分子进化与系统发育分析报告
分子进化的推导与系统发育树构建研究

分子进化的推导与系统发育树构建研究分子进化的推导和系统发育树构建研究是现代生物学领域中一项重要的研究课题。
它通过分析生物体内的分子遗传信息,来推导物种间的进化关系,并进一步构建系统发育树。
本文将介绍分子进化的推导过程以及系统发育树的构建方法。
在分子进化的推导过程中,研究者通常会选择一段具有较高变异性的DNA、RNA或蛋白质序列作为研究对象。
这些序列在不同物种之间的差异反映了它们的进化关系。
首先,研究者需要对所选序列进行测序,并通过生物信息学方法对序列进行比对和分析。
比对可以揭示序列中的共有特征与差异,而分析则可以计算序列之间的相似性和进化距离。
为了推导物种之间的进化关系,研究者可以利用不同的进化模型进行分析,例如Jukes-Cantor模型、Kimura两参数模型和最大似然法等。
这些模型基于一系列假设和统计方法,可以估计序列的演化速率和进化关系。
通过计算进化距离矩阵,研究者可以建立物种之间的相似性网络图,并利用聚类算法将物种进行分类和分组。
系统发育树是推导物种间进化关系的重要工具。
它是一种图形化的表示方式,用树状结构展示不同物种之间的演化关系。
构建系统发育树的方法有多种,例如最简原则、最大拟然法和贝叶斯推断等。
最简原则是一种直观且简单的构建方法,它假设进化关系中的分支数目最少。
最大拟然法则基于最大似然估计原理,通过计算相似性矩阵的概率分布来确定最优的拓扑结构。
贝叶斯推断则是一种统计推断方法,它通过考虑先验概率和后验概率来推测系统发育树的结构。
在构建系统发育树的过程中,研究者还需要对结果进行评估和验证。
常用的评估指标包括支持率和置信度。
支持率可以评估进化树的可靠性,它通过重复计算获得统计学意义上的支持度。
而置信度则通过随机重抽样验证树的一致性和稳定性。
综上所述,分子进化的推导和系统发育树构建是研究生物进化关系的重要方法。
通过分析分子遗传信息和构建系统发育树,我们可以更好地了解不同物种之间的进化历程和亲缘关系。
分子进化与生物系统发育

分子进化与生物系统发育分子进化和生物系统发育是生物学领域的两个重要研究方向,它们通过研究分子遗传材料的演化和生物体之间的关系,揭示了生物界多样性的起源和发展。
本文将介绍分子进化和生物系统发育的基本概念、研究方法以及其在生物学研究和应用中的重要性。
一、分子进化的概念和意义分子进化是指从分子水平上研究生物种群和物种之间的遗传关系和演化过程。
它基于遗传物质的变异和传递规律,通过比较生物体内DNA、RNA和蛋白质序列的差异和相似性,推断生物种群的演化关系和进化历史。
分子进化的重要意义在于,它能够提供关于物种形成、进化速率、群体迁移和自然选择等方面的证据和解释。
通过分析不同物种之间的序列差异,可以推断它们的共同祖先、分化时间和进化关系,从而帮助我们理解种群的形成和演化过程。
二、分子进化的研究方法1. 分子演化树的构建分子演化树是表示不同物种或类群之间进化关系的图形化工具。
构建分子演化树的基本方法包括距离法、最大似然法和贝叶斯法等。
其中,距离法基于不同序列之间的差异程度构建演化树,最大似然法则通过计算出现观察到的数据的概率来估计最合理的演化树,而贝叶斯法则则通过概率模型进行演化树的推断。
2. 分子钟模型分子钟模型是一种用于估计物种分化时间的方法。
该模型假设基因的变化速率是恒定的,从而可以通过测量不同物种中特定基因的差异来推算它们的分化时间。
分子钟模型在分子进化研究中被广泛应用,为了更准确地估计物种的分化时间,研究人员通常使用多个基因进行分析。
三、生物系统发育的概念和意义生物系统发育研究的是生物界中不同物种和分类单元之间的系统关系和谱系发展。
它基于生物形态、生理和分子特征的相似性和差异性,通过构建系统发育树来揭示物种分类和多样性的起源和发展。
生物系统发育具有重要的意义,它为我们了解不同物种的亲缘关系和进化历史提供了重要线索。
通过构建系统发育树,可以揭示不同物种之间的共同祖先、演化路径和物种间的近亲关系。
此外,在进化生物学、生态学和保护生物学等应用领域,生物系统发育也为物种保护、进化机制研究等提供了理论和实证基础。
分子进化和系统发育的研究及其应用

分子进化和系统发育的研究及其应用进化是生物学的核心概念之一,分子进化是现代进化生物学的重要组成部分,而分子系统发育则是分子进化研究的一项重要应用。
本文将从分子进化的基本原理出发,介绍分子系统发育的原理、方法与应用,并探讨其在不同领域中的意义。
一、分子进化的基本原理分子进化是基于DNA/RNA序列或蛋白质序列的进化研究分支。
基因等遗传物质包含了生物过去和现在的大部分信息,通过比较彼此的差异,就能推导出它们之间的进化关系。
分子进化的基本原理在于遗传突变的随机性和累积性。
在生物个体复制时,遗传物质会随机地产生突变,这些突变可以累积,最终就会形成差异。
这些差异可以代表生物的基因型和表型的演化历史。
二、分子系统发育的原理分子系统发育是根据生物体DNA/RNA序列或蛋白质序列的变化,推断生物之间的进化关系和亲缘关系的科学。
生物之间的相似性是由共同的祖先所造成的,相似性越大,共同祖先的距离就越近。
分子系统发育利用各个物种之间的序列差异,通过复杂的计算机分析推断各个物种之间的进化关系及其进化时间。
分子系统发育中通常用到的基本原理之一是“钟模型”,即基因变异率(即分子钟)是在所有物种中大致相同的。
换句话说,如果我们确定了一组基因序列的共同祖先时间,我们就可以根据不同物种间的分子差异推定这些物种的进化时间。
三、分子系统发育的方法分子系统发育研究通常使用序列比对、物种树构建、分支支持度评估和模型选择等方法。
下面简要介绍每种方法的基本原理:1. 序列比对序列比对是分子系统发育分析的基础之一,其目的是从一组相关序列中确定基因组中位点、简化不必要的信息,减小计算量。
序列比对中使用的最常用算法是 Needleman-Wunsch(NW)算法和Smith-Waterman(SW)算法。
这些算法旨在寻找两个(或多个)序列之间的最长公共子序列(LCS),并且可以计算序列间的“匹配”和“不匹配”得分。
2. 物种树构建分子系统发育分析的主要目的是构建物种树,物种树是表示生物之间进化关系的分枝图。
生物信息学第七章分子进化与系统发育分析2

生物信息学第七章分子进化与系统发育分析(2)同义与非同义的核苷酸替代❒同义替代:编码区的DNA序列,核苷酸的改变不改变编码的氨基酸的组成❒非同义替代:核苷酸改变,从而改变编码氨基酸的组成❒计算方法:进化通径法Kimura两参数法采用密码子替代模型的最大似然法SdS❒Ka/Ks ~ 1: 中性进化❒Ka/Ks << 1: 阴性选择,净化选择❒Ka/Ks >> 1: 阳性选择,适应性进化❒多数基因为中性进化,约1%的基因受到阳性选择->决定物种形成、新功能的产生❒PAML, MEGA等工具:计算Ka/Ks及统计显著性进化通径法:Nei-Gojobori❒首先需要考虑:潜在的同义(S )和非同义位点数(N )❒基本假设:所有核苷酸的替代率相等❒用f i 表示某一个密码子第i 位的核苷酸上发生同义替代的比例;(i=1,2,3)❒所有密码子潜在的同义和非同义替代的位点数定义如下:,n=3-s∑==31i i f s潜在的同义和非同义位点数的估计❒例如对于Phe, 密码子TTT, 第三位T变成C时为同义替代,变成A/G为非同义替代❒因此:❒s=0+0+1/3❒n=3-1/3=8/3❒终止密码子忽略不计;如Cys的TGT, s=0.5整个序列的同义与非同义估计❒和N=3C-S; Sj 为第j 位密码子的s 值,C 为所有密码子的总数❒S+N=3C :所比较的核苷酸的总数∑==C j j S S 1S d 与N d 的计算:进化通径❒当一对密码子仅存在一个差异时,可以立即判断是同义还是非同义,进化通径只有一种可能;例如对于GTT(Val)和GTA(Val),s d =1,n d =0;而对于ATT(I)和ATG(M),s d =0,n d =1❒一对密码子存在两个差异时:两种进化通径(简约法,即最少需要)。
例如:比较TTT(Phe)和GTA(Val): (1) TTT(Phe)<->GTT(Val)<->GTA(Val)(2) TTT(Phe)<->TTA(Leu)<->GTA(Val)❒s d =1/2=0.5,n d =3/2=1.5❒同样,终止密码子不予考虑一对密码子存在三个差异时:六种进化通径。
分子进化与系统发育

分子进化与系统发育的未来发展方向
研究分子进化与系统 发育的关系,为物种 起源和演化提供新的
视角
利用分子进化与系统 发育的研究成果,为 医学、农业等领域提
供新的技术手段
探索分子进化与系统 发育的关系,为环境 保护和生物多样性保
护提供新的思路
研究分子进化与系统 发育的关系,为理解 生命起源和演化提供
新的理论基础
感谢您的观看
汇报人:XX
物种形成:物种形成是分子进 化的结果,新物种的形成需要 一定的突变和自然选择压力。
分子进化的意义
揭示生物进化 的机制和规律
帮助科学家了 解生物多样性 的起源和演化
过程
为药物研发提 供新的靶点和
思路
指导人类疾病 的预防和治疗
2 系统发育
系统发育的概念
系统发育:研究生物 类群之间的进化关系
和历史
目的:了解生物多样 性的形成和演化过程
分子进化与系统发育
XX,a click to unlimited possibilities
汇报人:XX
目录 /目录
01
分子进化
02
系统发育
03
分子进化与系 统发育的关系
1 分子进化
分子进化的概念
分子进化:指生 物体内分子水平 的进化过程,包 括基因、蛋白质 等分子的变化。
基因突变:基因 在复制过程中发 生的随机变化, 是分子进化的重 要机制之一。
自然选择:环境 对生物体基因突 变的选择,有利 于适应环境的突 变被保留下来。
分子钟:通过比 较不同物种的基 因序列差异,估 算物种之间的进 化关系和进化时 间。
分子进化的证据
基因序列比较:不同物种的基因序列比较,揭示了分子进化的证据
分子进化与系统发育分析

汇报人:XX
目录
• 引言 • 分子进化理论与方法 • 系统发育分析方法 • 分子标记与基因组学在系统发育分析中应用 • 系统发育树评估与优化 • 挑战与展望
01
引言
分子进化与系统发育关系
分子进化是生物进化的重要组成部分,涉及基 因和蛋白质序列的变异、选择和遗传漂变等过 程。
似然比检验(Likelihood ratio test):通过 比较不同模型下的似然值,评估分支长度的 统计显著性。
提高系统发育树准确性策略
增加数据量
使用更多的基因或物种数据,以提高系统发 育树的分辨率和准确性。
选择适当的进化模型
对于存在异质性的基因数据,可以采用分区 (partition)或基因树-物种树(gene treespecies tree)等方法进行处理,以提高系统
生物学与数学
数学家可以为生物学家提供强大的统计和计算工具,帮助 解析复杂的生物类群系统发育关系。
生物学与地球科学
地球科学家可以提供关于生物演化的地质历史背景信息, 为生物学家解析生物类群系统发育关系提供重要线索。
感谢您的观看
THANKS
最大似然法
基于统计模型
通过构建一定的统计模型,估计模型参数,使得观测数据出现的概 率最大,从而重建系统发育关系。
代表性方法
ML(最大似然法)等。
适用范围
适用于数据量较大,且进化模型较复杂的情况,如分子序列数据分析 。
贝叶斯推断法
基于概率模型
通过构建概率模型,利用贝叶斯定理计算后验概率, 从而重建系统发育关系。
对原始序列数据进行质量评估和 控制,包括去除低质量序列、污 染序列等。
将不同物种或个体的DNA序列进 行比对,找出同源序列并确定序 列间的差异。
生物的分子进化与系统发育学
生物的分子进化与系统发育学生物的分子进化与系统发育学是一门研究生物进化过程以及生物种类之间关系的学科。
它通过对生物的分子遗传物质(如DNA、RNA和蛋白质)进行研究,揭示了生物种类的起源和进化历程,并为生物分类和系统发育提供了重要依据。
本文将从分子进化和系统发育两个方面来探讨生物的分子进化与系统发育学。
一、分子进化1. DNA序列分析DNA是生物遗传信息的载体,通过对DNA序列的比较和分析,可以推测物种的亲缘关系和进化历史。
例如,比较不同物种的DNA序列,可以计算出它们之间的遗传距离,从而判断它们的亲缘程度。
同时,DNA序列的碱基组成和变异情况也能揭示生物的进化过程。
2. 蛋白质序列比较蛋白质是生物体内重要的功能分子,不同物种的蛋白质序列差异可以反映它们的进化关系。
通过比较蛋白质序列的同源性,可以推断物种之间的相似性和差异性,进一步揭示它们的进化途径和演化过程。
二、系统发育1. 系统发育树系统发育树是研究生物种类关系的重要工具。
通过对不同物种的分子数据进行分析,可以构建系统发育树,揭示物种之间的进化关系。
系统发育树可以有不同的构建方法,如最大简约法、邻接法等,每种方法都可以提供不同的进化关系图。
2. 分子钟分子钟是一种通过分子数据估算物种分化时间的方法。
它基于遗传变异的推移速率,根据物种的分子特征,估算出不同物种之间的分化时间。
分子钟为研究生物种类的起源和进化历程提供了重要依据。
综上所述,生物的分子进化与系统发育学通过对生物遗传物质进行研究,揭示了生物种类的起源、进化历程以及物种之间的进化关系。
通过分析DNA和蛋白质序列,可以推断物种的亲缘关系和进化途径;通过构建系统发育树和使用分子钟,可以揭示物种之间的进化时间和分化关系。
生物的分子进化与系统发育学在生物分类、物种演化和保护生物多样性等领域具有重要应用价值。
分子进化与系统发育
分子进化与系统发育分子进化与系统发育是现代生物学的重要研究领域之一。
它通过研究生物体内的分子结构和遗传信息,来揭示不同物种之间的亲缘关系和进化历程。
本文将介绍分子进化与系统发育的基本原理、研究方法和应用。
一、分子进化的基本原理分子进化是指物种内基因组或蛋白质组的遗传信息发生变化的过程。
在分子水平上,进化主要表现为DNA序列的突变和基因组结构的变化。
分子进化的基本原理主要包括以下几点:1. 遗传变异:遗传变异是生物进化的基础,是物种产生多样性的原因。
遗传变异可通过突变、基因重组和基因转移等途径实现。
2. 自然选择:自然选择是分子进化过程中的重要机制。
根据环境变化和适应性需求,具有更有利基因型的个体会在繁殖中获得更高的生存优势,从而逐渐在种群中占据主导地位。
3. 基因漂变:基因漂变是指随机性的基因频率变异,特别在小种群中影响较大。
基因漂变可以导致分子进化的随机性增加,进而导致遗传多样性的减少。
二、分子系统发育的基本原理分子系统发育是通过比较不同物种的DNA序列或蛋白质结构,构建物种间的进化关系树。
它基于分子进化的原理,通过计算相似性或差异性来推断物种的亲缘关系和进化历程。
分子系统发育的基本原理主要包括以下几点:1. 保守性进化:保守性进化是指在漫长的进化历程中,一些基因或蛋白质序列在物种间保持相对稳定的变化。
这些保守性的变化为系统发育提供了可比较的基础。
2. 数据分析:分子系统发育的关键步骤是对获得的分子数据进行分析。
常用的分析方法包括序列比对、构建进化树和计算进化速率等。
3. 进化树的构建:进化树是分子系统发育的主要结果之一。
它通过对不同物种之间的分子差异性进行比较和计算,来揭示它们的亲缘关系和共同祖先。
构建进化树的方法主要包括距离法、最大似然法和贝叶斯法等。
三、分子进化与系统发育的研究方法分子进化与系统发育的研究方法主要包括分子时钟、基因家族分析和基因组学等。
1. 分子时钟:分子时钟是一种基于分子进化速率的方法,用来估计物种的分化时间和进化速度。
4-分子进化与系统发育分析
进化历史的全部信息。
分子途径研究生物进化的可行性
普适性
由4种核酸组成
分子水平的进化表现为:DNA序列的演化、氨基酸 序列演化、蛋白质结构及功能的演化
可比较性
比较不同物种的有关DNA序列
建立DNA序列的演化模型、氨基酸序列的演化模型
3生物普遍存在着变异 亲代与子代并不完全相同,同一亲代所生的子代也 总有差异。
推论
第一个推论:在自然界物种的巨大繁殖潜力未能实现 是由于生存斗争。一方面生物具有高度繁殖力,另一 方面,生存条件不允许生物所产生的后代都能生存下 来,因此,生物必然总是在生存斗争中,或者与无机 环境作斗争,或者与不同种生物斗争(种间斗争), 或者与同种的其它个体作斗争(种内斗争)。
达尔文进化论的产生
达尔文一直在思索 :
自然界的奇花异树,人类万物究意是怎么产生的? 他们为什么会千变万化? 彼此之间有什么联系?
原鸽 家鸽
人工 选择
变异 提供材料
选择
保留了对人有利的变异 淘汰对人不利的变异
核苷酸替代:转换 (Transition) & 颠换 (Transversion)
2. 基因复制:多基因家族的产生以及伪基因 的产生
A. 单个基因复制 – 重组或者逆转录 B. 染色体片断复制 C. 基因组复制
(1) DNA突变
替代
插入
Thr Tyr Leu Leu
Thr Tyr Leu Leu
起作用,单独存在就成为无意义的了。
如果眼是渐进过程的产物,那么,眼应该是 经过了若干发展阶段才进化成眼的,而这些 发展阶段也应该是有适应能力的,否则就被 自然选择淘汰了。那么眼是经过哪些渐进的 有适应能力的中间阶段才发展来的呢?
系统发育学和分子进化研究
系统发育学和分子进化研究系统发育学和分子进化研究是现代生物学中非常重要的领域,对于人们理解生命起源和演化过程至关重要。
系统发育学是研究生物数量级宏观形态和微观结构的分类学,分子进化研究是研究生物分子水平上的演化途径和关系。
两者互为补充,结合运用能够更好地解释和描述生物的演化历程。
系统发育学的历史可以追溯到18世纪末,当时数学家布夫农(C. Bouffon)根据外部形态将生物分为脊索动物和无脊椎动物,开创了生物分类学。
随后,林奈(C. Linnaeus)根据植物和动物的真正特征,将生物按照成系分类法进行归类。
19世纪末,达尔文(C. R. Darwin)的进化论理论对生物分类学产生了极大的影响。
他认为生物的演化是一种逐步发展的过程。
从此,生物的分类法开始逐渐转变为以进化关系为基础的分类系统。
而在20世纪,随着分子生物学的发展,分子进化与系统发育研究成为了生物学领域最重要的研究方向之一。
分子进化研究纵观整个20世纪,发展经历了不同的时期。
第一阶段是DNA结构研究时期。
20世纪50年代发现了DNA分子的双螺旋结构,使得分子生物学进入了新时期。
第二阶段是序列进化研究时期。
1977年,Sanger等人发明了分子生物学中的基本技术之一,即克隆DNA和测序技术。
这使得分子生物学得以将对生物学的研究提升到更高的层次。
第三阶段是基因组学时期。
1995年,在科技的发展推动下,以人类基因组计划为标志的基因组学进入到了高分辨率基因组时代。
这个时期的重要特点是全基因组序列的测序和分析。
第四阶段目前正在进行,是转录组学和蛋白质组学时期。
这两个领域将关注转录水平和翻译水平的转录组数据和蛋白质数据中的生物信息。
分子进化研究已经成为了生物学的重要领域之一。
它通过利用无限制的形态特征,考虑生物的演化关系和起源问题。
而且,它还可以研究分子水平上的演化途径,比如,在一些特殊的进化学问题上,例如两种生物物种之间的分化时间等,分子进化与系统发育学可以给出更精确更准确的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bacteria outgroup 外围支
archaea archaea archaea eukaryote eukaryote eukaryote eukaryote
无根树和有根树:潜在的数目
#Taxa
3 4 5 6 7 … 30
无根树
1 3 15 105 945
有根树
3 15 105 945 10,395
系统发育树是什么?
对一组实际对象的世系关系的描述(如基 因,物种等)。
系统发育树: 术语
分支/世系
末端节点
A 代表最终分
B
类,可以是 物种,群体
C ,或者蛋白
祖先节点/
D
质、DNA、 RNA分子等
树根
内部节点/分歧点,该 E
分支可能的祖先结点
树只代表分支的拓扑结构
A BC D F G E†
D C F GA B E†
同一基因,一般具有相同的功能。 ❖ 并系同源(paralogs):同源基因在同一物种
中,通过至少一次基因复制的事件而产生。
paralogs orthologs
paralogsorth来自logsErik L.L. Sonnhammer Orthology,paralogy and proposed classification for paralog subtypes
Cladograms show branching order branch lengths are meaningless 进化分支图,只用分支 信息,无支长信息。
Eukaryote 4
Phylograms show
Bacterium 1
branch order and
Bacterium 2
branch lengths
异源基因或水平转移基因
(xenologous or horizontally transferred genes)
由某一个水平基因转移事件而得到的同源序列
2.进化分支图,进化树
Bacterium 1
Bacterium 2
Bacterium 3 Eukaryote 1 Eukaryote 2
Eukaryote 3
趣的问题的系统发育信号。 ❖ 8、样本序列是随机进化的。 ❖ 9、序列中的所有位点的进化都是随机的。 ❖ 10、序列中的每一个位点的进化都是独立的。
直系同源与旁系同源
❖ 直系同源(orthologs):同源的基因通过物种
形成的事件而产生,或源于不同物种的最近 的共同祖先的两个基因,或者两个物种中的
以上两个概念代表了两个不同的进化事件 用于分子进化分析中的序列必须是直系同源 的,才能真实反映进化过程。
趋同进化的基因(Convergent evolution )
通过不同的进化途径获得相似的功能,或者功能替代物
(genes have converged function by separate evolutionary paths)
生物信息学
分子进化与系统发育分析
内容提要
❖ 分子进化分析介绍 ❖ 系统发育树重建方法 ❖ Phylip软件包在分子进化分析中的应用 ❖ PAUP*在分子进化分析中的应用 ❖ MEGA分子进化树分析软件
分子进化研究的目的
从物种的一些分子特性出发,从而了 解物种之间的生物系统发生的关系。
蛋白和核酸序列 通过序列同源性的比较进而了解基因的进 化以及生物系统发生的内在规律。
TRENDS in Genetics Vol.18 No.12 December 2002
http://tig.trends.co m 0168-9525/02/$ – see front matter © 2002 Elsevier Science Ltd. All rights reserved.
Bacterium 3
进化树,有分支和支长
Eukaryote 1
信息
Eukaryote 2
Eukaryote 3
Eukaryote 4
无根树,有根树,外围支
archaea archaea archaea
eukaryote
通过外围支 来确定树根
有根树
根
eukaryote
无根树
eukaryote
eukaryote
序列分歧度
分子钟理论
从一个分歧数据可以推测其他
y x
分歧时间
速率恒定的证据:血色素
中性理论
❖ “在生物分子层次上的进化改变不是由自然选择作 用于有利突变引起的,而是在连续的突变压之下由 选择中性或非常接近中性的突变的随机固定造成的, 中性突变是指对当前适应度无影响的突变。”
❖ 否认自然选择在生物进化中的作用,认为生物大分 子的进化的主要因素是机会和突变压力
进化及遗传模型
❖ 1、序列有指定的来源并且正确无误。 ❖ 2、序列是同源的,而序列不是“paralog“的混合物。 ❖ 3、序列比对中,不同序列的同一个位点都是同源的 ❖ 4、在接受分析的一个序列组中,序列之间的系统发
育史是相同的。 ❖ 5、样本足以解决感兴趣的问题。
进化及遗传模型
❖ 6、样本序列之间的差异代表了感兴趣的宽组。 ❖ 7、样本序列之间的差异包含了足以解决感兴
多序列比对(自动比对,手工比对) 建立取代模型(建树方法) 建立进化树 进化树评估
系统发育树重建的基本方法
❖ 1. 最大简约法 (maximum parsimony, MP) ❖ 2. 距离法 (distance) ❖ 3. 最大似然法 (maximum likelihood, ML)
最大简约法 (MP)
~3.58X1036 ~2.04X1038
Taxa增多,计算量急剧增加,因此,目前算法都为 优化算法,不能保证最优解
4.基因树,物种树
a Gene tree
b
A Species tree
B
c
D
We often assume that gene trees give us
species trees
系统发育树重建分析步骤
分子进化研究的基础(假设)
❖ 核苷酸和氨基酸序列中含有生物进化历史的 全部信息。
分子进化研究的基础(理论)
❖ 在各种不同的发育谱系及足够大的进化时间 尺度中,许多序列的进化速率几乎是恒定不 变的。(分子钟理论, 1965 )
分子进化研究的基础(实际)
❖ 虽然很多时候仍然存在争议,但是分子进化 确实能阐述一些生物系统发生的内在规律。