材料学习之金属的塑性变形与再结晶
实验七 材料的塑性变形和再结晶

滑移变形具有以下特点: ①滑移在切应力作用下产生(图2)。
图 2 晶体在切应力作用下的变形
②滑移沿原子密度最大的晶面和晶 向发生。
滑移常沿晶体 中原子密度最 大的晶面和晶 向发生,因为 原子密度最大 的晶面之间间 距最大,点阵 阻力最小,原 子密度最大晶 向上原子间最 短,结合力最 弱,因此产生 滑移所需切应 力最小。
因此,一般在室温使用的 结构材料都希望获得细小而均 匀的晶粒。因为细晶粒不仅使 材料具有较高的强度、硬度, 而且也使它具有良好的塑性和 韧性,即具有良好的综合力学 性能。故生产中总是尽可能地 细化晶粒。
2.2 冷塑性变形对金属组织和性能的影响
塑性变形后,金属在组织和性能方面发生四个方面的变化: 1)产生纤维组织,性能由各向同性趋于各向异性。
• 变形金属在加热中一般经历三个过程: (1)回复 (2)再结晶 (3)晶粒长大
变形金属加热时组织和性能变化示意图
回复 再结晶
晶粒长大
组 织
变 内应力
化
性
能 变
强度
化
晶粒度 塑性
(1)回复
(2)再结晶
• 由于再结晶后组织的复原,因而金属的强度、硬度下降, 塑性、韧性提高,加工硬化消失。
再结晶温度(T再): 通常指经大变形度(70~80%)的变形后,在规定
图5a为锌的变形孪晶,其形貌特征为薄透镜状。纯铁在低温 下受到冲击时也容易产生变形孪晶,其形貌如图5b所示,在 这种条件下萌生孪晶并长大的速度大大超过了滑移速度。
a 锌的变形孪晶
100
b 铁的变形孪晶
图5 变形孪晶光学显微形貌
100
工业纯铁压缩变形——滑移线
纯锌冲击变形——孪晶
2.多晶体的塑性变形
第五章 金属的塑性变形及再结晶

四、金属的热加工
1.热变形加工与冷变形加工的区别
从金属学的观点来看,热加工和冷加工的区别是以再结晶温 度为界限。在再结晶温度之下进行的变形加工,在变形的同时没 有发生再结晶,这种变形加工称之为冷变形加工。而金属在再结 晶温度以上进行塑性变形就称为热加工。
2.热变形加工对金属组织与性能的影响
(1)改善铸态组织 热变形加工可以使金属铸锭中的组织缺陷显 著减少,如气孔、显微裂纹等,从而提高材料的致密度,使金属 的力学性能得到提高。
在工业上常利用回复现象将冷变形金属低温加热既消除应为去应力退火力稳定组织同时又保留了加工硬化性能这种热处理方法称1再结晶过程变形后的金属在较高温度加热时原子活动能力较强时会在变形随着原子的扩散移动新晶核的边界面不断向变形的原晶粒中推进使新晶核不断消耗原晶粒而长大
金属材料及热处理
第五章 金属的塑性变形及再结晶
二、冷塑性变形对金属组织和性能的影响
2.冷塑性变形对组织结构的影响 1)产生“纤维组织”
塑性变形使金属的晶粒形状发生了变化,即随着金属外形的 压扁或拉长。当变形量较大时,各晶粒将被拉长成细条状或纤维 状,晶界变得模糊不清,形成所谓的“纤维组织”。
2)产生变形织构
由于在滑移过程中晶体的转动和旋转,当塑性变形量很大时, 各晶粒某一位向,大体上趋于一致了,这种现象称择优取向。 这种由于塑性变形引起的各个晶粒的晶格位向趋于一致的晶粒 结构称为变形织构。
二、冷塑性变形对金属组织和性能的影响
3.产生残余内应力
经过塑性变形,外力对金属所做的功,约90%以上在使金属变 形的过程中变成了热,使金属的温度升高,随后散掉;部分功转 化为内应力残留于金属中,使金属的内能增加。残余的内应力就 是指平衡于金属内部的应力,它主要是金属在外力的作用下所产 生的内部变形不均匀而引起的。 第一类内应力,又称宏观内应力。它是由于金属材料各部分变形 不均匀而造成的宏观范围内的残余应力。 第二类内应力,又称微观残余应力。它是平衡于晶粒之间的内应 力或亚晶粒之间的内应力。 第三类内应力,又称晶格畸变内应力。其作用范围很小,只是在 晶界、滑移面等附近不多的原子群范围内维持平衡。
金属的塑性变形与再结晶

金属的塑性变形与再结晶一、实验目的:1、了解显微镜下滑移线、变形孪晶和退火孪晶特征。
2、了解金属经冷加工变形后显微组织及机械性能的变化。
3、讨论冷加工变形对再结晶晶粒大小的影响。
二、实验内容:1、观察工业纯铁冷变形滑移线,纯锌的变形孪晶,黄铜或纯铜的退火孪晶。
2、观察工业纯铁经冷变形(0%、20%、40%、60%)后的显微组织。
3、用变形度不同的工业纯铝片,退火后测定晶粒大小。
三、实验内容讨论:1、显微镜下的滑移线与变形孪晶:当金属以滑移和孪晶两种方式塑性变形时,可以在显微镜下看到变形结果。
我们之所以能看到滑移线(叫滑移带更符合实际)是因为晶体滑移时,使试样的抛光表面产生高低不一的台阶所致。
滑移线的形状取决于晶体结构和位错运动,有直线形的,有波浪形的,有平行的,有互相交叉的,显示了滑移方式的不同。
变形量越大,滑移线愈多、愈密。
在密排六方结构中,常可看到变形孪晶,这是因为此类金属结构难以进行滑移变形。
孪晶可以看成是滑移的一种特殊对称形式,其结果使晶体的孪生部分相对于晶体的其余部分产生了位向的改变。
由于位向不同,孪晶区与腐蚀剂的作用也不同于其他部分,在显微镜下,孪晶区是一条较浅或较深的带。
在不同的金属中,变形孪晶的形状也不同,例如在变形锌中可看到孪晶变形区域,其特征为竹叶状,α—Fe则为细针状。
除变形孪晶外,有些金属如黄铜在退火时也常常出现以平行直线为边界的孪晶带,这类孪晶称为退火孪晶。
滑移和孪晶的区别:制备滑移线试样时,是试样先经过表面抛光,然后再经过微量塑性变形。
如果变形后再把表面抛光,则滑移线就看不出来了。
制备孪晶试样时,是先经塑性变形,然后再抛光腐蚀,可见:(1)对于滑移线不管样品是否经过腐蚀均可看到,而孪晶只有在磨光腐蚀后才可看见。
(2)滑移线经再次磨光即消失,而孪晶在样品表面磨光腐蚀后仍然保留着。
滑移线和磨痕的区别在于前者是不会穿过晶界的。
2、冷变形后金属的显微组织和机械性能冷加工变形后,晶粒的大小、形状及分布都会发生改变。
机械工程材料第二章金属塑性变形与再结晶

4. 再结晶与重结晶
相同点:晶粒形核、长大的过程。
不同点: (1)再结晶转变前后的晶格类型没有发生变化, 重结晶时晶格类型发生改变。 (2)再结晶是对冷塑性变形的金属而言的,没有 发生冷塑性变形的金属不存在再结晶问题。
三、晶粒长大 再结晶刚刚完成后的晶粒是无畸变的等轴晶粒, 如果继续升高温度或延长保温时间,晶粒之间就 会通过晶界的迁移相互吞并而长大。
➢ 产生残余应力。
(二)其他性能
塑性变形影响金属的物理、化学性能, 如电阻增大,导磁率下降,耐腐蚀性能 降低。 密度、导热系数下降。
三、残余应力(约占变形功的10%)
(一)宏观内应力(第一类内应力) 原因:由工件不同部位的宏观变形不均匀而引起的。 作用范围:作用于整个工件。
金属棒弯曲变形后 的残余应力
正火组织
带状组织
金属冷拉拔后 的残余应力
(二)微观内应力(第二类内应力) 原因:晶粒或亚晶粒之间的变形不均匀引起的。 作用范围:与晶粒尺寸相当。
(三)点阵畸变(第三类内应力)80-90%
原因:晶体缺陷而引起的畸变应力。 作用范围:约几百到几千个原子范围内。
金属强化 主要原因
➢第一类、第二类残余应力: 弊:对金属材料的性二、塑性变形对金属性能的影响
(一)力学性能 加工硬化(形变强化):随着冷塑性变形量 的增加,金属的强度、硬度升高,塑性、韧 性下降的现象。
工业纯铜
45钢
➢加工硬化是强化金属的重要手段之一。
对于不能热处理强化的金属和合金尤为重要。
链条板的轧制
材料为Q345(16Mn) 钢 的自行车链条经过五 次轧制,厚度由3.5mm压缩到1.2mm,总变形 量为65%。
原始横截面积的百分比。
Ψ=
金属的塑性变形与再结晶

➢热加工流线的利用
➢纵向(沿纤维方向),塑性、韧性增加 横向(垂直纤维方向),塑性、韧性降低 但抗剪切能力显著增强。
➢纵向具有最大的抗拉强度,横向具有最大 的抗剪切强度.
57
热加工流线的合理利用
➢流线沿零件轮廓分布不中断 ➢最大拉应力方向沿流线 ➢最大剪应力方向垂直于流线
58
√
59
带状组织
➢(2)杂质与合金元素
杂质元素与微量溶 质原子与晶界产生交互 作用,阻碍晶界迁移。
微量杂质元素含量 越高,晶界迁移越慢
42
➢(3)第二相(分散相)质点
阻碍晶界移动,降低晶粒长大速度
φ:分散相粒子所占的体积分数。 r:粒子的半径
43
第二相颗粒所占体积分数一定时, 颗粒愈细,其数量愈多,则晶界迁移所 受到的阻力也愈大,晶粒正常长大速度 越小。
驱动力:晶界能的降低。
47
48
49
小结:
冷变形在金属材料内部产生了储存能,退 火过程中原子活动能力增强,储存能逐渐释放。 材料内部发生回复、再结晶与晶粒长大。
退火温度较低时,产生回复。储存能部分 释放,材料中的宏观残余应力基本消除,力学性 能及显微组织均保持变形后的特点。
退火温度较高时,产生再结晶。储存能完全 释放,材料重新软化,晶粒为细小的等轴晶。
➢形变金属有回到变形前组织与性能状态 的趋势
3
7.1 形变金属及合金在退火过程中的变化
➢ 回复、再结晶、晶粒长大是形变金属退火时 经历的基本过程
➢1. 显微组织变化
4
2. 储存能释放与性能变化
➢ 经过回复与再结晶, 材料的储存能释放完 毕,材料的组织与性 能能够逐渐恢复变形 前的状态。
5
金属的塑性变形与再结晶(3)

同一滑移面上若有大量的位错移出,则在晶体表 面形成一条滑移线。
位错在晶体中移动时所需切应力很小,因为当位错中心前 进一个原子间距时,一齐移动的只是位错中心少数原子, 而且其位移量都不大,形成逐步滑移,这就比一齐移动所 需的临界切应力要小得多,这称为“位错的易动性”。
研究表明,亚晶界的存在使晶体的变形抗力增加, 是引起加工硬化的重要因素之一。
3.形变织构
在塑性变形过程中,当金属按一定的方向变形量 很大时(变形量大于70%以上),多晶体中原来任 意位向的各晶粒的取向会大致趋于一致,这种有 序化结构叫作“变形织构”,又称为“择优取 向”,
金属材料的加工方式不同形成不同类型的织构: 拉拔时形成的织构称为丝织构,其特征是各个晶 粒的某一晶向平行于拉拔方向;轧制时形成的织 构称为板织构,其特征是不仅某一晶面平行于轧 制平面,而且某一晶向也平行于轧制方向。
3.变形引起的内应力
在金属塑性变形过程中,大约有10%的能量转化为内应力而残留在金属中, 使其内能增加。
这些残留于金属内部且平衡于金属内部的应力称为残余内应力。它是由于金 属在外力作用下各部分发生不均匀的塑性变形而产生的。
内应力一般可分为三种类型:Βιβλιοθήκη (1)宏观内应力(第一类内应力)
金属材料在塑性变形时,由于各部分变形不均匀,使整个工件或在较大的 宏观范围内(如表层与心部)产生的残余应力。
3.1.2多晶体金属塑性变形的特点
大多数金属材料是由多晶体组成的。 多晶体塑性变形的实质与单晶体一样。 要考虑到晶粒彼此之间在变形过程中的约束作用,以及晶界对塑性变形的影
实验-金属的塑性变形与再结晶

一、实验目的 1.了解冷塑性变形对金属组织和性能的影响。 2.了解冷变形度对金属再结晶后晶粒大小的影响。
图 4-1 05 钢冷塑性变形后组织(200×) a)未变形,940℃正火 b)变形程度 40% c)变形程度 70% d)变形程度 80%
二、实验概述 (一)金属塑性变形后的组织、性能变化
注:若时间有限,该组铝片变形试样亦可由实验室事先制备好。
五、实验报告
1.简述实验目的。 2. 根据实验结果,作出纯铜变形度与硬度间的关系曲线。 3. 根据观察试样结果,填写下表。
3
硬 度
材料 处理工艺 浸蚀剂 放大倍数
变形度 纯铜硬度与变形度的关系曲线
低碳钢 抛光后加压变形
未浸蚀
纯锌 稍加塑性变形 HCl+HNO3+甘油
4.加工硬化 由于金属冷塑性变形,亚结构进一步细化,位错密度增大,导致其 强度、硬度提高,而塑性、韧性下降,该现象即称加工硬化。 (二)塑性变形后的回复与再结晶
金属经冷塑性变形后,在热力学上处于不稳定状态,必有力求恢复到稳定状态的 趋势。但在室温下,由于原子的动能不足,恢复过程不易进行,加热会提高原子的活动 能力,也就促进了这一恢复过程的进行。加热温度由低到高,其变化过程大致分为回复、 再结晶和晶粒长大三个阶段,当然这三个阶段并非截然分开。图 4-2a 即为经 70%变形 度的 05 钢,625℃退火后,发生了不完全再结晶,图 4-2b 为 670C 退火后,再结晶已完 成。由图 4-3 可知,在回复阶段,显微组织不变,仅是内应力获得很大松弛,所示其性 能几乎不变。但经再结晶后,显微组织已恢复到变形前的等轴晶,故各种性能也都复原, 即加工硬化完全消除。
度下晶粒形态 作出硬度与变形 并测出其硬度 度的关系曲线
金属的塑性变形与再结晶

可见在滑移过程中“取向软化”和“取向硬化”是 同步进行旳。
三、多晶体旳塑性变形
工程上使用旳金属材料大多为位向、形状、大小 不同旳晶粒构成旳多晶体,所以多晶体旳变形是 许多单晶体变形旳综合作用旳成果。多晶体内单 晶体旳变形仍是以滑移和孪生两种方式进行旳, 但因为位向不同旳晶粒是经过晶界结合在一起旳, 晶粒旳位向和晶界对变形有很大旳影响,所以多 晶体旳塑性变形较单晶体复杂。
所以对冷变形金属进行旳这种低温加热退火只能用在 保存加工硬化而降低内应力改善其他旳物理性能旳场 合。
例如冷拔高强度钢丝,利用加工硬化现象产生旳高强 度,另外,因为残余内应力对其使用有不利旳影响, 所以采用低温退火以消除残余应力。
2 .再结晶
经过回复,虽然金属中旳点缺陷大为降低, 晶格畸变有所降低,但整个变形金属旳晶粒 破碎拉长旳状态仍未变化,组织仍处于不稳 定旳状态。
1. 晶界和晶粒位向旳影响 2. 多晶体金属旳变形过程
1. 晶界和晶粒位向旳影响
晶界旳存在会增大滑移抗力,而且因多晶体中 各晶粒晶格位向旳不同,也会增大其滑移抗力, 所以多晶体金属旳变形抗力总是高于单晶体 。
金属旳晶粒愈细,金属旳强度便愈高 ,而且塑 性与韧性也较高
1.晶界和晶粒位向旳影响
为了确保变形金属旳再结晶退火质量,取得细晶粒, 有必要了解影响再结晶晶粒大小旳原因。
二、影响再结晶粒大小旳原因
变形度影响 退火温度旳影响
1.变形度影响
当变形量很小时,因为晶格畸变很小,不足以引 起再结晶,故加热时无再结晶现象,晶粒度仍保 持原来旳大小,当变形度到达某一临界值时,因 为此时金属中只有部分晶粒变形,变形极不均匀, 再结晶晶核少,且晶粒极易相互兼并长大,因而 再结晶后晶粒粗大,这种变形度即为临界变形度,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑性越好。
材料学习之金属的塑性变形与再结晶
返回
2.滑移系
材料学习之金属的塑性变形与再结晶
返回
3.晶体在滑移过程中的转动
单晶体试样在拉伸实验时(如图7-5),除了沿滑移面产生 滑移外,晶体还会产生转动。因为晶体在拉伸过程,当滑移面 上、下两部分发生微小滑移时,试样两端的拉力(正应力)不 再处于同一直线上,于是在滑移面上形成一力偶,使滑移面产 生以外力方向为转向,趋向于与外力平行的转动。
返回
一、塑性变形
塑性:是指材料在载荷作用下产生塑性变形而不被破坏的能力。
•断面收缩率: 是指试样拉断处横截面积的收缩量Δ A与原始横截
面积A0之比。
•伸长率:是指试样拉断后的标距伸长量Δ L 与原始标距L 0之
比。 韧性断裂:断口呈纤维状,灰暗无光,断前有明显的塑性变形。 脆性断裂:断口有闪烁的光辉,断前无明显的塑性变形。
材料学习之金属的塑性变形与再结晶
返回
1.滑移的表象(滑移带)
• 发生了滑移的金属试样表面状态:试样表面上会出现许多相 互平行的线条称为滑移带,每条滑移带是由许多密集且相互 平行的滑移线构成。
材料学习之图金属7-的3塑性滑变移形带与再和结滑晶移线示意图
返回
1.滑移的表象
• 如果将一个单晶体金属试样表面抛光后,经过伸长变形,再在 金相显微镜下观察,可以看到试样表面出现许多条纹,这些条 纹就是晶体在切应力的作用下,一部分相对于另一部分沿着一 定的晶面(滑移面)和一定的晶向(滑移方向)滑移产生的台 阶,这些条纹称为“滑移线”。
材料学习之金属的塑性变形与再结晶
返回
二、单晶体金属的塑性变形
金属单晶体的塑性变形有“滑移”与“孪生(晶)”等不同方式, 但一般大多数情况下都是以滑移方式进行的。 滑移:是晶体的一部分相对于另一部分沿一定晶面和晶向发生 相对滑动的过程。 •1.滑移的表象(滑移带) •2.滑移系 •3. 滑移的位错机理 •4. 滑移时晶体的转动
可见在滑移过程中,由于晶体的转动,晶体的位向会发生 变化,原来处于软取向滑移系,逐渐转向硬取向,使滑移困难, 这种现象“取向硬化”;相反,原来硬取向的滑移系,将逐步趋 于软位向,易于滑移,称为“取向软化”。结果是滑移产生转移。
可见在滑移过程中“取向软化”和“取向硬化”是同时进行的。
材料学习之金属的塑性变形与再结晶
返回
4.滑移的位错机理
• 晶体的塑性变形是晶体内相邻部分滑移的综合表现。但晶体 内相邻两部分之间的相对滑移,不是滑移面两侧晶体之间的 整体刚性滑动,而是由于晶体内存在位错,因位错线两侧的 原子偏离了平衡位置,这些原子有力求达到平衡的趋势。
• 当晶体受外力作用时,位错(刃型位错)将沿着一定的晶面 和一定的晶向一格一格地逐步移动到晶体的表面,形成一个 原子间距的滑移量。一个滑移带就是上百个或更多位错移动 到晶体表面所形成的台阶。
第七章 金属的塑性变形与再结晶
• §1 金属材料的塑性变形特性 • §2 塑性变形对组织和性能的影响 • §3 回复与再结晶 • §4 金属材料的热加工
材料学习之金属的塑性变形与再结晶
§1 金属的塑性变形特性
• 一、什么是塑性变形 • 二、金属单晶体的塑性变形 • 三、多晶体金属的塑性变形 • 四、合金体的塑性变形
不同金属的晶体结构不同,其滑移面和滑移方向的数目和
位向不同,一个滑移面和在这个滑移面上的一个滑移方向组成
一个“滑移系”。所以不同晶体结构的金属,其滑移系的数目不
同,如体心立方12个,面心立方12个,密排六方3个,且滑移
系的数目越多则金属的塑性愈好,反之滑移系数愈少,塑性不
好,且相同滑移系数目相同时,滑移方向数越多,越易滑移,
观上的体现。
材料学习之金属的塑性变形与再结晶
返回
锌单晶体拉伸试验
图7-4 锌单晶体拉伸试验示意图 (a)变形前试样 (b)变形后试样
材料学习之金属的塑性变形与再结晶
返回
二、单晶体金属的塑性变形
图7-5 单晶体试样拉伸变形示意图
材料移带分布是不均匀的,即塑性变形时,位错只 沿一定的晶面和一定的晶向移动,并不是沿所有的晶面和晶向 都能移动的,这些一定的晶面和晶向分别称为滑移面和滑移方 向,并且这些晶面和晶面都是晶体中的密排面和密排方向。因 为密排面之间和密排方向之间的原子间距最大,其原子之间的 结合力最弱,所以在外力作用下最易引起相对的滑动。
图7-2 拉 伸 曲 线
应力-应变曲线
材料学习之金属的塑性变形与再结晶
返回
一、 塑性变形
• 应力σ :单位面积上试样承受的载荷。 • 应变ε:单位长度的伸长量。 • 屈服点 与屈服强度σs : 产生明显塑性变形的最低应力
值. • 抗拉强度σb :试样在断裂前所能承受的最大应力。
材料学习之金属的塑性变形与再结晶
材料学习之金属的塑性变形与再结晶
返回
一、 塑性变形
• 金属或合金在外力作用下,都能或多或少地发生 变形,去除外力后,永远残留的那部分变形叫塑 性变形。
• 生产中常利用塑性变形对金属材料进行压力加工。 • 金属的塑性变形可分为:
冷塑性变形和热塑性变形。
材料学习之金属的塑性变形与再结晶
返回
一、 塑性变形
• 在更高倍的电子显微镜下观察,一个滑移台阶实际上是一束滑 移线群的集合体,称为“滑移带”。同时还能看到滑移带在晶体 上的分布是不均匀的。
• 单晶体变形时,滑移只在晶体内有限的晶面上进行,是不均匀
的。因此单晶体金属的塑性变形在表面上看出现了一系列的滑
移带,其塑性变形就是众多大小不同的滑移带的综合效果在宏
• 压力加工方法示意图
图7-1 压力加工方法示意图 材料学习之金属的塑性变形与再结晶
返回
一、 塑性变形
FF
b
σ
es
k
p
Fb
Fe Fs
• oe段:弹性变形阶段;
• es段:屈服阶段;
• sb段:均匀塑性变形阶
Fp
段,是强化阶段。
o
g
Δl u Δl b
Δl
Δl • b点:形成了“缩颈”。
f ε • bk段:非均匀变形阶段, 承载下降,到k点断裂。
材料学习之金属的塑性变形与再结晶
返回
4.滑移的位错机理
滑移是通过位错在滑移面上的运动来实现的。
图中显示了一刃型位错在切应力τ的作用下在滑移面上的
运动过程,即通过一根位错线从滑移面的一侧到另一侧