高等数学基础期末复习资料

合集下载

上海开放大学2017至2018学年第一学期《高等数学基础》期末复习题及答案

上海开放大学2017至2018学年第一学期《高等数学基础》期末复习题及答案

试卷代号:7032上海开放大学2017至2018学年第一学期《高等数学基础》期末复习题一.选择题1.函数在连续,则常数的值为( )。

A . ;B . ;C . ;D .2. 下列函数中( )的图像关于y 轴对称。

A .cos x e xB . cos(1)x +C .3sin x x D . xx+-11ln3.下列函数中( )不是奇函数。

A .sin(1)x -;B .x xe e --; C .x x cos 2sin ; D .(ln x4.当0x →时,( )是无穷小量。

A .sin 2x x B .1(1)x x + C . 1cos x D .1sin x x5.函数()sin 4f x x =,则 0()lim x f x x→=( )。

A . 0 ;B .4 ;C . 14; D . 不存在6.函数,则 2()(2)lim 2x f x f x →-=-( )。

A . ln 2 ;B .; C . 12; D . 2 7. 设)(x f 在点0x x =可微,且0()0f x '=,则下列结论成立的是( )。

A . 0x x =是)(x f 的极小值点 B . 0x x =是)(x f 的极大值点 ; C .0x x =是)(x f 的驻点; D . 0x x =是)(x f 的最大值点; 8.下列等式中,成立的是( )。

AB .C .D .9.当函数()f x 不恒为0,,a b 为常数时,下列等式不成立的是 ( )2sin(4)2()22x x f x x k x ⎧-<⎪=-⎨⎪≥⎩2x =k 124-4()ln f x x =1x =222x x e dx de --=-3313xx edx de --=-1ln 33dx d x x=A.)())((x f dx x f ='⎰B.)()(x f dx x f dx d ba=⎰ C. c x f dx x f +='⎰)()( D. )()()(a f b f x f d b a-=⎰ 10.曲线x y e x =-在(0,)+∞内是( )。

数学期末复习提纲

数学期末复习提纲

复习提纲第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法2、分部积分法(注意加 C )定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程)3、空间平面4、空间旋转面(柱面)具体内容函数收敛比如函数的极限是a,那么我们可以叫他为函数收敛于 a 性质如果函数收敛那么极限唯一。

如果函数收敛它一定有界(有界是指函数定义域存在一个数使得函数值的绝对值大于等于这个数)。

绕口令:函数有界是函数收敛的必要条件(因为可能极限不存在)证明极限的方法1求函数极限的方法定义证明设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,|Xn - a|<ε 都成立,那么就称常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。

记为lim Xn = a 或Xn→a(n→∞)2利用左右极限左右极限存在并相等。

3利用极限存在准则一、单调有界准则,如单调递增又有上界者,或者单调递减又有下界者。

二、夹逼准则,如能找到比目标数列或者函数大而有极限的数列或函数并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。

4利用两个重要极限1)x->0时,sinx/x=1 2)x->无穷时,(1+1/x)^x=e x趋近0的时候5极限的运算法则。

高数期末必考知识点总结大一

高数期末必考知识点总结大一

高数期末必考知识点总结大一高数期末必考知识点总结高等数学是大一学生必须学习的一门重要课程,它在培养学生的数学思维、分析问题和解决问题的能力方面起着重要的作用。

期末考试是对学生整个学期所学知识的总结和检验,因此掌握必考的知识点至关重要。

本文将对高数期末必考的知识点进行总结和梳理,以帮助大家更好地备考。

一、函数与极限1. 函数的基本概念和性质:定义域、值域、奇偶性等。

2. 极限的定义与性质:极限存在准则、无穷大与无穷小、夹逼定理等。

3. 重要极限的求解方法:基本初等函数的极限、无穷小的比较、洛必达法则等。

二、导数与微分1. 导数的定义与性质:导数的几何意义、导数的四则运算、高阶导数等。

2. 基本初等函数的导数:常数函数、幂函数、指数函数、对数函数等。

3. 隐函数与反函数的导数:隐函数求导、反函数的导数等。

4. 微分的定义与性质:微分的几何意义、微分中值定理等。

三、不定积分与定积分1. 不定积分的定义与基本性质:不定积分的线性性质、换元积分法等。

2. 基本初等函数的不定积分:幂函数的不定积分、三角函数的不定积分等。

3. 定积分的定义与性质:定积分的几何意义、定积分的性质等。

4. 定积分的计算方法:换元法、分部积分法、定积分的性质等。

四、微分方程1. 微分方程的基本概念:微分方程的定义、阶数、解的概念等。

2. 一阶微分方程:可分离变量的微分方程、齐次线性微分方程等。

3. 高阶线性微分方程:齐次线性微分方程、非齐次线性微分方程等。

4. 常微分方程的初值问题:初值问题的存在唯一性、解的连续性。

五、级数1. 数项级数的概念与性质:数项级数的定义、级数的收敛与发散、级数的性质等。

2. 常见级数的判别法:比较判别法、比值判别法、根值判别法等。

3. 幂级数:幂级数的收敛半径、收敛域的判定、幂级数的和函数等。

综上所述,高数期末必考的知识点主要包括函数与极限、导数与微分、不定积分与定积分、微分方程以及级数等。

在备考期末考试时,同学们要重点复习这些知识点,并通过大量的练习题来巩固和提高自己的理论水平和解题能力。

2014电大《高等数学基础》期末复习资料(例题附答案1)

2014电大《高等数学基础》期末复习资料(例题附答案1)

2014电大《高等数学基础》期末复习资料(例题附答案1)高等数学基础学习辅导(1)函数部分例题讲解例1 若函数,则=( C ).A. 0B. 1C.D.解: 22)4sin()4(=-=-ππf 故选项C 正确。

例2 下列函数对中,哪一对函数表示的是同一个函数?CA .2ln )(,ln 2)(x x g x x f ==B .12ln)(+-=x x x f ,)1ln()2ln()(+--=x x x g C .x e x x g x e x x x f xx -=-=)(,)()(2D .1)(,11)(2-=+-=x x g x x x f 解: A,B,D 中两个函数的定义域都不相同,故它们不是同一函数,C 中函数2)()(xe x x xf x -=的定义域是0≠x ,对应关系可化为 )()()(2x g x e x x e x x x f xx =-=-=故这两个函数是相同的函数。

例3 下列各对函数中,(C )是相同的。

A.x x g x x f ==)(,)(2; B.f x x g x x ()ln ,()ln ==22;C.f x x g x x ()ln ,()ln ==33; D.f x x x g x x (),()=-+=-2111解: A 中两函数的对应关系不同,x x x ≠=2, B, D 三个选项中的每对函数的定义域都不同,所以A B, D 都不是正确的选项;而选项C 中的函数定义域相等,且对应关系相同,故选项C 正确。

例4 下列函数中,哪个函数是奇函数?A .)12sin()(++=x x x fB .)1ln()(2++=x x x fC .x e x x f x-=)(D .x xx x f sin 1)(2⋅-= 解: 由奇函数的定义验证A,C 可知它们都不满足)()(x f x f -=-,D 满足)()(x f x f =-,即它为偶函数 验证B )1)(()1)((ln )1)(ln()(22222x x x x x x x f ++--+-=+-+-=-)()1ln(11ln22x f x x xx -=++-=++=故此函数是奇函数。

《高等数学基础》期末试题及答案

《高等数学基础》期末试题及答案

《高等数学基础》期末试题及答案一、选择题(每题5分,共25分)1. 函数f(x) = x² - 2x + 1在x = 1处的导数是()A. 0B. 2C. -2D. 1答案:A2. 函数y = ln(e²x)的导数是()A. 2xB. 2C. e²xD. 1答案:A3. 下列极限中,正确的是()A. lim(x→0) sinx/x = 0B. lim(x→0) sinx/x = 1C. lim(x→0) sinx/x = ∞D. lim(x→0) sinx/x = -1答案:B4. 函数y = x²e²x的极值点为()A. x = 0B. x = 1C. x = -1D. x = 2答案:C5. 定积分∫(0→1) x²dx的值是()A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题5分,共25分)6. 函数y = 2x³ - 3x² + 2x + 1的一阶导数是______。

答案:6x² - 6x + 27. 函数y = x²e²x的二阶导数是______。

答案:4x²e²x + 4xe²x8. 极限lim(x→∞) (1 + 1/x)²ⁿ = ______。

答案:e9. 定积分∫(0→π) sinx dx的值是______。

答案:210. 定积分∫(0→π/2) eˣdx的值是______。

答案:eπ/2 - 1三、解答题(每题25分,共75分)11. 设函数f(x) = x³ - 3x² + 4,求f'(x)和f''(x)。

解:f'(x) = 3x² - 6x,f''(x) = 6x - 6。

12. 求函数f(x) = x²e²x的极值点和极值。

2014电大《高等数学基础》期末复习资料(例题附答案5)

2014电大《高等数学基础》期末复习资料(例题附答案5)

2014电大《高等数学基础》期末复习资料(例题附答案5)高 等 数 学 基 础 学 习 辅 导(5)导 数 与 微 分 例 题 讲 解(二)例题讲解1. 函数⎪⎩⎪⎨⎧=01sin)(2x x x f00=≠x x 在点0x 处是否可导。

解:∵xx f x f y ∆∆=-∆+=∆1sin)()0()0(2xx x x x x y ∆∆=∆∆∆=∆∆1sin .1sin)(2 ∴01sin .lim lim)0('00=∆∆=∆∆=→∆→∆xx x y f x x 即0)0('=f ,函数在0=x 处可导。

2. 求xx x y 1=的导数解:∵874743231.111-=====xxxx xx xx x y∴8151878787'----=-=x x y3.)1cosln(2xx y +=,求y '。

解: )1c o s (1c o s122'++='x x xx y])1(cos 1cos 211[1cos 1222'++=x xxx)]1)(1sin (1cos 21cos211[1cos 1222x x x xxx --⋅++=)1c o s22s i n 1(1c o s1222xx x xx ++=4. 设解:5. 2tg 1sinx e xy ⋅=,求y d 。

解:2tg 2)1(1cosx e xx y -⋅='+22tg sec 21sin 2x x e x x ⋅⋅则y d 2tg 21cos 1(x e x x⋅-=+x x ex x x d )sec 1sin 222tg 2⋅6. 设解:7. 由方程)0()cos(2π<<=+y x y x 确定了y 是x 的函数,求y '(0)。

解:方程两端对x 求导,得1)22)(sin(2='++-yy x y x故]2)sin(1[22x y x y y -+-='将x =0代入原方程中,得0cos =y ,4,22π=π=y y于是y '(0)=π-。

高等数学基础期末复习资料 (2)

高等数学基础期末复习资料 (2)

《高等数学基础》课程期末考试复习资料册一、单项选择题1.设函数f(x)的定义域为,则函数f(x)+f(-x)的图形关于(C)对称.A.y=xB.x轴C.y轴D.坐标原点2.函数在x=0处连续,则k=(C).A.1B.5D.03.下列等式中正确的是(C).4.若F(x)是4.f(x)的一个原函数,则下列等式成立的是(A).5.下列无穷限积分收敛的是(D).6.设函数f (x)的定义域为,则函数f(x)- f(-x)的图形关于( D)对称.A.y=xB.x轴C.y轴D.坐标原点7.当时,下列变量中( A)是无穷大量.8.设f (x)在点x=1处可导,则 =(B).9.函数在区间(2,4)内满足(A).A.先单调下降再单调上升B.单调上升C.先单调上升再单调下降D.单调下降10.=(B).A.0B. ПC.2ПD. П/211.下列各函数对中,(B)中的两个函数相等.12.当,变量(C)是无穷小量.13.设f(x)在点x=0处可导,则=(A).14.若f(x)的一个原函数是,则=(D).15.下列无穷限积分收敛的是(C).16.设函数f(x)的定义域为,则函数的图形关于(A)对称.A.坐标原点B.x轴C.y轴D. y=x17.当时,变量(D)是无穷小量.18.设f(x)在x。

可导,则=(C).19.若则=(B).20. =(A).21.下列各函数对中,(B)中的两个函数相等.22.当k=(C)时,在点x=0处连续.A. -1B. 0c.1 D.223. 函数在区间(2,4)内满足(B).A. 先单调下降再单调上升B.单调上升C. 先单调上升再单调下降D.单调下降24 若,则= (D).A. sinx十CB. -sinx十cC. -cosx+cD. cosx 十C25. 下列无穷积分收敛的是(A).26.设函数f(x) 的定义域为,则函数f(x)- f(-x)的图形关于(D)对称.A.y=xB.x轴C.y轴D.坐标原点27. 当x→0时,变量(C)是无穷小量.28. 函数在区间(-5,5) 内满足(B).A. 单调下降B.先单调下降再单调上升C先单调上升再单调下降 D.单调上升29. 下列等式成立的是(A).30.下列积分计算正确的是(D).31. 函数的定义域是(D).32.若函数,在x=0处连续,则k=(B).A .1 B.2C.-1D.33.下列函数中,在内是单调减少的函数是(A).34.若f(x) 的一个原函数是,则=(C).A. cosx +cB. - sinx十CC. sinx十CD. - cosx十C35. 下列无穷限积分收敛的是(C).36.下列各函数对中,(C)中的两个函数相等.37. 37.在下列指定的变化过程中, (A)是无穷小量.38. 设f(x)在可导,则= (C).39. =(A).40. 下列无穷限积分收敛的是(C).41.下列函数中为奇函数的是(A).42. 当x→0时,变量(C)无穷小量.43.下列等式中正确的是(B).44 若f(x)的一个原函数是,则=(D).45.=(A).46.函数的图形关于(D)对称.A.y=xB.x轴c.y轴 D.坐标原点47. 在下列指定的变化过程中,(A)是元穷小量.48.函数在区间(-5,5)内满足(C).A. 先单调上升再单调下降B.单调下降C. 先单调下降再单调上升D.单调上升49. 若f(x) 的一个原函数是,则 = (B).50.下列无穷限积分收敛的是(B).二、填空题1.函数的定义域是(3,5) .2.已知,当时,f(x)为无穷小量.3.曲线f(x)=sinx在处的切线斜率是 -1 .4.函数的单调减少区间是 .5.= 0 .6.函数的定义域是(2,6) .7.函数的间断点是 x=0 .8.函数的单调减少区间是 .9.函数的驻点是 x= - 2 .10.无穷积分当时p >1 时是收敛的.11..若,则f(x)= .12.函数的间断点是 x=0 .13.已知,则= 0 .14.函数的单调减少区间是 .15.= .16.函数的定义域是 (-5,2) .17. .18.曲线在点(1,3)处的切线斜率是 2 .19.函数的单调增加区间是 .20.若则f(x)= .21.若则f(x)= .22 已知当时,f(x)为无穷小量.23. 曲线在(l ,2) 处的切线斜率是 .24. = .25 若,则= .26.函数的定义域.27. 函数的间断点是 x=0 .28. 曲线在x=2处的切线斜率是 .29. 函数的单调增加区间是 .30.= .31. 函数,则f(x)= .32. 函数的间断点是 x=3 .33. 已知则 = 0 .34. 函数的单调减少区间 .35. 若f(x) 的一个原函数为lnx,则 f(x) = .36. 若函数,则f(O)= -3 .37.若函数在x=O处连续,则k=e .38.曲线在(2,2)处的切线斜率是 .39.函数的单调增加区间是 .40.= .41. 函数的定义域是(-2,2) .42. 函数的间断点是 x=3 .43. 曲线在(0,2)处的切线斜是 1 .44. 函数的单调增加区间是 .45. 若,则f(x)= .46.函数的定义域是 .47.若函数,在x=O处连续,则k= e .48. 已知f(x) =ln2x ,则= 0 .49. 函数的单调增加区间是 .50. ,则= .三、计算题1.计算极限.解:2..解:由导数四则运算法则和复合函数求导法则得3.计算不定积分.解:由换元积分法得4.计算定积分.解:由分部积分法得5.计算极限.解:6.设,求.解:由导数四则运算法则和复合函数求导法则得7.计算不定积分.解:由换元积分法得8.计算定积分.解:由分部积分法得9.计算极限解:10.设,求dy.解:由微分四则运算法则和一阶微分形式不变性得11.计算不定积分.解:由换元积分法得12.计算定积分.解:由分部积分法得13.计算极限.解:14.设,求.解:15.计算不定积分·解:由换元积分法得16.计算定定积分.解:由分部积分法得17.计算极限.解:18.设求dy.解:19.计算不定积分.解:由换元积分法得20.计算定积分.解:由分部积分法得21.计算极限.22.设求 .解:由导数四则运算法则和导数基本公式得23.计算不定积分.解:由换元积分法得24.计算定积分.解:由分部积分法得25.计算极限.26.设,求.解: 由导数四则运算法则和复合函数求导法则得27.计算不定积分.解:由换元积分法得28.计算定积分.解:由分部积分法得29. 计算极限.30.设,求.解:由导数运算法则和导数基本公式得31.计算不定积分.解:由换元积分法得32. 计算定积分.解:由分部积分法得33. 计算极限.34设,求dy.解: 由微分运算法则和微分基本公式得35.计算不定积分.解:由换元积分法得36.计算定积分.解:由分部积分法得37. 计算极限38.设,求dy.解: 由微分运算法则和微分基本公式得39.计算不定积分.解:由换元积分法得40. 计算定积分.解:由分部积分法得四、应用题1.求曲线上的点,使其到点A(0,2)的距离最短.解:曲线上的点到点A(0,2)的距离公式为d与在同一点取到最大值,为计算方便求最大值点,将代人得求导得令得,并由此解出,即曲线上的点和点到点A(0,2)的距离最短。

(完整版)高等数学复习资料大全

(完整版)高等数学复习资料大全

《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学基础》课程期末考试复习资料册
一、单项选择题
1.设函数f(x)的定义域为,则函数f(x)+f(-x)的图形关于(C)对称.
A.y=x
B.x轴
C.y轴
D.坐标原点
2.函数在x=0处连续,则k=(C).
A.1
B.5
D.0
3.下列等式中正确的是(C).
4.若F(x)是4.f(x)的一个原函数,则下列等式成立的是(A).
5.下列无穷限积分收敛的是(D).
6.设函数f (x)的定义域为,则函数f(x)- f(-x)的图形关于( D)对称.
A.y=x
B.x轴
C.y轴
D.坐标原点
7.当时,下列变量中( A)是无穷大量.
8.设f (x)在点x=1处可导,则 =(B).
9.函数在区间(2,4)内满足(A).
A.先单调下降再单调上升
B.单调上升
C.先单调上升再单调下降
D.单调下降
10.=(B).
A.0
B. П
C.2П
D. П/2
11.下列各函数对中,(B)中的两个函数相等.
12.当,变量(C)是无穷小量.
13.设f(x)在点x=0处可导,则=(A).
14.若f(x)的一个原函数是,则=(D).
15.下列无穷限积分收敛的是(C).
16.设函数f(x)的定义域为,则函数的图形关于(A)对称.
A.坐标原点
B.x轴
C.y轴
D. y=x
17.当时,变量(D)是无穷小量.
18.设f(x)在x。

可导,则=(C).
19.若则=(B).
20. =(A).
21.下列各函数对中,(B)中的两个函数相等.
22.当k=(C)时,在点x=0处连续.
A. -1
B. 0
c.1 D.2
23. 函数在区间(2,4)内满足(B).
A. 先单调下降再单调上升
B.单调上升
C. 先单调上升再单调下降
D.单调下降
24 若,则= (D).
A. sinx十C
B. -sinx十c
C. -cosx+c
D. cosx 十C
25. 下列无穷积分收敛的是(A).
26.设函数f(x) 的定义域为,则函数f(x)- f(-x)的图形关于(D)对称.
A.y=x
B.x轴
C.y轴
D.坐标原点
27. 当x→0时,变量(C)是无穷小量.
28. 函数在区间(-5,5) 内满足(B).
A. 单调下降
B.先单调下降再单调上升C先单调上升再单调下降 D.单调上升
29. 下列等式成立的是(A).
30.下列积分计算正确的是(D).
31. 函数的定义域是(D).
32.若函数,在x=0处连续,则k=(B).
A .1 B.2
C.-1
D.
33.下列函数中,在内是单调减少的函数是(A).
34.若f(x) 的一个原函数是,则=(C).
A. cosx +c
B. - sinx十C
C. sinx十C
D. - cosx十C
35. 下列无穷限积分收敛的是(C).
36.下列各函数对中,(C)中的两个函数相等.
37.
37.在下列指定的变化过程中, (A)是无穷小量.
38. 设f(x)在可导,则= (C).
39. =(A).
40. 下列无穷限积分收敛的是(C).
41.下列函数中为奇函数的是(A).
42. 当x→0时,变量(C)无穷小量.
43.下列等式中正确的是(B).
44 若f(x)的一个原函数是,则=(D).
45.=(A).
46.函数的图形关于(D)对称.
A.y=x
B.x轴
c.y轴 D.坐标原点
47. 在下列指定的变化过程中,(A)是元穷小量.
48.函数在区间(-5,5)内满足(C).
A. 先单调上升再单调下降
B.单调下降
C. 先单调下降再单调上升
D.单调上升
49. 若f(x) 的一个原函数是,则 = (B).
50.下列无穷限积分收敛的是(B).
二、填空题
1.函数的定义域是(3,5) .
2.已知,当时,f(x)为无穷小量.
3.曲线f(x)=sinx在处的切线斜率是 -1 .
4.函数的单调减少区间是 .
5.= 0 .
6.函数的定义域是(2,6) .
7.函数的间断点是 x=0 .
8.函数的单调减少区间是 .
9.函数的驻点是 x= - 2 .
10.无穷积分当时p >1 时是收敛的.
11..若,则f(x)= .
12.函数的间断点是 x=0 .
13.已知,则= 0 .
14.函数的单调减少区间是 .
15.= .
16.函数的定义域是 (-5,2) .
17. .
18.曲线在点(1,3)处的切线斜率是 2 .
19.函数的单调增加区间是 .
20.若则f(x)= .
21.若则f(x)= .
22 已知当时,f(x)为无穷小量.
23. 曲线在(l ,2) 处的切线斜率是 .
24. = .
25 若,则= .
26.函数的定义域.
27. 函数的间断点是 x=0 .
28. 曲线在x=2处的切线斜率是 .
29. 函数的单调增加区间是 .
30.= .
31. 函数,则f(x)= .
32. 函数的间断点是 x=3 .
33. 已知则 = 0 .
34. 函数的单调减少区间 .
35. 若f(x) 的一个原函数为lnx,则 f(x) = .
36. 若函数,则f(O)= -3 .
37.若函数在x=O处连续,则k=e .
38.曲线在(2,2)处的切线斜率是 .
39.函数的单调增加区间是 .
40.= .
41. 函数的定义域是(-2,2) .
42. 函数的间断点是 x=3 .
43. 曲线在(0,2)处的切线斜是 1 .
44. 函数的单调增加区间是 .
45. 若,则f(x)= .
46.函数的定义域是
.
47.若函数,在x=O处连续,则k= e .
48. 已知f(x) =ln2x ,则= 0 .
49. 函数的单调增加区间是 .
50. ,则= .
三、计算题
1.计算极限.
解:
2..
解:由导数四则运算法则和复合函数求导法则得
3.计算不定积分.
解:由换元积分法得
4.计算定积分.
解:由分部积分法得
5.计算极限.
解:
6.设,求.
解:由导数四则运算法则和复合函数求导法则得
7.计算不定积分.
解:由换元积分法得
8.计算定积分.
解:由分部积分法得
9.计算极限
解:
10.设,求dy.
解:由微分四则运算法则和一阶微分形式不变性得
11.计算不定积分.
解:由换元积分法得
12.计算定积分.
解:由分部积分法得
13.计算极限.
解:
14.设,求. 解:
15.计算不定积分·解:由换元积分法得
16.计算定定积分. 解:由分部积分法得
17.计算极限. 解:
18.设求dy. 解:
19.计算不定积分.
解:由换元积分法得
20.计算定积分.
解:由分部积分法得
21.计算极限.
22.设求 .
解:由导数四则运算法则和导数基本公式得
23.计算不定积分.
解:由换元积分法得
24.计算定积分.
解:由分部积分法得
25.计算极限.
26.设,求.
解: 由导数四则运算法则和复合函数求导法则得
27.计算不定积分.
解:由换元积分法得
28.计算定积分.
解:由分部积分法得
29. 计算极限.
30.设,求.
解:由导数运算法则和导数基本公式得
31.计算不定积分.
解:由换元积分法得
32. 计算定积分.
解:由分部积分法得
33. 计算极限.
34设,求dy.
解: 由微分运算法则和微分基本公式得
35.计算不定积分.
解:由换元积分法得
36.计算定积分.
解:由分部积分法得
37. 计算极限
38.设,求dy.
解: 由微分运算法则和微分基本公式得。

相关文档
最新文档