《质数合数》
《质数与合数》的概念及练习

《质数和合数》同步练习一一、填一填(1)一个数,如果只有(1和它本身)两个因数,这样的数就叫做质数(或素数)。
(2)一个数,如果除了(1和它本身)还有别的因数,这样的数叫做合数。
(3)质数有(2)个因数,合数至少有(3)个因数。
(4)最小的质数是( 2 ),最小的合数是(4)。
(5)(0和1)既不是质数也不是合数。
(6)在自然数1—20中:奇数有(1、3、5、7、9、11、13、15、17、19),偶数有(2、4、6、8、10、12、14、16、18、20)质数有(2、3、5、7、11、13、17、19),合数有(4、6、8、9、10、12、14、16、18、20)二、判断(1)所有的奇数都是质数。
(×)(2)所有的偶数都是合数。
(×)(3)在自然数中,除了质数就是合数。
(×)(4)1既不是质数也不是合数。
(√)三、猜数1、比9大比13小的奇数。
(11)2、最小的合数。
( 4 )3、100以内最大的质数。
(97)4、100以内最大的偶数。
(100/98)5、最小的自然数。
(1)6、既不是质数也不是合数。
(0、1)四、拓展练习一个数,最高位千位上是10以内的最大质数,十位上是最小的合数,其他数位上的数都是0,这个数是(7040)。
《质数和合数》同步练习二1. 下面的数中,哪些是合数,哪些是质数。
1、13、24、29、41、57、63、79、87合数有:24、57、63、87质数有:13、29、41、792. 判断。
(1)任何一个自然数,不是质数就是合数。
(×)(2)偶数都是合数,奇数都是质数。
(×)(3)7的倍数都是合数。
(×)(4)20以内最大的质数乘以10以内最大的奇数,积是171。
(√ )(5)只有两个因数的数,一定是质数。
(√)(6)两个质数的积,一定是质数。
(×)(7)2是偶数也是合数。
(×)(8)除2以外,所有的偶数都是合数。
《质数和合数》教学设计

《质数和合数》教学设计教学目标:1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。
2.知道 100 以内的质数,熟 20 以内的质数。
3.培养学生认真学习,善于思考的学习品质。
教学难点:1.理解掌握质数、合数的概念。
2.准确判断一个数是质数还是合数。
教学难点:区分奇数、质数、偶数、合数。
教学过程:一、创设情境1.今天老师上课要先点同学们的学号,请听到学号的同学喊:“到”!并起立。
2 号、4 号、6 号、8 号、10 号、12 号,请按规律自报学号并起立。
师:现在站着的同学和坐着的同学号码有什么不同?根据什么分为奇数和偶数的?2.自然数还有一种新的分类方法,今天就来研究这种分类方法。
二、探索研究1.学习质数和合数的概念。
(1)比赛:写因数。
一组写 1、2、3、5、7、11、13 的因数,另一组写 4、6、8、9、10、12、20 的因数。
师:写得慢的原因是什么?生:我们组的数的因数个数多。
(2)观察:①每个数的因数的个数是否完全相同?②按照每个数的因数的多少,可以分几种情况?(学生讨论后归纳)(3)结合学生的汇报,揭示质数和合数的概念。
(板书概念)师:刚才啊,同学们把自己的学号按照因数个数的多少填在了不同的集合里,不过好像少了一个学号哦,(一生站起)能告诉老师你的学号是几吗?师:谁知道1为何不能进入这两个集合圈?生:因为1的因数只有1。
师:说得好,1只有它本身1个因数,这两个集合圈呀,就都不能进。
所以,1 既不是质数,也不是合数。
不过,大家可别小看了这个1,本单元中,它可是占有很特殊的地位的,在进行各种题目的判断时,你首先应该想到的就是它了。
根据一个数的因数的个数的多少,我们可以把自然数分为三类。
(4)小组内说一个数,判断是质数还是合数。
师:我们应该怎样去判断一个数是质数还是合数?生:根据因数的个数来判断是质数还是合数,不必要把所有的因数都找出来,只要发现自然数除了1和本身还有其它的因数,不管有几个,它都是合数。
《质数与合数》数学教案五年级五篇

《质数与合数》数学教案五年级五篇很多学生都不能区分质数与合数,为让学生更好的接受这个知识点,下面就是小编整理的《质数与合数》数学教案,希望大家喜欢。
《质数与合数》数学教案1教学内容:人教版小学五年级数学质数和合数教学目标:1.理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类.2.培养学生细心观察全面概括.准确判断.自主探索、独立思考、合作交流的能力。
教学重点:能准确判断一个数是质数还是合数.教学难点:找出100以内的质数.教学过程:一、复习导入(加深前面知识的理解,为新知作铺垫)下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数.3和154和2449和791和13指名回答。
二、小组合作学习质数和合数的的概念。
全班分两组探讨并写出1~20各数的因数。
1、观察各数因数的个数的特点。
2、板前填写师出示的表格。
只有一个因数只有1和它本身两个因数除了1和它本身还有别的因数3、师概括:只有1和它本身两个因数,这样的的数叫做质数。
除了1和它本身还有别的因数,这们的数叫做合数。
(板书:质数和合数)4、举例。
你能举一些质数的例子吗?你能举一些合数的例子吗?练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?5。
探究“1”是质数还是合数。
刚才我们说了还有一类就是只有一个因数的。
想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。
)引导学生明确:1既不是质数也不是合数。
练习:自然数中除了质数就是合数吗?三、给自然数分类。
1、想一想师:按照是不是2的倍数把自然数分为奇数和偶数。
按照因数个数的多少,把非零自然数分为哪几类?生:质数,合数,1。
2、说一说。
既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。
质数与合数知识点总结

一、质数的定义和特性1. 质数的定义:质数,又称素数,是指只能被1和本身整除的自然数。
换句话说,质数是只有1和它本身两个因子的自然数。
2. 质数的特性:(1)所有大于1的质数,都是奇数。
因为偶数除了2以外都有其他的因子,不符合质数的定义。
(2)质数的个数是无穷的,即质数是无限的。
(3)任何一个大于1的整数都可以唯一地分解成质数的乘积。
3. 质数的性质:(1)质数的乘积还是质数:如果p和q都是质数,则p*q也是质数。
(2)任何一个大于1的正整数都可以唯一地分解成一些质数的乘积。
二、合数的定义和特性1. 合数的定义:除了1和本身外,还有其他正整数能够整除它的自然数称为合数。
2. 合数的特性:(1)0和1既不是质数也不是合数。
(2)任何一个合数都可以唯一地分解成若干个质数的乘积。
三、质数和合数的判断方法1. 判断一个数是否为质数的方法:(1)试除法:用小于这个数的所有质数来试除这个数,如果都不能整除,则这个数为质数。
(2)埃氏筛法:埃氏筛法是一种简单的找质数的方法,算法的核心思想是从小到大枚举每个数,如果这个数是质数,就标记它的倍数为合数。
2. 判断一个数是否为合数的方法:通常通过试除法判断一个数是否为合数。
即用除数从2开始逐一试除,如果能整除,则是合数,否则为质数。
1. 质数和合数在密码学中的应用:质数和合数在密码学中有着重要的应用,比如RSA加密算法。
RSA算法的核心就是利用两个大素数相乘的结果,来保证加密的安全性。
2. 质数和合数在因子、约数、公因数的求解中的应用:在因子、约数、公因数等问题的求解中,质数和合数的性质是不可或缺的。
3. 质数和合数在数学分解中的应用:在数学分解中,质数和合数的性质也是至关重要的。
在实际应用中,质数和合数的性质不仅仅体现在数论问题中,还涉及到了计算机科学、密码学等领域。
因此对于质数和合数的研究和应用具有重要的意义。
五、质数与合数的相关定理和推论1. 质数定理:质数定理是指对于任意一个正自然数n,当n足够大时,不大于n的质数个数约为n/ln(n)。
《质数和合数》教案【精选3篇】

《质数和合数》教案【精选3篇】《质数和合数》教案篇一教学目标:知识与技能:1、掌握质数和合数的意义。
2、熟记20以内质数,能较快地、准确地辩识一个常见数是质数还是合数。
3、通过探究质数和合数的意义,培养学生的探究意识和能力。
数学思考:1、透过实际箱装饮料罐的排列方式,感知生活中有数学。
2、能对现实生活中箱装饮料罐的数字信息作出合理解释。
情感与态度:1、由简单、实际的生活例子开始,减少学习时遇到太过抽象,无法理解的情况,以增加学习信心。
2、在形式多样的练习中,激发学生的学习兴趣。
教具学具:cai、投影仪、学习单2张,学号数字卡。
教学过程:课前谈话。
如果让你给来听课的老师分类,你想怎样分?(按性别分成男和女两组,按年龄分年青和年长两组)也就是说按不同的标准分有不同的分法。
一、生活实例引入1、观察生活:(1)师:日常生活中,一箱饮料通常都是排在长方体的纸箱中。
请你猜猜看:通常一箱饮料的总数量会是些什么数?(生猜:偶数、奇数)师:真是这样的吗?(2)老师这里拍摄了一些箱装饮料的照片,大家一起来看一看:每箱饮料共有多少瓶?是怎样排列的?用算式表示。
教师出示4张不同数量装箱的照片:板书:9=339瓶啤酒、12瓶可乐、12=3415瓶牛奶、24瓶雪碧15=3524=46学生观察并说一说:9瓶啤酒排成3行3列,9=33(师板书在黑板右侧)2、实际数量的多种排列方法,分析可行性:这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。
)板书:9=33=1912=34=26=11215=35=11524=46=38=212=124提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(请一学生在黑板上勾一勾。
)为什么?(不便携带)3、比较质疑,引入新课:现在老师这儿有13瓶饮料,请你将它们排在一个长方体纸箱中,要求每排数量相等,可以有哪些排法?17呢?19呢?板书:13=113 学生思考,同桌说一说17=117 (师板书在黑板左侧)19=119你还能举出几个这样的数吗?据学生回答:20以内的质数。
人教版五年级下小学数学教案:《质数和合数》

五年级下小学数学教案:《质数和合数》人教版五年级下小学数学教案:《质数和合数》作为一名教学工作者,时常需要编写教案,教案是教学活动的总的组织纲领和行动方案。
怎样写教案才更能起到其作用呢?以下是小编整理的人教版五年级下小学数学教案:《质数和合数》,欢迎阅读,希望大家能够喜欢。
【设计理念】数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。
本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。
【教学内容】人教版五年级下册第23~24页“质数与合数”。
【学情与教材分析】本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。
本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。
【教学目标】1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。
2.把握整数按因数个数的`分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。
3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。
【教学准备】课件;练习纸每生一张。
【教学过程】活动一:构建质数和合数概念1.引导学生按要求列出乘法算式:“因数用整数、不用1”。
教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。
学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。
2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。
教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。
《质数和合数》教案

《质数和合数》教案一、教学目标知识与技能:1. 学生能够理解质数和合数的概念。
2. 学生能够判断一个自然数是质数还是合数。
3. 学生能够找出给定范围内所有的质数和合数。
过程与方法:1. 学生通过探究活动,培养观察、分析、归纳的能力。
2. 学生能够运用质数和合数的知识解决实际问题。
情感态度与价值观:1. 学生培养对数学的兴趣,体验成功的喜悦。
2. 学生培养合作意识,学会与他人交流分享。
二、教学内容1. 质数和合数的定义。
2. 判断一个自然数是质数还是合数的方法。
3. 找出给定范围内所有的质数和合数。
三、教学重点与难点重点:1. 质数和合数的定义。
2. 判断一个自然数是质数还是合数的方法。
难点:1. 理解质数和合数的含义,能够正确判断一个自然数是质数还是合数。
2. 找出给定范围内所有的质数和合数。
四、教学方法采用探究式教学法、小组合作学习法、讲授法等多种教学方法,引导学生主动参与,培养学生的观察能力、思考能力和动手能力。
五、教学准备教具:黑板、粉笔、课件。
学具:练习本、铅笔。
六、教学过程1. 导入:通过复习上节课的内容,引导学生回顾自然数的分类,为新课的学习做好铺垫。
2. 探究:组织学生进行小组讨论,探究质数和合数的定义,引导学生通过观察、分析、归纳得出结论。
3. 讲解:讲解质数和合数的定义,举例说明如何判断一个自然数是质数还是合数。
4. 练习:布置练习题,让学生运用质数和合数的知识解决问题,巩固所学内容。
5. 总结:对本节课的内容进行总结,强调质数和合数的重要性。
七、课堂练习(1)7 (2)12 (3)17 (4)242. 填空题:填空使等式成立。
(1)4 = _______ + _______ (2)21 = _______ + _______3. 解答题:找出100以内的所有质数和合数。
八、课后作业(1)31 (2)40 (3)43 (4)652. 应用题:小明有一堆数字卡片,其中有质数也有合数。
五年级数学下册《质数和合数》练习题及答案解析

五年级数学下册《质数和合数》练习题及答案解析学校:___________姓名:___________班级:________________一、判断题1.任何质数加上1都能成为合数。
( )2.把一根16cm长的铁丝围成一个长是a厘米,宽是b厘米的长方形,若a和b都是质数,则长方形的面积是215cm。
( )3.在全部自然数里,不是质数就是偶数。
( )4.所有的质数一定是奇数,所有的合数都是偶数。
( )5.最小的质数是1,最小的合数是4。
( )二、填空题6.一个两位数,个位上是最小的合数,十位上是3的倍数,这个数最大是( )。
7.6的倍数中,最小倍数是( ),100以内3的最大倍数是( );28的因数中最大的一位数是( );20以内最大的质数是( )。
8.20以内所有质数是( ),其中最大的质数比最小的质数多( )。
9.176是一个( )分数,它的分数单位是( ),它有( )个这样的分数单位,再添上( )个这样的分数单位就是最小的合数。
10.下面的游戏规则公平吗?在后面的括号里填“公平”或“不公平”。
(1)淘气和弟弟玩五子棋,他们设计了一个摸牌方案决定谁先走。
将下面4张扑克牌背面朝上,任意摸一张牌,摸到质数弟弟先走,摸到合数淘气先走。
( )(2)足球比赛中,裁判用抛硬币的方法决定谁先开球。
( )(3)同学们玩跳皮筋,常用“石头、剪刀、布”的方法来决定谁先跳。
( )(4)下象棋时,先掷骰子,朝上的数字比3大,红方先走;比3小,黑方先走。
( )11.( )既不是质数也不是合数,( )是偶数但不是合数。
三、解答题12.三个不同的质数之和是50,写出这三个质数。
13.用数字1,2,3,组成一位数、两位数和三位数,其中哪些是质数,哪些是合数?四、选择题14.两个不同质数的积—定是()。
A.合数B.质数C.奇数D.偶数15.下面()组的两个数互质.A.15和16B.14和21C.39和1316.要使3□15能被3整除,□里最小能填()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100以内质数歌诀
2 3 5 7 和 11 ,
13 17 和
19 。
23 29 31 ,又来 37 。
41 43 47 ,
53 59 61 又来 67
71 73 79 , 83 89 97。
五年级下册二单元
质数和合数
用多张扑克牌时, 要求摆的方向一致!
请大家根据刚才的发现,想一想,如果用 15张、16、17、18、19、20 张扑克牌 呢?各能摆出几种不同形状长方形?
把1—20数字按照因数的个数情况分分类
只能摆出1种 1
能摆出 两种
2 11 3 13 5 7 17
19
4
14
可以摆出3 6
我国的数学家陈景润已经证明了 任何一个充分大的偶数都可以表示为 一个质数加上两个质数的积。被称为 陈氏定理,在国际数学界引起了强烈 的反响。但离彻底证明哥德巴赫猜想 还差最后一步。这颗镶嵌在数学皇冠 上的璀璨明珠期待着你们去摘取。
知识介绍二: 陈景润
把1~20各数填入下表,并找出其中的质数。 奇数 1 3 5 7 9 11 13 15 17 19 偶数 2 4 6 8 10 11 13 17 19)
最小的质数是( );最小的合数是( )。
既是奇数又是质数的有(
);
既是奇数又是合数的有(
);
既是偶数有时质数的有(
);
既不是质数又不是合数的是(
)。
观察上表格还发现什么特点?
▪ 辨析概念:请给出合适的理由 ▪ 找出每组中与众不同的数(用手指表示序号
▪ 第一组 :11 13 2 21 23
▪ 第二组 : 7 14 21 25 49
游戏:破译密码
A 既不是质数也不是合数 B 相邻两个质数的和 C 最大的一位数 D 最小的合数 E 最大的一位偶数 F 最大的一位质数与最小的一位质数的差儿 G 相邻两个质数的乘积 H 既是2的倍数又是3的倍数 I 最小的自然数 J 最小的偶数 K 最大的一位合数与最小的一位合数的差儿
迄今最大的质数
数学界在2016年1月7日,发现了 第49个被称为“冰山一角”的梅森素数. 美国数学家柯蒂斯·库珀找到了目前最大 素数“2的74,207,281次方减1”数值高 达22,338,618位数。长达2233万位,如 果用普通字号将它打印出来长度将超过 65公里。
二百多年前,德国有一位名叫哥 德巴赫的数学家。他发现任何一个大 于4的偶数,都可以写成两个质数的 和。例如:6=3+3,10 =3+7, 12=5+7......因为这个问题他还没有 证明出来,人们把它称为哥德巴赫猜 想。
15
种或更多种 8 9
16
10
18
12
20
只有1因数 1既不是质数
又不是合数
除了1 和它本身 还有别的 因数
合数
了解100以内的质数情况
先去 掉1
再划 去除 2以 外的 所有 偶数
再划 去除 3以 外3 的倍
数
划 去 5 以 外 5 的 倍 数
最后 划去 7以 外7 的倍 数
100以内的质数表