人教版 七年级(上)学期数学 有理数的运算 专题训练
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
人教版七年级数学上册 1.3.1.2有理数的加法运算律 同步训练卷

人教版七年级数学上册1.3.1.2有理数的加法运算律同步训练卷一、选择题(共10小题,3*10=30)1.对算式(-8)+(+6)+(+18)运用加法交换律正确的是( )A.(-8)+(-18)+(+6)B.(+8)+(-6)+(+18)C.(+6)+(-18)+(+8)D.(-8)+(+18)+(+6)2.下列变形,运用运算律正确的是( )A .2+(-1)=1+2B .3+(-2)+5=(-2)+3+5C .[6+(-3)]+5=[6+(-5)]+3D .13+(-2)+⎝⎛⎭⎫+23=⎝⎛⎭⎫13+23+(+2)3.计算33+(-32)+7+(-8)的结果是( )A .0B .2C .-1D .54.下面的计算运用的运算律是( )-13+3.2+⎝⎛⎭⎫-23+7.8=-13+⎝⎛⎭⎫-23+3.2+7.8=-⎝⎛⎭⎫13+23+(3.2+7.8)=-1+11=10. A .加法交换律B .加法结合律C .先用加法交换律,再用加法结合律D .先用加法结合律,再用加法交换律5.下列运算中正确的是( )A .7+13+(-8)=13B .(-3.5)+4+(-3.5)=4C .334+(-334)+(-3)=-3 D .3.14+(-7)+3.14=-86. 某地一天早晨的气温是-3 ℃,到中午升高了5 ℃,下午又降低了3 ℃,到晚上又降低了5 ℃,则晚上的气温是( )A .6 ℃B .10 ℃C .-6 ℃D .-8 ℃7.对于算式⎝⎛⎭⎫-12+14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310,下列运算律运用恰当的是( ) A.⎣⎡⎦⎤⎝⎛⎭⎫-12+14+⎣⎡⎦⎤⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 B.⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+310 C.⎝⎛⎭⎫-12+⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 D.⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-25+⎣⎡⎦⎤14+⎝⎛⎭⎫+310 8.计算(-20)+379+20+⎝⎛⎭⎫-79,最简便的做法是( ) A .把一、三两个加数结合,二、四两个加数结合B .把一、二两个加数结合,三、四两个加数结合C .把一、四两个加数结合,二、三两个加数结合D .把一、二、四这三个加数先结合9.在数+6,-1,15,-3中,任取三个不同的数相加,其中和最小的是( )A .-3B .-1C .3D .210.在防范新冠病毒疫情的例行体温检测中,检查人员将高出37 ℃的部分记作正数,将低于37 ℃的部分记作负数,体温正好是37 ℃的记作“0”.一人在一周内的体温结果分别为+0.1,-0.3,-0.5,+0.1,+0.2,-0.6,-0.4,那么该人一周中测量体温的平均值是( )A .37.1 ℃B .37.31 ℃C .36.69 ℃D .36.8 ℃二.填空题(共8小题,3*8=24)11.计算:(-32)+72+(-8)=____.12. 运用加法结合律计算:[10+(-6)]+(-7)=10+________________=________.13.检修小组从A 地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.则收工时在A 地的____边____千米处.14.等式5+(-3)+7+(-9)+12=(5+7+12)+[(-3)+(-9)]运用了___________________________。
七年级上计算专项(有理数混合运算、整式加减)

计算专项练习完成日期:1.计算:|﹣9|÷3+(﹣)×12﹣(﹣2)2.2.计算:|+×(﹣12)÷6﹣(﹣3)2|+|24+(﹣3)2|×(﹣5)3.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.4.计算:(1)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣];(2)(﹣24)×(﹣+)+(﹣2)3.5.计算﹣32+1÷4×﹣|﹣1|×(﹣0.5)2.完成日期:1.计算:(1)(﹣12)+(+30)﹣(+65)﹣(﹣47)(2)(﹣1)2×7+(﹣2)6+8.2.计算:(1)﹣22+[(﹣4)×(﹣)﹣|﹣3|](2)﹣32+16÷(﹣2)×﹣(﹣1)2015.3.4.计算:﹣14﹣[2﹣(﹣3)2]÷()3.完成日期:1.计算:+(﹣)÷(﹣)2.计算:(1)(﹣12)×(﹣)(2)﹣2.3. [(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2| 4.计算:﹣23﹣(﹣1)2×+(﹣1)2005.5.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].1.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).2.计算(1)(﹣2)2﹣(++)×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7)3.计算:(1)12﹣(﹣18)+(﹣7)﹣15(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.1.计算÷[32﹣(﹣2)2].29.计算:(1)﹣3﹣(﹣4)+2 (2)(﹣6)÷2×(﹣)(3)(﹣+﹣)×(﹣24)(4)﹣14﹣7÷[2﹣(﹣3)2]30.计算①(﹣6)×﹣8÷|﹣4+2|②(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.1.计算:(1)(2)2.计算:﹣14﹣×〔2﹣(﹣3)2〕×(﹣2)3 3.﹣10+8÷(﹣2 )2﹣(﹣4)×(﹣3)4..5.计算与化简:(1)计算:(2)25×.1.计算:(1)﹣(﹣)+(﹣0.75)(2)﹣2.5÷×(﹣)(3)﹣22﹣6÷(﹣2)×﹣|﹣9+5|.2.计算:.3.计算下列各式(1)﹣(﹣1)4+(1﹣)÷3×(2﹣23)(2)(﹣+)×(﹣12)4.计算:0.752﹣×+0.52.5.计算:(﹣1)3﹣×[2﹣(﹣3)2].1.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.2.25×﹣(﹣25)×+25×(﹣)3.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2|(3)[(﹣+)×(﹣36)+2]÷(﹣14)4.计算(1)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](2)﹣14﹣(1﹣0.5)××[4﹣(﹣2)3].5.计算:(﹣4)2×(﹣2)÷[(﹣2)3﹣(﹣4)].1.计算:﹣12+3×(﹣2)3+(﹣6)÷(﹣)2.2.计算:[(﹣3)2﹣(﹣5)2]÷(﹣8)+(﹣3)×(﹣1)3.计算:(﹣1)2003+(﹣3)2×|﹣|﹣43+(﹣2)4.4.a与b互为相反数,c与d互为倒数,求的值.5.计算:(1)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](2)﹣24÷(﹣2)2+5×(﹣)﹣0.25.1.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.3.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.4.先化简,再求值:﹣2x2﹣[3y2﹣2(x2﹣y2)+6],其中x=﹣1,y=﹣.5.先化简,再求值:(1)(5x+y)﹣(3x+4y),其中x=,y=;(2)(a﹣b)2+9(a﹣b)+15(a﹣b)2﹣(a﹣b),其中a﹣b=.1.有理数a、b在数轴上位置如图所示,试化简|1﹣3b|+2|2+b|﹣|3b﹣2|.2.去括号,合并同类项(1)﹣3(2s﹣5)+6s (2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab)(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)3.化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.4.已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.5.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.6.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)1.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.2.已知|x+1|+(y﹣2)2=0,求(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]的值.3.先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.4.4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.5.化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中1.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.2.(1)计算:()﹣2+(3.14﹣π)0﹣|﹣5|(2)先化简,再求值:(2x+1)(2x﹣1)﹣5x(x﹣1)+(x﹣1)2,其中x=﹣.3.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.4.先化简,再求值:(x+y)2﹣2x(x+2y)+(x+3y)(x﹣3y),其中x=﹣1,y=2.5.当时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.1.先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B 的值.2.化简求值:5ab﹣2a2b+[3ab﹣2(4ab2﹣a2b)],其中a、b、c满足|a﹣1|+(b﹣2)2=0.3.9a2﹣[7a2+2a﹣(a2+3a)],其中a=﹣1.4.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中,.5.若单项式a3b n+1和2a2m﹣1b3是同类项,求3m+n的值.6.a是绝对值等于2的负数,b是最小的正整数,c的倒数的相反数是﹣2,求代数式4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3]的值.1.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.2.为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)3.合并同类项①3a﹣2b﹣5a+2b ②(2m+3n﹣5)﹣(2m﹣n﹣5)③2(x2y+3xy2)﹣3(2xy2﹣4x2y)4.已知A=2x2﹣3x,B=x2﹣x+1,求当x=﹣1时代数式A﹣3B的值.1.已知A=y2﹣ay﹣1,B=2y2+3ay﹣2y﹣1,且多项式2A﹣B的值与字母y的取值无关,求a的值.2.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.3.化简求值:已知:(x﹣3)2=0,求3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2的值.4.已知A=x2+ax,B=2bx2﹣4x﹣1,且多项式2A+B的值与字母x的取值无关,求a,b的值.5.化简(1)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)(2)5ab2﹣[a2b+2(a2b﹣3ab2)]6.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.1.先化简再求值:(x+y)(x﹣y)﹣x(x﹣y)﹣xy,其中x=2016,y=﹣1.2.(1)已知(x+2)2+|y+1|=0,求x,y的值(2)化简:.3.化简:(1)2x2﹣3x+1﹣(5﹣3x+x2)(2).4.先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.5.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.6.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.1.先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.2.求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.3.已知A=,B=a2+3a﹣1,且3A﹣B+C=0,求代数式C;当a=2时,求C的值.4.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|.5.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式a2﹣2b+4ab的值.1.先化简,再求值:,其中.2.化简:(1)3a2+5b﹣2a2﹣2a+3a﹣8b(2)(8x﹣7y)﹣2(4x﹣5y)(3)﹣(3a2﹣4ab)+[a2﹣2(2a2+2ab)].。
2024年-人教版数学七年级上册1.4 有理数的乘法与除法 同步练

有理数的乘法与除法 同步训练第Ⅰ卷(选择题 共30分)一 选择题(共10小题,每小题3分,共30分)1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D.可能为正,也可能为负2.如果|x-1|+|y+2|+|z-3|=0,则(x+1)(y-2)(z+3)的值是( )A. 48B. -48C. 0D.xyz3. 下列说法中,错误的是( )A.一个非零数与其倒数之积为1B.一个数与其相反数商为-1C.若两个数的积为1,则这两个数互为倒数D.若两个数的商为-1,则这两个数互为相反数4.两个有理数的商为正,则( )A.和为正B.和为负C.至少一个为正D.积为正数5.一个数加上5,减去2然后除以4得7,这个数是( )A.35B.31C.25D.286.2008个数的乘积为0,则( )A.均为0 B.最多有一个为0 C. 至少有一个为0 D.有两个数是相反数7.下列计算正确的是( ) A.43143-=÷⨯- B.4)151(5=-÷- C.91)53()52()65()32(-=-÷---⨯- D.4)2()32()3(-=+⨯+⨯+ 8.114-的倒数与4的相反数的商为( ) A .+5 B .15C .-5 D .15- 9.若a+b <0,ab <0,则 ( )A.a >0,b >0B. a <0,b <0C.a,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a,b 两数一正一负,且负数的绝对值大于正数的绝对值10.一服装店进了一批单价50元衬衫,标价80元,为了促销五一期间打7折销售,那么该商店每件( )A. 赚6元B. 亏了6元C. 赚了30元D. 亏了26 元第Ⅱ卷(非选择题 共90分)二、填空题(共8小题,每小题3分,共24分)11.已知:0,0≠=+b b a ,则=-b a ________;已知:1||-=ba ,则=+||ab ________. 12.有理数m<n<0时,(m+n )(m-n)的符号是__________.#13.规定a ﹡b=5a+2b-1,则(-4)﹡6的值为 .14.如果b a ⋅<0,那么=++abab b b a a.#15.在一次“节约用水,保护水资源”的活动中,学校提倡每人每天节约0.1升水,如果该市约有5万学生,估计该市全体学生一年的节水量为___________.#16.根据二十四点算法,现有四个数-2、4、-5、-10,每个数用且只用一次进行加、减、乘除,使其结果等于24,则列式为=24. &17. 若2||=a ,3||=b ,a ,b 异号,则-ab =______________18. 根据如图所示的程序计算,若输入x 的值为3,则输出y 的值为.三、解答题(共7小题,共66分)19.(8分)(1)38()(4)(2)4⨯-⨯-⨯-(2)12(13)(5)(6)(5)33-÷-+-÷-&20. (9分)现定义两种运算:“”,“”,对于任意两个整数a ,b ,a b=a+b-1,a b =a ×b-1,求4【(68)(35)】的值.21.(10分)()322492249524()836532125(⨯+⨯-⨯⨯+-+-22.在5.10与它的倒数之间有a 个整数,在5.10与它的相反数之间有b 个整数. 求2)()(+-÷+b a b a 的值.23.(10分)(8分)某超市以50元进了A 、B 两种商品,然后以A 商品提价20%,B 商品降价10%出售,在某一天中,A 商品10件,B 商品20件, 问这一天里超市作这两种买卖是赚了还是赔了?并说明理由.#24.(10分 )王明再一次期中考试时,若以语文90分为标准,其他科分数和语文成绩的相差分数如下表求:(1)数学的分数;(2)若七科平均分数是95分,生物的分数是多少?科目 语文 数学 英语 历史 地理 生物政治 相差分数0 +9 +6 -4 +3 ?+2#25.观察下列等式 111122=-⨯,1112323=-⨯,1113434=-⨯, 输入x 输出y 平方 乘以2 减去4 若结果大于0 否则将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:1(1)n n =+. (2)直接写出下列各式的计算结果: ①111112233420072008++++=⨯⨯⨯⨯; ②1111122334(1)n n ++++=⨯⨯⨯+.答案:一、选择题1. A2. B 提示:根据题意 x-1=0,y+2=0,z-3=0,即x=1,y=-2,z=3.3.B4. D 提示:商的符号与积的符号一样,既然两数商为正,则它们积也为正.5. C6. C 提示:几个因数相乘,如果有一个数是0,则积为0 ,所以至少有一个是0 .7. D 8.B9. D 提示: 因为 ab <0,可知a,b 异号,a+b <0,所以负数的绝对值大于正数的绝对值.10. A 提示:销售结果是80×0.7-50=+6(元).二、填空题11. 1,0 12. + 13.– 9 14 .-115. 1 825 000升 16. (-2)×(-5)-(-10)+ 4=24 17. 618.2三 、解答题19.解:(1)38()(4)(2)4⨯-⨯-⨯-38424⨯⨯⨯=-48-= (2)原式=121356533÷+÷11211363535⨯+⨯= 121136)335+⨯=(145⨯=20= 20.解:根据新运算的定义,(68)=6+8-1=13, (35)=3×5-1=14,则(68)(3 5)=1314=13+14-1=26 则4【(68)(35)】=4 26=4×26-1=10321. 解:通过细心观察算式的数值之间的关系,可先对第2个括号逆用乘法分配律,简便运算后,再对第1个括号正用乘法分配律,再次进行简便运算,使问题巧妙获解.)322492249524()836532125(⨯+⨯-⨯⨯+-+-=124)836532125()]329295(24[)836532125(⨯⨯+-+-=+-⨯+-+-=5920161024832465243224125-=+-+-=⨯+⨯-⨯+⨯-. 22.解:a=10,b=21,(a+b )÷(a -b )+2的值为119-. 23.解:在一天的两种商品的买卖中,超市不赚不赔.(2分)理由:10件A 商品一共卖了10×(1+20%)×50=600(元),20件B 商品一共卖了20×(1-10%)×50=900(元)则这30件商品一共卖了600+900=1500(元),而这30件商品的进价为1500元,超市不赚不赔.24.解:(1)90+(+9)=99(分)答:数学分数是99分.(2)93×7-(90×6+0+9+6-4+3+2)=651-(540+0+9+6-4+3+2)=651-556=95(分)答:生物的分数是95分.(3)99-86=13(分)答:最高分和最低分相差13分.25. 解:(1)1n -11n + (2)200720081n n +。
七年级数学上学期 第一章 有理数(计算专题)含解析

(3)解:原式
,
, , ;
(4)解:原式
,
,
.
【考点】有理数的加减乘除混合运算,有理数的加减混合运算,含乘方的有理数混合运算 【解析】【分析】(1)利用有理数的加减法的运算法则求解即可; (2)先将除法化为乘法,再利用有理数的乘法运算法则求解即可; (3)先计算乘方,再计算乘除,最后计算加减即可; (4)先计算括号内的,再计算乘法即可。
8.【答案】 (1)解:原式=﹣24
24
24
8
=﹣3+8﹣6﹣8 =﹣9.
(2)原式= =﹣9﹣4﹣2 =﹣15. 【考点】含乘方的有理数混合运算 【解析】【分析】(1)先计算乘方,再计算有理数的乘法运算律,最后计算加减即可; (2)先计算乘方,再计算乘除,最后计算加减即可。
9.【答案】 原式 【考点】含乘方的有理数混合运算 【解析】【分析】利用有理数的乘方,加减乘除法则计算求解即可。
6.【答案】 (1)解:原式=﹣20+3+5 =﹣17+5 =﹣12;
(2)解:原式=5×6× × =9;
(3)解:原式=1﹣(﹣1) =1+1 =2;
(4)解:原式= =﹣27﹣20+21 =﹣47+21 =﹣26
×36﹣ ×36+ ×36
(5)解:原式=25× ﹣25× ﹣25× =25× =25×0 =0;
第 6 页 共 16 页
3.【答案】 解: 【考点】有理数的加减乘除混合运算 【解析】【分析】先计算有理数的乘除法,再计算有理数的加减法即可。
4.【答案】 (1)解:(
)×(﹣60),
=
,
=﹣30+40+50, =60;
部编数学七年级上册专题有理数的混合运算大题专练(重难点培优)同步培优【人教版】含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.15有理数的混合运算大题专练(重难点培优)一、解答题1.(2022·湖北武汉·七年级期末)计算:(1)5+(―6)+3―(―4);(2)79÷(23―15)―13×(―4)2.【答案】(1)6;(2)―113.【解析】【分析】(1)根据有理数的加减运算法则计算即可;(1)根据有理数的混合运算法则计算即可.(1)解:5+(―6)+3―(―4)=5―6+3+4=6.(2)解:79÷―13×(―4)2=79÷715―13×16=79×157―163=53―163=―113.【点睛】本题考查有理数的混合运算法则,解题的关键是掌握混合运算的法则.2.(2022·山东菏泽·七年级期末)计算:(1)15+(-6)-(-7)+(―6)×4―(―21)÷3(2)―32÷23×1―(3)―14+16÷(―2)3×|―3―1|【答案】(1)-1(2)-6(3)-9【解析】【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先算括号中的减法及乘方,再从左到右依次计算即可得到结果;(3)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.(1)解:15+(-6)-(-7)+(―6)×4―(―21)÷3=15-6+7-24+7=9+7-24+7=16+(-17)= -1;(2)解:―32÷23×(1―13)2=―9×32×49=―6;(3)解:―14+16÷(―2)3×|―3―1|=―1+16×(―18)×4=―1―8=―9.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022·河南南阳·七年级期末)计算:(1)(―1)2019―|―3―7|×(―15)÷(―12);(2)―14―(1―0.5)×13×[1―(―2)2].【答案】(1)-5(2)―12【解析】【分析】(1)先算乘方,绝对值,除法转化为乘法,最后算加减即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.(1)解:(―1)2019―|―3―7|×(―15)÷(―12)=―1―10×(―15)×(―2)=―1―4=―5;(2)解:―14―(1―0.5)×13×[1―(―2)2].=―1―12×13×(1―4)=―1―16×(―3)=―1+12=―12.【点睛】本题主要考查有理数的混合运算,有理数的乘方、绝对值,解题的关键是对相应的运算法则的掌握.4.(2022·重庆梁平·七年级期末)计算(1)―22+3×(―1)2016―9÷(―3)(2)57÷――57×512―53÷4【答案】(1)2(2)―8584【解析】【分析】(1)先计算有理数的乘方、乘除,再计算加减;(2)将分数除法变形为分数乘法,再进行乘法和加减运算.(1)解:―22+3×(―1)2016―9÷(―3)=―4+3×1―9÷(―3)=―4+3―(―3)=―4+3+3=2(2)解:57÷――57×512―53÷4=―57×512―57×512―53×14=―2584―2584―512=―8584【点睛】本题考查带乘方的有理数的混合运算,属于基础题,掌握有理数的运算法则并正确计算是解题的关键.5.(2022·全国·七年级)计算:(―34―16+512)÷136.【答案】―18【解析】【分析】先将除法化为乘法,再利用乘法分配律计算后,最后计算加减即可.【详解】解:(―34―16+512)÷136=(―34―16+512)×36=―34×36―16×36+512×36=﹣27﹣6+15=﹣18.【点睛】本题考查有理数的混合运算.熟练掌握乘法分配律是解题关键.6.(2022·全国·七年级专题练习)计算:(1)(14+38―712)÷124;(2)(―1)2022×|―112|+0.5÷(―13).【答案】(1)1(2)-3【解析】【分析】(1)先化除为乘,再用乘法的分配率计算即可;(2)按照有理数的混合运算顺序,先算乘方,再算乘除,最后算加减即可;(1)38÷12438=14×24+38×24﹣712×24=6+9﹣14=1;(2)(﹣1)2021×|﹣112|+0.5÷(﹣13)=(﹣1)×32+12×(﹣3)=﹣32+(﹣32)=﹣3.【点睛】本题考查了有理数的混合运算,以及有理数的乘法分配率,解题的关键是熟悉有理数的混合运算顺序.7.(2022·全国·七年级专题练习)用简便方法计算:(1)(―8)×(―45)×(―1.25)×54;(2)(﹣93536)×18;(3)(―8)×(―16―512+310)×15.【答案】(1)-10(2)―17912(3)34【解析】【分析】(1)原式结合后,相乘即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式结合后,利用乘法分配律计算即可得到结果.(1)解:原式=﹣(8×1.25)×(45×54)=﹣10×1=﹣10;(2)原式=(﹣10+136)×18=﹣10×18+136×18=﹣180+12 =﹣17912;(3)原式=(﹣8×15)×(﹣16 ﹣512 + 310)=(﹣120)×(﹣16 ﹣512 +310)=﹣120×(﹣16)﹣120×(﹣512)﹣120×310 =20+50﹣36=34.【点睛】此题考查了有理数的混合运算,乘法分配律,熟练掌握运算法则及运算律是解本题的关键.8.(2022·全国·七年级专题练习)计算(1)2×(―3)3―4×(―3)+15;(2)(―2)3+(―3)×(―4)2+2―(―3)2÷(―2).【答案】(1)-27;(2)-57.5.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.(1)解:2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+12+15 =―27.(2)解:(―2)3+(―3)×(―4)2+2―(―3)2÷(―2)=―8+(―3)×18+9 2=―8―54+9 2=―57.5.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数混合运算的法则,正确计算即可.9.(2021·云南·普洱市思茅区第四中学七年级期中)计算:(1)(―21)+(+3)―(―4)―(+9)(2)42×―+―÷(―0.25)(3)―12+(―3―1)2―|―13|×(―3)2【答案】(1)―23(2)―11(3)12【解析】【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据含有乘方的有理数混合运算法则进行计算即可.(1)解:(―21)+(+3)―(―4)―(+9),=(―21)+(―9)+3+4=―23.(2)42×+÷(―0.25)=―14+×(―4)=―14+3=―11(3)―12+(―3―1)2―|―13|×(―3)2=―1+(―4)2―13×9=―1+16―3=12【点睛】本题主要考查了有理数混合运算法则,熟练掌握有理数混合运算法则,是解题的关键.10.(2021·云南·富源县第七中学七年级期中)计算下列各题(1)15+(―8)―(―4)―5(2)(―512+34―16)×(―48)(3)―10+8÷(―22)―(―4)÷(―13)(4)―14―(1―0.5)×13×5―(―3)2【答案】(1)6(2)-8(3)-24(4)―13【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)先算乘方、再有理数的除法和加减法可以解答本题;(4)先算乘方、再有理数的乘法和加减法可以解答本题.(1)解:原式=15+(―8)+4+(―5)=19+(―13)=6 (2)解:原式=512×48+34×(―48)+16×48=20―36+8=28―36=―8(3)解:原式=―10+8÷(―4)―(―4)×(―3)=―10―2―12=―24 (4)解:原式=―1―12×13×(―4)=―1+23=―13【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算顺序和方法.11.(2020·黑龙江·虎林市实验中学七年级期中)计算(1)26―(―15)(2)-3×4+(-28)÷7(3)(23―15+65)×15(4)(―1)3×2+(―2)2÷4【答案】(1)41(2)-16(3)25(4)-1【解析】【分析】(1)去括号,括号内数字变符号,然后进行计算;(2)先算乘除,后算加减;(3)先算括号内,然后与括号外数字相乘;(4)先算乘方,再算乘除,最后算加减.(1)解:26―(―15)=26+15=41;(2)-3×4+(-28)÷7=-12+(-4)=-16;(3)(23―15+65)×15=(23+1)×15=53×15=25;(4)(―1)3×2+(―2)2÷4=(―1)×2+4÷4=-2+1=-1.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算法则是解题的关键.12.(2022·江苏·七年级)计算:(1)―16―320+45×(―15×4);(2)120×―556+638―(3)(﹣18)÷214×49÷(﹣16);(4)12÷(―14)+(1―0.2÷35)×(―3);(5)312÷(―125)―821×(―134)―(―1+16)2+(―13)2×3.【答案】(1)6(2)―111(3)29(4)―4(5)―7936【解析】【分析】(1)根据乘法分配律拆开括号,进行运算即可;(2)根据乘法分配律拆开括号,进行运算即可;(3)把除法转化为乘法,再进行运算即可;(4)先计算括号内,把除法转化为乘法,再进行运算即可;(5)先把乘方进行计算,把除法转化为乘法,再进行运算即可.(1)原式=(―16―320+45―712)×(―60)=16×60+320×60―45×60+712×60=10+9―48+35=6;(2)原式=―120×356+120×518―120×2215=―700+765―176=―111;(3)原式=18×49×49×116=29;(4)原式=12×(―4)+(1―15×53)×(―3)=―2+(1―13)×(―3)=―2―23×3=―2―2=―4;(5)原式=―72×57+821×74―(―56)2+19×3=―52+23―2536+13=―52―2536+(23+13)=―11536+1=―7936.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.13.(2020·山西晋城·七年级期中)计算:(1)―5+7―(―3)―20(2)―23+6÷(―32)【答案】(1)-15(2)-12【解析】【分析】(1)原式先根据有理数减法法则变形,再进行加减运算即可;(2)原式先计算乘方和除法,然后再进行加减运算即可.(1)―5+7―(―3)―20=―5+7+3―20 =(7+3)+(―5―20) =10―25 =―15;(2)―23+6÷(―32)=―8―6×23 =―8―4 =―12【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14.(2022·黑龙江·绥化市第八中学校期中)计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)―52×34+25×12―25×14;(4)423+215―0.8+245―(―613).【答案】(1)8(2)-1(3)-12.5(4)15.2【解析】【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=-1 (3)解:―52×34+25×12―25×14=―25×34+25×12―25×14=―25×(34―12+14)=―25×12 =-12.5 (4)解:423+215―0.8+245―(―613)=423+215―45+245+613=(423+613)+(215―45+245)=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.15.(2021·山东省郓城第一中学七年级阶段练习)计算:(1)―30+17;(2)―67―(―29);(3)1.5―8.9;(4)×(5)―5+(―3.75);(6)―5――(7)―17+23+(―16)―(―17);(8)―3+2×|―2―3|―25.【答案】(1)―13;(2)―38;(3)―7.4;(4)76;(5)―9;(6)―2.25;(8)―18.【解析】【分析】(1)根据有理数的加法计算即可;(2)根据有理数的减法计算即可;(3)根据有理数的减法计算即可;(4)根据有理数的乘法计算即可;(5)根据有理数的加法计算即可;(6)根据有理数的减法计算即可;(7)根据有理数的加减计算即可;(8)根据有理数的混合运算法则计算即可.(1)解:―30+17=―13.(2)解:―67―(―29)=―67+29=―38.(3)解:1.5―8.9=―7.4.(4)解:×―=76.(5)解:―+(―3.75)=―5.25+(―3.75)=―9.(6)解:――――5.75+3.5=―2.25.(7)解:―17+23+(―16)―(―17)=―17+23―16+17=7.(8)解:―3+2×|―2―3|―25=―3+10―25=―18.【点睛】本题考查有理数加法,减法,乘法以及混合运算,解题的关键是掌握有理数的运算法则,正确计算.16.(2022·黑龙江·哈尔滨德强学校期中)计算:(1)(―2)2×5―(―2)3÷4(2)23÷×34―34【答案】(1)22(2)54【解析】【分析】(1)原式先计算乘方,再计算乘除法,最后算加减即可;(2)原式先计算小括号内的减法,再计算乘除法,最后算加减即可.(1)(―2)2×5―(―2)3÷4=4×5+8÷4=20+2=22;(2)23÷×34―34=23÷14×34―34=23×4×34―34=2―34=54.【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.17.(2022·全国·七年级课时练习)计算:(1)(12―13)×6÷|―15|(2)(―1)2018+(―10)÷12×2―[2―(―3)3]【答案】(1)5(2)﹣68【解析】【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1)解:(12―13)×6÷|―15|=(12―13)×6×5 =(12―13)×30=12×30―13×30=15―10=5(2)(―1)2018+(―10)÷12×2―[2―(―3)3]=1+(―10)×2×2―(2+27)=1―40―29=―68【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.18.(2022·黑龙江·哈尔滨市萧红中学校期中)(1)(―20)+(+3)―(―5)―(+7)(216―×12(3)―2.5÷58×(4)2×(―3)3―4×(―3)+15【答案】(1)-19;(2)-1;(3)1;(4)-27【解析】【分析】(1)先去括号再求解;(2)先去括号再求解;(3)先把除号变成乘号再求解;(4)先计算―3立方,再依次计算即可得到答案.【详解】(1)(―20)+(+3)―(―5)―(+7)=(―20)+3+5―7=―19;(2)+16×12=14×12+16×12―12×12=3+2―6=―1;(3)―2.5÷58×―=―52×85×=4×14=1;(4)2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+27=―27.【点睛】本题考查有理数的混合运算,解题的关键是熟练掌握有理数的运算法则.19.(2022·云南·景谷傣族彝族自治县教育体育局教研室七年级期末)计算:(1)13―7―(―7);(2)18×――8÷(―2);(3)―22×(―9)―|―4×5|.【答案】(1)13(2)-2(3)16【解析】(1)解:原式=6+7=13;(2)解:原式=-6+4=-2;(3)解:原式=-4×(-9)-20=36-20=16.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.(2020·江西景德镇·七年级期中)计算:2+÷3(2)―22×1―4÷―1.4【答案】(1)3(2)-9【分析】(1)根据有理数的混合计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.(1)―23÷=―23×(―36)=16×(―36)―23×(―36)+512×(―36)=―6+24―15 =3;(2)解:―22×14―4÷―1=―4×14―4÷49―1=―1―4×94―1=―1―9+1=―9.【点睛】本题主要考查了含乘方的有理数混合计算,有理数的四则混合运算,熟知相关计算法则是解题的关键.21.(2022·黑龙江绥化·期中)计算:(1)―6.5+(―3.3)―(―2.5)―(+4.7);(2)6××(―12)×116;(3)―32+2×4―1÷2(4)492425×(―5)(5)999×11845+999×――999×1835【答案】(1)―12(2)63(3)―9(4)―24945(5)99900【解析】根据有理数的加减乘除运算法则求解即可.(1)解:―6.5+(―3.3)―(―2.5)―(+4.7)=―6.5―3.3+2.5―4.7=―(6.5+3.3+4.7)+2.5=―14.5+2.5=―12;(2)解:6××(―12)×116=6×34×12×76=63;(3)解:―32+2×4―1÷2=―9+2×(4―4)=―9;(4)解:492425×(―5)=49×(―5)=―49×5―2425×5=―245―245=―24945;(5)解:999×11845+999×―999×1835=999×118+45―15―18=999×100=99900.【点睛】本题考查有理数的加减乘除混合运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.22.(2022·全国·七年级课时练习)计算(1)4×(―12―34+2.5)×3―|―6|(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)](3)―14―(1―0.5)×13―[2―(―3)2](4)(―2)4÷(―4)×―12【答案】(1)9(2)2(3)356(4)―2【解析】(1)解:4×(―12―34+2.5)×3―|―6|=4×54×3―6=15―6=9.(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)]=―1×(―12)÷[16+(―10)]=―1×(―12)÷6=12÷6=2.(3)―14―(1―0.5)×13―[2―(―3)2]=―1―12×13―(2―9)=―1―16+7=6―1 6=356.(4)(―2)4÷(―4)×―12=16÷(―4)×14―1=―4×14―1=―1―1=―2.【点睛】本题考查了有理数的混合运算,正确计算是解题的关键.。
人教版七年级上册数学 第一章 有理数 训练题 (6)-200714(解析版)

第一章 有理数 训练题 (6)一、单选题1.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( )A .1B .23b +C .23a -D .1-2.马小哈在计算一道有理数运算()3-+■时,一不小心将墨水泼在作业本上了,其中“■”是被墨水污染看不清的一个数,他便问同桌,同桌故弄玄虚地说:“该题计算的结果等于6”,那么被墨水遮住的数是( ) A .3B .3-C .9D .3-或93.港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾;桥隧全长55千米,用科学记数法表示这个数为( ) A .55×104mB .5.5×103 mC .5.5×104mD .0.55×103m4.在数轴上表示5和-3的两点间的距离是( ) A .5+3B .5-3C .-(5+3)D .3-55.如果22(3)m =-,则m 的值是( ) A .-3 B .3C .-3或3D .96.在数轴上表示有理数a ,b ,c 的点如图所示,若0,0ac b c <+<.则下列式子一定成立的是( )A .0a c +>B .0abc <C .||||b c <D .||||b c >7.|﹣2020|的倒数等于( ) A .2020B .﹣2020C .12020D .12020-8.数轴上,2-对应的点在( )A .点A 、B 之间 B .点B 与C 之间C .点C 与D 之间D .点E 与F 之间9.的倒数是A.B.C.D. 210.省统计局日前公布年安徽省人口变动情况抽样调查主要数据公报,数据显示,去年安徽常住人口突破6200万,用科学记数法表示6200万正确的是A.B.C.D.11.2020年初全球处于新型冠状病毒引起的巨变之中,中国有2万名以上的医护人员在短时间就集结完毕,他们是我们心中的“最美逆行者”其中数据2万用科学记数法表示为A.B.C.D.12.下列算式中,计算结果为负数的有A. 1个B. 2个C. 3个D. 4个二、填空题13.计算:=______,14.“壮丽70年,奋斗新时代”.70年来,云南城镇居民收入连续翻番,1950年,云南城镇居民人均可支配收入仅为117.6元,2018年达到33488元,累计增长283.7倍.数据33488用科学记数法表示为__________.15.计算:(-4)×0.25=__________,(+4)×(-18)=______,(-52)×(-103)=_______. 16.近几年来,某市加大教育信息化投入,投资221000000元,初步完成了教育公共云服务平台基础工程,教学点数字教育资源全覆盖.将221000000用科学记数法表示为_____________. 17.计算:12--=_____. 18.绝对值不大于3的所有整数之和是 .三、解答题19.有 8 筐白菜,以每筐 25 千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这 8 筐白菜中最接近标准重量的这筐白菜重 千克; (2)这 8 筐白菜的平均重量为多少千克?20.先画数轴,在数轴上表示以下各数,并用“<”号按从小到大的顺序连接起来.()112031322--++-,,,,, 21.(1)(49)(91)(5)(9)--+--+- 16(2)(1)0.8()37-÷⨯-22.计算()3315130.75524828⎛⎫⎛⎫⎛⎫-++-+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1215232122346⎛⎫-÷⨯-+-⨯ ⎪⎝⎭23.计算(1)114 1.55( 2.75)45⎛⎫-+--- ⎪⎝⎭ (2)321|2|3182⎛⎫--+⨯- ⎪⎝⎭24.某班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:-7,-10, +9,+2,-1,+5,-8,+10,+4,+9. (1)最高分和最低分各是多少? (2)求他们的平均成绩. 25.计算(1)-3+2-4×(-5);(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ 26.对于有理数,a b ,定义一种新运算“”,规定||||ab a b a b =++-.(1)计算()23-的值.(2)当,a b 在数轴上的位置如图所示时,化简ab .(3)当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. (4)已知()8aa a a =+,求a 的值.【答案与解析】一、单选题 1.B 解析:B根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,即可得到结果.由数轴可知b <−1,1<a <2,且|a|>|b|, ∴a +b >0,a -1>0,b+2>0则|a +b|−|a−1|+|b +2|=a +b−(a−1)+(b +2)=a +b−a +1+b +2=2b +3. 故选:B . 【点睛】此题考查了整式的加减,数轴,以及绝对值,判断出绝对值里边式子的正负是解本题的关键.2.D解析:D设这个数为x ,根据绝对值的性质可得−3+x =−6或−3+x =6,求出x 即可. 解:设这个数为x ,则()36x -+=, ∴−3+x =−6或−3+x =6, ∴x =−3或x =9, 故选:D . 【点睛】本题考查了绝对值的性质,注意绝对值等于一个正数的数有两个,它们互为相反数.3.C解析:C科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10, n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解:55千米=55000米,∴55千米,用科学记数法表示这个数为5.5×104m . 故选:C . 【点睛】此题考查科学记数法,解题关键在于掌握科学计数法的一般形式.4.A解析:A= 故选A.5.C解析:C根据有理数乘方的意义和乘法法则进行选择即可. 因为()239-=,()223m =- 所以29m =根据乘法法则可知()()33=9339⨯-⨯-=, 所以3m =± 故答案选C. 【点睛】本题考查的是有理数乘方的意义和乘法法则,能够解答出29m =是解题的关键.6.D解析:D根据各数在数轴上的位置得到a b c <<,结合0,0ac b c <+<对各选项进行分析可得解. 解:由数轴可得a b c <<,又0,0ac b c <+<,0a b c ∴<<<,且b c >0,0,a c abc b c∴+<>> 即A 、B 、C 错误,D 正确, 故选:D 【点睛】本题主要考查了数轴和绝对值,也考查了有理数的运算,掌握运算法则是解题关键.7.C解析:C根据绝对值的性质和倒数的概念求解即可. |﹣2020|,即2020的倒数等于12020. 故答案选:C . 【点睛】本题主要考查绝对值的性质和倒数的概念.8.B解析:B找到能开得尽方的两个数,满足一个比2小,一个比2大,从而确定表示实的点所在的范围.解:因为1<2<4,即1<2<2,所以-2<-2<-1,即表示实数-2的点在点B与点C之间.故选:B.【点睛】本题主要考查了无理数的估算,找到接近-2且能开得尽方的两个数是解决本题的关键.9.A解析:A【分析】本题考查倒数的意义:乘积为1的两个数互为倒数根据倒数的意义进行解答即可.【解答】解:根据倒数的定义可知:的倒数是.故选A.10.B解析:B解:用科学记数法表示6200万正确的是.故选:B.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.11.B解析:B解:将数据“2万”用科学记数法表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.12.D二、填空题13.-2;解析:-2;根据乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0. 原式=-1-1=-2. 【点睛】本题考查了有理数的乘方法则,解题时牢记法则是关键,此题比较简单,易于掌握.14.{解析}科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;当原数的绝对值 解析:43.348810⨯{解析}科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 33488=3.3488×104, 故答案为:3.3488×104. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.-1-解析:-1, -12, 253∵(-4)×0.25=-1, (+4)×(-18)=-12, (-52)×(-103)=253. 故答案为(1). -1, (2). -12, (3). 25316.21×108解析:21×108因为科学记数法的正确表示形式为:10n a ⨯(其中110a ≤<,n 是整数),按照科学记数法正确表示形式表示即可.解:因为科学记数法的正确表示形式为:10n a ⨯(其中110a ≤<,n 是整数), 所以将221000000用科学记数法表示为2.21×108, 故答案为: 2.21×108. 【点睛】本题主要考查科学记数法的表示形式,解决本题的关键是要熟练掌握科学记数法的正确表示形式.17.{解析}先化简绝对值然后求其相反数即可解:故答案为:【点睛】本题考查绝对值的化简和求一个数的相反数掌握绝对值的意义和相反数的概念是本题的解题关键解析:12-{解析}先化简绝对值,然后求其相反数即可. 解:1122--=- 故答案为:12-. 【点睛】本题考查绝对值的化简和求一个数的相反数,掌握绝对值的意义和相反数的概念是本题的解题关键.18.0解析:0 【分析】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.找出绝对值小于等于10的所有整数,求出之和即可. 【解答】解:绝对值不大于10的整数有:,,,0,1,2,3,它们之和是0. 故答案为0.三、解答题19.(1)24.5;(2)24.5(1)绝对值最小的数,就是最接近标准重量的数; (2)用25加上图中八个数的和的平均重量即可求得.解:(1)最接近的是:绝对值最小的数,因而是250.524.5-=(千克); (2)()251320.532 2.528+-+-+---÷()250.5=+-24.5=(千克).故这8筐白菜的平均重量为24.5千克.故答案为:24.5. 【点睛】本题考查正数和负数表示某种意义的量,有理数的加减法运算,掌握运算法则是关键.20.()1131322-+<-+-<0<<2<{解析}先在数轴上正确描出各数,然后根据数轴上的点表示的数右边的总比左边的大,可得答案.解:()33-+=-,33-=. 如图所示:()1131322-+<-+-<0<<2<. 【点睛】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:当数轴正方向朝右时,右边的数总比左边的数大,要熟练掌握. 21.(1)-144;(2)107(1)先去括号,然后进行加减计算即可; (2)先化为分数,再约分即可. (1)原式=499159144--+-=- (2)原式=456103477⎛⎫-⨯⨯-= ⎪⎝⎭ 【点睛】此题主要考查有理数的混合运算,熟练掌握,即可解题. 22.(1)12;(2)314- (1)先将绝对值计算,然后将分母相同的利用加法交换律计算,最后用有理数的运算法则计算;(2)先利用除法法则计算,然后根据乘法分配律计算21512346⎛⎫+-⨯ ⎪⎝⎭,注意整体思想的处理,最后根据有理数的法则计算. (1)解:原式3335132+544882⎛⎫⎛⎫⎛⎫=-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1652=-12=(2)解:原式11215312121222346⎛⎫=-⨯⨯-⨯+⨯-⨯⎪⎝⎭()3-83104=-+-314=-【点睛】掌握有理数的运算法则是解题关键,注意符号的处理.23.(1)0;(2)37 4 -(1)根据有理数的加减法法则及加法运算律计算即可;(2)根据有理数的乘方的意义、乘法法则、加减法法则及绝对值的代数意义计算即可.解:(1)原式=[414﹣(﹣2.75)]+[﹣1.5+(﹣512)]=7+(﹣7)=0;(2)原式=1 2918()8 -+⨯-=9 74 --=374 -.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则、运算顺序及有理数的加法运算律是解决本题的关键.24.(1)90,80;(2)91.3.试题分析:(1)从题目中的记录中可知,计为+10的考试成绩超过90分最多,即90+10=100(分);计为-10的考试成绩不足90分,与90分差距最大,即90-10=80(分);(2)先求得这组新数的平均数,然后再加上90,即为他们的平均成绩.试题解析:解:(1)∵在记录结果中,+10最大,-10最小,∴90+10=100(分),90-10=80(分),∴最高分为100分,最低分为80分;(-7-10+9+2-1+5-8+10+4+9)÷10+90=13÷10+90=91.3(分)∴他们的平均成绩为91.3分.考点:正负数的意义;有理数的混合运算.25.(1)19;(2)-11 3(1)原式先计算乘法运算,再进行回头运算即可得到结果;(2)原式先计算乘方和括号内的,再计算乘除运算,最后进行加减运算即可.(1)-3+2-4×(-5)=-3+2+20=19;(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ =771169153÷-⨯ =51633- =113- 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.26.(1)6;(2)-2b ;(3)不一定,理由见解析;(4)83或-85.(1)原式利用题中的新定义计算即可得到结果;(2)根据数轴上点的位置判断出a+b 与a-b 的正负,利用绝对值的代数意义计算即可得到结果;(3)当a ⊙b=a ⊙c 时,不一定有b=c 或者b=-c ,举例即可;(4)分类讨论a 的正负,利用新定义将已知等式化简,即可求出a 的值.(1)根据题中的新定义得:2⊙(-3)=|2+(-3)|+|2-(-3)|=1+5=6;(2)从a ,b 在数轴上的位置可得a+b <0,a-b >0,∴a ⊙b=|a+b|+|a-b|=-(a+b )+(a-b )=-2b ;(3)由a ⊙b=a ⊙c 得:|a+b|+|a-b|=|a+c|+|a-c|,不一定有b=c 或者b=-c ,例如:取a=5,b=4,c=3,则|a+b|+|a-b|=|a+c|+|a-c|=10,此时等式成立,但b≠c 且b≠-c ;(4)当a≥0时,(a ⊙a )⊙a=2a ⊙a=4a=8+a ,解得:a=83; 当a <0时,(a ⊙a )⊙a=(-2a )⊙a=-4a=8+a ,解得:a=-85. 故a 的值为:83或-85. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
七年级数学上册代数式和有理数的四则运算(150道题)

初一数学有理数计算题分类及混合运算练习题(100题)有理数加法1、(-9)+(-13)2、(-12)+273、(-28)+(-34) =-22 =15 =-62原则一:所有正数求和,所有负数求和,最后计算两个数的差,取绝对值较大的数的符号。
7、|52+(-31)| =1518、(-52)+|―31| =-151 9、 38+(-22)+(+62)+(-78)=010、(-8)+(-10)+2+(-1) 11、(-32)+0+(+41)+(-61)+(-21) =-17 =-121316、 72+65+(-105)+(-28) 17、(-23)+|-63|+|-37|+(-77) =4 =018、19+(-195)+47 18、(+18)+(-32)+(-16)+(+26) =-129 =-420、(-0.8)+(-1.2)+(-0.6)+(-2.4) 21、(-8)+(-321)+2+(-21)+12=-5 =2 有理数减法7-9 ―7―9 0-(-9) (-25)-(-13) =-2 =-16 =9 =-12(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5) |-32|―(-12)―72―(-5) =-8 =39.5 =-23(+103)―(-74)―(-52)―710 (-516)―3―(-3.2)―7 (+71)―(-72)―73=―7011 =-10 =00.5+(-41)-(-2.75)+21 (+4.3)-(-4)+(-2.3)-(+4)=3.5 =2原则三:结果的形式要与题目中数的形式保持一致。
如确定是分数还是小数,分数必须是带分数或真分数,不得是假分数,过程中无所谓。
有理数乘法 (-9)×32(-132)×(-0.26) (-2)×31×(-0.5)=-6 =0.04 =3131×(-5)+31×(-13) (-4)×(-10)×0.5×(-3) (-83)×34×(-1.8)=-6 =-60 =0.9(-0.25)×(-74)×4×(-7) (-73)×(-54)×(-127)=-4 =-51(-0.5)-(-341)+6.75-521 (+6.1)―(-4.3)―(-2.1)―5.1=4 =7.4 (-32)―(-143)―(-132)―(+1.75) (-332)―(-243)―(-132)―(-1.75)=1 =2.5-843-597+461-392 -443+61+(-32)―25 =-13127 =-743(-8)×4×(-21)×(-0.75) 4×(-96)×(-0.25)×481=-12 =2(74-181+143)×56 (65―43―97)×36=32—63+12 =30—27—28 =19 =-2525×43-(-25)×21+25×41 (-36)×(94+65-127) =25×(43+21+41) =-16-30+21=25×121 =-25 =3721原则四:巧妙运用运算律(187+43-65+97)×7231×(2143-72)×(-58)×(-165)=28+54-60+56 =31×(1427)×(-58)×(-165)=78 =289有理数除法18÷(-3) (-24)÷6 (-57)÷(-3) (-53)÷52(-42)÷(-6)= -6 =-4 =19 =-23 =7 (+215)÷(-73) (-139)÷9 0.25÷(-81) -36÷(-131)÷(-32)=-95 = -131=-2 =-4021-3÷(31-41) (-2476)÷(-6) 2÷(5-18)×181=-36 =471=-1171131÷(-3)×(-31) -87×(-143)÷(-83) (43-87)÷(-65) =274 =-21 =203(-1)÷(-4)÷74 3÷(-76)×(-97) 0÷[(-341)×(-7)] =167 =1849 =0(29-83+43)÷(-43) -3.5 ×(61-0.5)×73÷21 -172÷(-165)×183×(-7) =-6+21-1 =-27×(-31)×73×2 =-79×116×811×7 =-621 =1 =-427=-643原则五:结果的形式要与题目中数的形式保持一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(上)数学 有理数的运算专题训练一.选择题(共10小题) 1.比3-大1的数是( ) A .1B .2-C .4-D .12.一堆煤,用了40%,还剩这堆煤的( ) A .40%B .60%C .60吨D .无法确定3.20(20)+-的结果是( ) A .40-B .0C .20D .404.下列运算中正确的是( ) A .11|()|55-+=-B .(5)5--=-C .(5)50--=D .3(2)5--=5.计算|1|3--,结果正确的是( ) A .4-B .3-C .2-D .1-6.计算21()36---的结果为( )A .12-B .12 C .56-D .567.计算:1(3)()(3-⨯-= )A .3-B .3C .1D .1-8.计算3个29的和是( ) A .239B .23C .227 D .139.计算1(6)()3-÷-的结果是( )A .18-B .2C .18D .2-10.有76个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是1,第二个数是1-,那么这76个数的积是( ) A .23(2)-B .24(2)-C .25(2)-D .26(2)-二.填空题(共8小题) 11.计算:2435()57⨯-= .12.计算:2(3)|2|---= .13.8(11)(20)(19)-+--+-写成省略加号的和的形式是 . 14.计算:22()(9)|4|3π-⨯-+-= .15.计算:21522()(1)3493-⨯-+÷-= .16.已知a ,b 互为相反数,m ,n 互为倒数,则3()2019a b mn +-的值为 . 17.李芳的月工资是6500元,扣除5000元免税项目后的部分需要按3%的税率缴纳个人所得税,她应缴纳个人所得税是 元.18.a 、b 表示两个有理数,规定新运算“※”为:a ※2b ma b =+(其中m 为有理数),如果2※31=-,那么3※4的值为 . 三.解答题(共7小题) 19.计算:58126-+-+ 20.计算:5740.125128-+ 21.计算:534126918÷⨯22.计算:12(2)( 1.2)(1)75-÷-⨯-.23.学校运动会上,某班参加比赛的8名女生占全班人数的16. (1)这个班有学生多少人?(2)这个班参加比赛的男生占全班人数的14,参加比赛的男生比参加比赛的女生多几人? 24.夜来南风起,小麦覆陇黄.今年夏天,小鹏家的麦田喜获丰收,某天收割的10袋小麦,称后纪录如下(单位:千克):91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1在没带计算器的情况下,小鹏想帮父亲快速算出这10袋小麦一共多少千克.(1)小鹏通过观察发现,如果以90千克为标准,把超出的千克数记为正,不足的千克数记为负,则可写出这10袋小麦的千克数与90的差值,请你依次写出小鹏得到的这10个差值. (2)请利用(1)中的差值,求这10袋小麦一共多少千克.25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①2411264⨯=.计算过程:24两数拉开,中间相加,即246+=,最后结果264;②6811748⨯=.计算过程:68两数分开,中间相加,即6814+=,满十进一,最后结果748.(1)计算:①3211⨯=;⨯=,②7811(2)若某个两位数十位数字是a,个位数字是(10)+<,将这个两位数乘11,得到一个b a b三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.参考答案一.选择题(共10小题)1.比3-大1的数是()A.1B.2-C.4-D.1解:312-+=-,∴比3-大1的数是2-.故选:B.2.一堆煤,用了40%,还剩这堆煤的()A.40%B.60%C.60吨D.无法确定解:140%60%-=.即剩这堆煤的60%.故选:B.3.20(20)+-的结果是()A.40-B.0C.20D.40解:20(20)0+-=.故选:B.4.下列运算中正确的是()A.11|()|55-+=-B.(5)5--=-C.(5)50--=D.3(2)5--=解:A.11|().55-+=,故错误;B,(5)5--=,故错误;C.(5)510--=-,故错误;.3(2)325D--=+=,故正确.故选:D.5.计算|1|3--,结果正确的是()A.4-B.3-C.2-D.1-解:原式132=-=-.故选:C.6.计算21()36---的结果为( )A .12-B .12 C .56-D .56解:21211()36362---=-+=-.故选:A .7.计算:1(3)()(3-⨯-= )A .3-B .3C .1D .1-解:原式1313=⨯=,故选:C . 8.计算3个29的和是( ) A .239B .23C .227 D .13解:22393⨯=, 即3个29的和是23. 故选:B .9.计算1(6)()3-÷-的结果是( )A .18-B .2C .18D .2-解:1(6)()(6)(3)183-÷-=-⨯-=.故选:C .10.有76个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是1,第二个数是1-,那么这76个数的积是( ) A .23(2)-B .24(2)-C .25(2)-D .26(2)-解:先据题意写出前面一些数:1,1-,2-,1-,1,2,1,1-, 经观察发现从左向右数每排列六个数后,从第七个数开始重复出现,即这76个数是由1,1-,2-,1-,1,2这6个数组成的数组重复排列而成, 而1(1)(2)(1)124⨯-⨯-⨯-⨯⨯=-,又761264=⨯+,这说明,这76个数的和等于最后四个数:1,1-,2-,1-的积.故这76个数的积是:1225(4)(2)(2)-⨯-=-. 故选:C .二.填空题(共8小题)11.计算:2435()57⨯-= 6- .解:原式24353557=⨯-⨯, 1420=-, 6=-.故答案为:6-.12.计算:2(3)|2|---= 7 . 解:2(3)|2|--- 92=-7=,故答案为:7.13.8(11)(20)(19)-+--+-写成省略加号的和的形式是 8112019-+- . 解:8(11)(20)(19)-+--+-写成省略加号的和的形式是:8112019-+-. 故答案为:8112019-+-.14.计算:22()(9)|4|3π-⨯-+-= π- .解:22()(9)|4|3π-⨯-+-4(9)49π=⨯-+- 44π=-+- π=-,故答案为:π-.15.计算:21522()(1)3493-⨯-+÷- 3 .解:原式8153211()()3495333=-⨯-+⨯-=-=,故答案为13.16.已知a ,b 互为相反数,m ,n 互为倒数,则3()2019a b mn +-的值为 2019- .解:a,b互为相反数,m,n互为倒数,a b∴+=,1mn=,3()2019a b mn∴+-3020191=⨯-⨯02019=-2019=-,故答案为:2019-.17.李芳的月工资是6500元,扣除5000元免税项目后的部分需要按3%的税率缴纳个人所得税,她应缴纳个人所得税是45元.解:(65005000)3%-⨯15003%=⨯45=(元),即她应缴纳个人所得税是45元,故答案为:45.18.a、b表示两个有理数,规定新运算“※”为:a※2b ma b=+(其中m为有理数),如果2※31=-,那么3※4的值为 2.5-.解:a※2b ma b=+,2※31=-,2231m∴+⨯=-,解得, 3.5m=-,3∴※4 3.5324 2.5=-⨯+⨯=-,故答案为: 2.5-.三.解答题(共7小题)19.计算:58126-+-+解:原式3126=-+96=-+3=-.20.计算:5740.125 128-+解:原式57141288 =-+,534124=-,5941212=-,233=.21.计算:5341 26918÷⨯解:5341 26918÷⨯1791 63418 =⨯⨯124=.22.计算:12 (2)( 1.2)(1)75-÷-⨯-.解:12 (2)( 1.2)(1)75 -÷-⨯-1557765 =-⨯⨯52=-.23.学校运动会上,某班参加比赛的8名女生占全班人数的16.(1)这个班有学生多少人?(2)这个班参加比赛的男生占全班人数的14,参加比赛的男生比参加比赛的女生多几人?解:(1)1886486÷=⨯=(人),答:这个班有学生48人;(2)148124⨯=(人),1284-=(人),答:参加比赛的男生比参加比赛的女生多4人.24.夜来南风起,小麦覆陇黄.今年夏天,小鹏家的麦田喜获丰收,某天收割的10袋小麦,称后纪录如下(单位:千克):91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1在没带计算器的情况下,小鹏想帮父亲快速算出这10袋小麦一共多少千克.(1)小鹏通过观察发现,如果以90千克为标准,把超出的千克数记为正,不足的千克数记为负,则可写出这10袋小麦的千克数与90的差值,请你依次写出小鹏得到的这10个差值.(2)请利用(1)中的差值,求这10袋小麦一共多少千克.解:(1)1+,1+, 1.5+,1-, 1.2+, 1.3+, 1.3-, 1.2-, 1.8+, 1.1+;(2)11 1.51 1.2 1.3 1.3 1.2 1.8 1.1+++-++--++, 5.4=,9010 5.4905.4⨯+=(千克), 答:这10袋小麦一共905.4千克.25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①2411264⨯=.计算过程:24两数拉开,中间相加,即246+=,最后结果264;②6811748⨯=.计算过程:68两数分开,中间相加,即6814+=,满十进一,最后结果748.(1)计算:①3211⨯= 352 ,②7811⨯= ;(2)若某个两位数十位数字是a ,个位数字是(10)b a b +<,将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是 ,十位数字是 ,个位数字是 ;(用含a 、b 的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理. 解:(1)①325+= 3211352∴⨯=②7815+= 7811858∴⨯=故答案为352,858.(2)两位数十位数字是a ,个位数字是b ,这个两位数乘11, ∴三位数百位数字是a ,十位数字是a b +,个位数字是b .故答案为:a ,a b +,b .(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数, 若两位数十位数为a ,个位数为b , 则11(10)a b +10(10)(10)a b a b =+++ 1001010a b a b =+++10010()a a b b =+++根据上述代数式,可以总结出规律口诀为: “头尾一拉,中间相加,满十进一”.。