间区域的能量消耗,只满中有效区域的舒适度。

我们采用CFD的方法,对大空间的暖通空调工程气流组织进行了分析,得到了很好的验证。

如游泳馆暖通空调工程比赛区空间温度可以被控制于28℃到29℃之间,室内的温度分层非常明显,屋顶最高点温度却达到40℃以上。

分层空调和置换通风中央空调工程采用地板辐射采暖加周边散热器采暖,增加人员活动区的热舒适,减少顶部空间的耗能。

冷(热)计量中央空调工程对用户侧和总用冷(热)量,进行冷(热)量计量。

提高节能意识,减少无效冷(热)量损失,便于用冷(热)量收费和管理。

中央空调节能控制系统所有中央空调工程设备采用中央自动控制技术,根据设定的温度控制、湿度控制、压差控制、流量控制来使设备达到最佳的匹配运行效果,使设备在最高效区域运行,以利于能源的综合利用,最大化地实现节能。

空调制冷系统的节能措施

空调制冷系统的节能措施

空调制冷系统的节能措施1.合理选定制冷机的性能系数仅从节能的角度看,制冷机的性能系数愈大愈好,也就是制冷机的工作循环愈接近理想的卡诺循环,性能系数愈高。

若设计仅以此为优化的目标,则将导致热交换设备增大增多,但这在实际上经济效益是不好的,也是不可行的。

因此,在选用制冷机时应考虑一次性投资和经常运行费用的综合分析,一般来说,性能系数高的设备一次性投资大,运行费用低。

通常对一年内长期运行的制冷系统,由于经常费用大,对节能要求较高,应选用较高性能系数的设备。

反之,运行时间短的制冷系统在节能要求上可略低些。

总之要由具体的技术经济比较优化确定我国《旅游旅馆设计节能标准》规定的性能系数见表1。

2.合理确定空调制冷系统的设计参数冷冻水供水温度和温差、冷却水供水温度和温差对能耗产生直接影响。

提高蒸发温度或降低冷凝温度都可以提高制冷系数,但要减少二者供、回水之间的温差,因而增加蒸发器和冷凝器的面积。

对于一年内运行时间较长的制冷系统,宜取较小的温差;反之,在年内运行时间较短的制冷系统,宜取较高温差。

3.制冷机型号、台数、容量选择和其他影响(1)如前文所述,各种型号的制冷机组,均有与之相适应的制冷负荷、供冷参数和不同的使用条件。

因此,应根据具体情况(如供电、供热、余热利用等情况),选择相应型号的制冷机组。

(2)通常制冷机组在部分负荷情况下效率较低,应根据负荷变化的特点,选用两台或多台制冷机,使之在效率较高的负荷工作区域内运行。

制冷机的容量应与负荷相匹配,根据负荷曲线变化情况,可选择一种或两种以上容量的制冷机组。

(3)合理选择水冷式或风冷式冷水机组。

近几年来,国内外已有多种风冷式冷水机组的系列产品应用在空调工程中。

一般风冷式冷水机组耗电量较高,主机费用较高,但在一些严重缺水地区,在一些不宜装设冷却塔的建筑群,以及对环境噪声有较高要求的用户,则有其优越的条件。

尤其在一些气候条件合适的地区,选用夏季供冷,冬季供热的风冷式冷热水机组有明显的经济效益。

某大厦中央空调制冷站节能改造措施方案

某大厦中央空调制冷站节能改造措施方案

某大厦中央空调制冷站节能改造措施方案1、某大厦中央空调系统制冷站介绍作为空调系统的冷源部分,中央空调系统制冷站是用于提供空调制冷效果的核心设备,主要由制冷机组、冷却水泵、冷冻水泵和冷却塔等设备组成。

中央空调系统运行过程中,首先通过压缩机将制冷剂的低压气体压缩为高压气体,进入冷凝器中换热,此时制冷剂的高压液态经过节流装置调整为低压低温液态进入蒸发器,该过程是完成制冷的关键步骤。

同时,高温冷冻回水经冷冻水泵被送入蒸发器盘管,使之与低温低压制冷剂进行热交换,变成低温冷冻水,并通过冷冻水泵作用将其送至各风机盘管,由冷却盘管吸收热量,降低空气温度,最后通过风机向功能间送风,完成循环制冷过程。

通过以上循环过程,中央空调系统制冷站可以将热气体转化成冷气体,以达到调节室内温度的目的。

1.1 设备使用现状某大厦的中央空调机房位于负一层,配备了 2 台定频螺杆式冷水机组、3台冷冻水泵(2用1备)、3台冷却水泵(2用1备)和2台横流冷却塔。

其中,空调冷冻水管系统采用一次泵变流量系统,冷却水系统为变流量并联式系统,冷却塔位于大厦的设备层。

目前,该系统存在以下使用问题:第一,冷水机组于2007年12月投入使用,运行时间过长,制冷效果较差,使用的冷媒为已被国家列入淘汰的冷媒 R22,具有产量少、价格高的缺点。

第二,原空调冷冻水管系统采用一次泵变流量系统,其冷却水系统为变流量并联式系统。

原有的冷冻泵和冷却水泵配置的流量比冷水机组要求的小,加上管网的水阻力大,导致实际运行 1 台冷水机组需要运行2台冷冻水泵和2台冷却水泵,增加了系统的运行能耗。

水泵电机为国家要求淘汰的Y2系列型号。

第三,针对位于设备层的 2 台侧出风的横流冷却塔,每台冷却塔由2台水量为150 m3/h的冷却塔组成,总电机功率为5.5×2 kW。

现场勘查发现电机已锈蚀严重,换热填充剂老化,部分补水管也已锈蚀,导致系统能效降低,运行成本增加,不利于建筑的绿色环保运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空调系统冷冻水循环水泵的节能设计方法(中国矿业大学力学与建筑工程学院建环11-2班郭浩)摘要:建筑空调系统的运行负荷仅为设计负荷的 50%~70%左右,而冷冻水泵作为空调系统中最主要的耗能设备,在整个系统运行过程中存在相当大的节能改造空间。

本文从空调系统的节能重要性以及重点阐述的冷冻水循环水泵的节能,分析了空调系统的运行工况,从运行工况中得出空调能耗的原因,从冷冻水泵的单台、多台串并联的运行情况进行水泵选型,并从冷冻水一次泵变频节能和二次泵变流量两个方面对冷冻水循环水泵的节能坐车进一步阐述。

对水泵的选型方法作一定了解。

关键词:冷冻水泵节能优化水泵选型一次泵二次泵1 课题研究的意义中国是一个能源生产和消费大国。

近年来节能减排已成为国家生活乃至全社会关注的焦点,也是能源可持续发展的必由之路。

我国建筑能耗也已迅速上升到社会总能耗的33%以上。

空调系统、照明系统、动力系统构成了现代建筑的三大重要“器官”。

暖通空调已占到总建筑能耗的 50%~60%。

在空调系统中,主要能耗设备有冷水机组、水泵、末端设备等,其中空调水泵的能耗大约占冷水机组能耗的13%左右。

空调负荷是随气象因素等条件的变化而变化的,因此空调系统在大部分时间内工作于部分负荷状态。

建筑空调系统的运行负荷仅为设计负荷的 50%~70%左右,而冷冻水泵作为空调系统中最主要的耗能设备,在整个系统运行过程中存在相当大的节能改造空间。

本文主要就空调系统中冷冻水循环水泵的节能设计进行探讨,从冷冻水循环水泵的运行工况、水泵组合方式、水泵选型以及冷冻水一次泵、二次泵的节能设计角度进行分析。

2 冷冻水系统耗能分析中央空调系统包括了“末端风系统”、“输配系统”、“冷水机组”,具有“多输入、多输出、强耦合”等特点。

无论是冷水机组、冷冻水泵,又或者末端、阀门的控制策略的变化,均有可能导致冷冻水系统、甚至是冷水机组运行工况发生波动。

图2.1空调系统运行示意图从上图可以看出,冷冻水作为流动“能质”,在冷冻水输配系统中可视为从冷水机组出发后为起点,经过冷冻水泵、阀门、末端后,回到冷水机组蒸发器,此为一个循环。

冷水机组同时作为“能质”流动的起点和终点。

空调冷水机组主要包括了以下四部分:蒸发器,冷凝器、压缩机以及气液换热器,其中冷冻水作为“能质”流经蒸发器与制冷剂进行热交换;压缩机为冷水机组的中枢元件,通过制冷剂工况的变化,在蒸发器和冷凝器之间传递热量;冷凝器则将热量传递给冷却水。

冷冻水系统作为一个内部相互关联,与冷水机组也存在关联的系统,作为“能质”的冷冻水,由于其流量的变化必然对其他部件的能效产生影响。

但具体的影响是大还是小,在本章中通过理论分析,可出以下结论:1) 在冷水机组不能做到变流量运行的时候,冷冻水系统的变流量运行,尤其是一次冷冻水泵系统的变流量运行是不可行的。

然而,随着冷水机组工艺的发展,冷水系统的变流量运行,不会对冷水机组产生安全方面的隐患。

但流量的变化对冷水机组的蒸发器的传热量以及传热系数影响不大;但对冷水机组的蒸发温度以及 COP 的影响较大。

因此,冷冻水流量的改变,与主机具有相关性。

在进行冷冻水泵节能改造的节能量认定需要将冷水机组划分在边界内。

2) 由于对冷冻水泵的节能改造导致的冷冻水流量的改变,对末端的传热系数变化较小,更不会影响空调末端的能耗值。

冷冻水泵与空调末端没有相关性。

3) 在空调系统的运行过程中,阀门调节不可避免,更无法预计。

阀门的变化以及空调末端的启停以及电动二通阀的改变,均会一定程度上改变管网的特性曲线。

因此,在进行冷冻水泵改变流量后的能耗计算中,采用相似律进行分析,是不合理的,应该尽量避免。

通过本章的研究,可以明确冷冻水泵的节能改造,尤其是变频改造,对冷水机组的 COP 的影响非常大,因此,冷冻水泵与冷水机组具有明显的相关性;相反,与空调末端并没有较大的相关性,可不加以考虑。

同时,对阀门的研究讨论得出,由于阀门的变化,导致空调冷冻水管网曲线是不断变动,且不可预见的。

3冷冻水泵节能优化3.1三种控制方式冷冻水泵的运行控制策略包括了台数控制、变频控制、台数控制结合变频控制三种,分别如下:(1)台数控制:若空调系统有多台冷冻水泵,且均定频运行。

当冷冻水进水温度高于设定上限值时,增开一台冷冻水泵;当冷冻水进水温度低于设定下限值时,关闭一台冷冻水泵。

(2)变频控制:若冷冻水泵为变频水泵,当冷冻水进水温度低于设定进水温度下限值时,冷冻水泵变频运行,通过改变冷冻水泵的电机频率,进而改变冷冻水流量。

(3)台数和变频控制:当系统存在多台冷冻水泵,且均安装有变频装置。

则变频运行为优先,根据冷冻水的进水温度,调节冷冻水泵频率。

若冷冻水泵的输入频率值达到变频器设定频率值下限时,冷冻水泵的进水温度仍然无法满足冷冻水进水温度下限,则关闭一台冷冻水泵;若冷冻水泵的输入频率值达到工频时,冷冻水泵的进水温度仍然无法高于冷却水进水温度上限,则增开一台冷冻水泵。

3.2 节能优化冷冻水泵的节能改造措施,主要有更换小流量高效率的定频水泵,或者对水泵叶轮进行切削处理以降低流量;或者对单台水泵加装变频器;如果空调系统存在多台水泵并联运行,还需要进行泵组的优化等等。

针对这些节能改造措施,注意分析其运行工况的变化以及对冷冻水系统的影响。

首先,节能改造的首要目的是改变了管网的流量,一定程度上解决了“大流量小温差”的现象。

但要注意的是,节能改造后如果仅仅更换小流量高效率的定频水泵,或者对水泵叶轮进行切削处理无法解决建筑实际负荷在不停波动的状况。

因此,该措施只能针对建筑负荷波动比较小的情况。

对冷冻水系统的影响还有一个重要方面就是减小了冷冻水泵的运行能耗,但其节能率有限。

其次,进行变频改造,则主要解决的时候建筑长期处于部分负荷的情况,根据建筑的实际负荷,基于变频器的控制机理,调节冷冻水泵的叶轮转速,以达到改变流量的目的。

不同的控制机理,其节能率是不一样的,就原理来讲,采用温度控制的节能率最大;采用定压差控制,其节能率最低。

在实际中,有很多建筑存在着冷冻水泵并联运行的情况,泵组的优化需要考虑对泵组中某一台或者几台水泵改造后,对整个泵组的影响。

在此基础上,可以得出,若泵组假设只有两台水泵(实际情况中,两台水泵并联是最普遍的),则只对其中一台冷冻水泵进行变频改造,是不合理的;最好的改造方法是对两台冷冻水泵同时进行变频改造。

在冷冻水泵定频运行的情况下,只能采用压差旁通控制,通过冷水机组的流量不发生变化;在冷冻水泵变频情况下,由于流量变化需要冷冻水泵与末端联合控制。

因此,亦不考虑末端是否安装电磁二通阀。

因此,可将节能工况划分为以下几种:4 冷冻水循环水泵的选型4.1 水泵选型的基本要求水泵的选型是依据设计流量Go及相应的扬程H。

两个参数确定的,为了节省能耗,要求水泵在高效段η≥0.9ηmax运行,如图4.1所示。

图4.11水泵G-H性能曲线 2.管网性能曲线 3.水泵G-η曲线同时在部分负荷情况下,系统的流量G应该在0-Go之间变化。

所以要求水系统水泵的高效段尽可能宽。

显而易见,较大设计流量Go的系统中,仅仅使用一台水泵是不合适的。

下面就较大设计流量Go情形下讨论水泵的选型。

4.2 水泵选型方式的比较(1)两台同型号水泵并联运行如图4.2所示,对于某一Go、Ho,当采用二台相同水泵并联时,每一台水泵的扬程H相同,流量G各承担一半。

当Go属于并联工作的高效段n,且扬程H 满足要求时,两台水泵都在高效段运行。

在工段,可关闭一台水泵,另一台水泵仍在高效段运行。

图4.21.单台水泵的G-H性能曲线2.并联水泵的G-H性能曲线3.单台水泵的η-G性能曲线Ⅰ段.单台水泵的高效段Ⅱ段,单台水泵的高效段(2)两台不同型号的水泵并联运行如图4.3所示,对于同一G0, H,采用二台不同水泵并联时,要求这两台水泵处于高效段时的扬程很接近,且并联运行时,Go处于高效段Ⅲ段,那么可考虑这两台水泵并联。

当系统流量小时,关闭水泵a, b水泵可在高效段H段运行。

当系统流量更小时,关闭水泵a.b水泵仍可在高效段I段运行。

本文阐述的就是以这种方式并联的各种情况。

图4.31.a水泵的G-H性能曲线2.b水泵并联的G-H性能曲线3.a.b水泵并联的G-H性能曲线Ⅰ段.a水泵的高效段Ⅱ段,b水泵的高效段Ⅲ段,两台水泵并联的高效段(3)三台同型号水泵并联运行如图4所示,可以看出,为了满足系统冷负荷的变化,流量变化的调节范围可以更大,可分别通过三台水泵同时运行、停一台水泵两台水泵运行和停两台水泵一台水泵运行三种工作方式来实现流量调节,且水泵都在高效段运行。

1.1台水泵的G-H性能曲线 2.2台水泵并联的G-H性能曲线 3.3台水泵并联的G-H性能曲线(4)三台不同型号的水泵并联运行如图5所示,可以看出,与图4相比,流量变化的调节范围就更大,可分别用三台水泵两两并联、一台单机运行、三台水泵井联运行七种工作方式,仍能满足在高效段运行1.a水泵的G-H性能曲线 2.b水泵的G-H性能曲线 3.c水泵的G-H性能曲线 4.a.b.c水泵并联的G-H性能曲线为了适应空调系统变负荷的需要,空调水泵必须具备良好的流量调节特性,在设计选型时常采用多台水泵并联运行。

本文通过分析得出:在保持水泵在高速效率运行条件下,采用不同型号但高效段扬程相近的水泵并联时的流量调节范围可比同型号的水泵并联要宽些。

5 空调冷冻水一次泵变频节能一次泵变频技术有三方面:水泵变频能耗、变频控制方式以及变频泵台数设置。

在当前的空调水系统设计中,二次泵水系统使用变频水泵得到了普遍的认可,而一次泵变频却始终得不到推广。

究其原因,不外乎有以下几点担心:蒸发器水流量变化必然引起冷水机组的出水温度波动,甚至导致机组运行不稳定,变流量会对制冷机运行产生不利影响。

因为水侧流量变化会致蒸发器(或冷凝器)的换热效率降低,并产生结冻危险,制冷机水侧变流量后,会明显下降,导致制冷机的能耗增大,结果会抵消水泵所节省的能量,使整个系统节能效果不突出,甚至不节能。

5.1水泵变频能耗采用变频技术关键是要看其节能多少,也即采用变频后水泵能耗越小越好"现在的研究中都不约而同的提到与节流调节法和旁通控制相比,在部分负荷时,降低水泵转速可以节约大量能源。

当转速降低一半,流量也减少一半,管路的阻力损失H随着水泵转速n成平方比关系减小,所耗功率降为原功率的1/8。

水泵的特性曲线越陡,并联运行时增量越大,反之,泵的特性曲线越平坦,增量越小,越不适宜并联工作;管路阻抗越小,并联后增量越大,越适宜水泵的并联工作,曲线为陡降型的泵与曲线缓升型的管路结合,并联后的增量较大。

管路压降是计算水泵能耗的重要参数之一。

水泵变频后,由于管路中冷水的流态可能发生变化,系统中的阀门开度的变化,系统的阻力特性也随之改变,也即管路特性曲线发生变化,但也只是进行了定性的分析,未对管路压降的确定进行定量分析。

相关文档
最新文档