高考数学总复习圆锥曲线综合
(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)

高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。
2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

解析 (1)设动点P的坐标为(x,y),因为| PF | = 5 ,
d5
所以
(x 1)2 y2
=
5 ,即5[(x+1)2+y2]=|x+5|2,整理得 x2 + y2 =1.所以动点P的
| x5|
5
54
轨迹方程为 x2 + y2 =1.
54
(2)设M(x1,y1),N(x2,y2),由(1)可得点A的坐标为(0,-2),故直线AM:y=
AC
·BC
=1,
则点C的轨迹为 ( )
A.圆 B.椭圆 C.抛物线 D.直线
答案 A
3.(2023届贵州遵义新高考协作体入学质量监测,8)已知圆C的方程为(x-1)2
+y2=16,B(-1,0),A为圆C上任意一点,若点P为线段AB的垂直平分线与直线
AC的交点,则点P的轨迹方程为 ( )
A. x2 + y2 =1
2 2
+
y2 b2
=1(a>b>0)的离心率e=
2 ,四
2
个顶点组成的菱形的面积为8 2 ,O为坐标原点.
(1)求椭圆E的方程;
(2)过☉O:x2+y2= 8
上任意点P作☉O的切线l与椭圆E交于点M,N,求证:
PM
·
3
PN
为定值.
解析 (1)由题意得2ab=8 2 ,e= c = 2 ,a2=b2+c2,
2
3
6
,
0
,∴
PM
=
0,
2
3
6
,
PN
=
0,
2
6 3
,
∴
高考数学第一轮复习圆锥曲线的综合问题

圆锥曲线的综合问题●知识梳理分析几何是联系初等数学与高等数学的纽带,它自己重视于形象思想、 推理运算和数形联合,综合了代数、三角、几何、向量等知识. 反应在解题上,就是依据曲线的几何特色准确地变换为代数形式,依据方程画出图形,研究几何性质. 学习时应娴熟掌握函数与方程的思想、数形联合的思想、参数的思想、分类与转变的思想等,以达到优化解题的目的.详细来说,有以下三方面:( 1)确立曲线方程,本质是求某几何量的值;含参数系数的曲线方程或变化运动中的圆锥曲线的主要问题是定值、最值、最值范围问题,这些问题的求解都离不开函数、方程、不等式的解题思想方法 . 有时题设设计的特别隐蔽,这就要求仔细审题,发掘题目的隐含条 件作为解题打破口 .( 2)分析几何也能够与数学其余知知趣联系,这种综合一般比较直观,在解题时保持思想的灵巧性和多面性,能够顺利进行转变,即从一知识转变为另一知识.( 3)分析几何与其余学科或本质问题的综合,主要表此刻用分析几何知识去解相关知 识,详细地说就是经过成立坐标系, 成立所研究曲线的方程, 并经过方程求解往返答本质问题. 在这一类问题中“本质量”与“数学量”的转变是易犯错的地方,这是由于在座标系中 的量是“数目” ,不单有大小还有符号 .●点击双基1. ( 2005 年春天北京, 5)设 abc ≠0,“ ac >0”是“曲线 ax 2+by 2=c 为椭圆”的 A. 充足不用要条件B. 必需不充足条件C. 充足必需条件D. 既不充足又不用要条件 2 2分析: ac >0 曲线 ax +by =c 为椭圆 .答案: B2. 到两定点 A (0, 0), B ( 3, 4)距离之和为 5 的点的轨迹是A. 椭圆所在直线 C. 线段 ABD. 无轨迹分析:数形联合易知动点的轨迹是线段: = 4,此中 0≤ x ≤ 3.AB3答案: C3. 若点( x , y )在椭圆 4x 2+y 2=4 上,则x y 的最小值为2B. - 1C.-23D. 以上都不对3分析:y的几何意义是椭圆上的点与定点( 2, 0)连线的斜率 . 明显直线与椭圆相x2切时获得最值,设直线 = ( - 2)代入椭圆方程( 4+k 2)x 2-4 2 +4 2-4=0.y k xk x k令 =0, k =± 23 .3∴ k min =- 23 .3答案: C4. ( 2005 年春天上海, 7)双曲线 9 2- 16 y 2=1 的焦距是 ____________.x分析:将双曲线方程化为标准方程得x2y221 21 ,- 1 =1. ∴ a =9 , b =16 19 16c 2=a 2+b 2= 1 + 1 =25 .9 16 144∴ c = 5, 2c = 5.126答案:565. ( 2004 年春天北京)若直线+ -3=0 与圆 x 2+ y 2=3 没有公共点,则mx ny系式为 ____________;以( m , n )为点 P 的坐标,过点 P 的一条直线与椭圆公共点有 ____________个 .分析:将直线 mx +ny - 3=0 变形代入圆方程x 2+y 2=3,消去 x ,得(2+2) y 2- 6 ny +9-3 2=0.m nm22令 <0 得 m +n <3.又 m 、n 不一样时为零,2 2∴ 0<m +n <3.223 , | m |< 3 ,由 0<m +n <3,可知 | n |<m 、n 知足的关2 2 x y再由椭圆方程 a = 7 , b = 3 可知公共点有 2 个.2 2答案: 0<m +n <3 2 ●典例分析【例 1】 (2005 年春天北京, 18)如图, O 为坐标原点,直线 l 在 x 轴和 y 轴上的截距分别是 a 和 b ( a >0, b ≠ 0),且交抛物线 y 2=2px (p >0)于 M ( x 1, y 1),N ( x 2, y 2)两点 .lyMOa xb N( 1)写出直线 l 的截距式方程;( 2)证明: 1+1=1;y 1y 2 b ( 3)当 =2 时,求∠的大小 .a pMON分析:易知直线l 的方程为 x + y =1 ,欲证 1+1=1,即求 y1y 2 的值,为此只要aby 1 y 2by 1 y 22=2px 交点的纵坐标 . 由根与系数的关系易得 121 2的值,从而证得 求直线 l 与抛物线 y y +y 、y y 1+ 1 = 1. 由 OM · ON =0 易得∠ MON =90° . 亦可由 k OM ·k ON =- 1 求得∠MON =90° . y 1 y 2 b( 1)解:直线 l 的截距式方程为x + y=1.a b①( 2)证明:由①及 y 2=2 消去x可得by 2+2-2 =0.pxpaypab②点、 的纵坐标 y 1、 y 2 为②的两个根,故 y 1+ 2=2 pa , 1 y 2=-2. M Npab2 pa所以 1 + 1y 1 y 2 = b1== .y 1 y 2y 1 y 2 2 pa b ( 3)解:设直线 OM 、 ON 的斜率分别为k 1、 k 2,则 k 1=y 1,k 2=y 2.x 1 x 2当 a =2p 时,由( 2)知, y 1y 2=- 2pa =- 4p 2,2222由 y 1 =2px 1, y 2 =2px 2,相乘得( y 1y 2)=4p x 1 x 2,x 1x 2= ( y 1 y 2 ) 2 =( 4 p 2 ) 2=4p 2,4 p 2 4 p 2所以 ky 1 y 2 4 p 21k 2===- 1.x 1 x 24 p 2所以 OM ⊥ ON ,即∠ MON =90° .评论:此题主要考察直线、 抛物线等基本知识, 考察运用分析几何的方法分析问题和解决问题的能力 .【例 2】 (2005 年黄冈高三调研考题)已知椭圆C 的方程为x 2+ y 2=1( a >b >0),双a 2b 2x 2 y 2121曲线a 2-b 2 =1 的两条渐近线为 l 、l ,过椭圆 C 的右焦点 F 作直线 l,使 l ⊥ l ,又 l 与l 2 交于 P 点,设 l 与椭圆 C 的两个交点由上至下挨次为A 、B . (以下列图)ylPl 2AOFx Bl 1( 1)当 l 1 与 l 2 夹角为 60°,双曲线的焦距为4 时,求椭圆 C 的方程;( 2)当 FA =λ AP 时,求 λ的最大值 .分析:( 1)求椭圆方程即求、 b 的值,由l 1与l2的夹角为 60°易得b=3,由双曲aa3线的距离为 4 易得 a 2+b 2=4,从而可求得 a 、b .( 2)由 FA =λ AP ,欲求 λ 的最大值,需求A 、P 的坐标,而 P 是 l 与 l 1 的交点,故需求 l 的方程 . 将 l 与 l 2 的方程联立可求得 P 的坐标,从而可求得点A 的坐标 . 将 A 的坐标代入椭圆方程可求得λ的最大值 .解:( 1)∵双曲线的渐近线为 y =± bx ,两渐近线夹角为60°,a又 b<1,a∴∠ POx =30°,即 b=tan30 ° = 3.a3∴ a = 3 b .又 a 2+b 2=4,∴ a 2=3,b 2=1.故椭圆 C 的方程为x 22+y =1.3( 2)由已知 l : y = a( x -c ),与 y = bx 解得 P ( a 2,ab),ba ccca 2abFA=cc) .由得 (,λ APA11将 A 点坐标代入椭圆方程得( c 2+λa 2)2+λ2a 4=( 1+λ) 2a 2c 2. ∴( e 2+λ) 2+λ2=e 2( 1+λ) 2.∴ λ2= e4e 2 =-[( 2- e 2)+ 2 ]+3≤3-2 2 . e 222 e 2∴ λ的最大值为2 - 1.评论:此题考察了椭圆、双曲线的基础知识,及向量、定比分点公式、重要不等式的应用. 解决此题的难点是经过恒等变形, 利用重要不等式解决问题的思想 . 此题是培育学生分析问题和解决问题能力的一道好题 .【例 3】 设椭圆中心是坐标原点,长轴在x 轴上,离心率= 3,已知点(0, 3)2 2到这个椭圆上的点的最远距离是 7 ,求这个椭圆方程, 并求椭圆上到点P 的距离等于 7 的点的坐标 .分析:设椭圆方程为x2+ y2=1,由 e =3知椭圆方程可化为x 2+4y 2=4b 2,而后将距离a 2b 22转变为 y 的二次函数,二次函数中含有一个参数b ,在判断距离有最大值的过程中,要议论y =- 1能否在 y 的取值范围内,最后求出椭圆方程和P 点坐标 .2解法一:设所求椭圆的直角坐标方程是x2 y 2=1,此中 a >b > 0 待定 .a+2b 2由 e 2c2=a 2b 2=1-(b2可知b1 e2 = 13 1 ,即 a =2b .=a 2 a 2a ) =4 =a222322y 229设椭圆上的点 ( x ,y )到点 P 的距离为 d ,则 d =x +(y - 2 ) =a ( 1- b 2)+y - 3y + 4 =4b 2-3y 2- 3y + 9 =- 3(y + 1)2 +4b 2+3,此中- b ≤ y ≤b .42假如b <1,则当y =- b 时2(从而 )有最大值,由题设得(7)2=( + 3)2,由2ddb 2此得 b = 7 - 3> 1,与 b < 1矛盾 .222所以必有 b ≥1成立,于是当 y =-127 222 2 时 d (从而 d )有最大值, 由题设得 () =4b +3,由此可得 b =1, a =2.故所求椭圆的直角坐标方程是x 2 +y 2=1.4由 y =- 1及求得的椭圆方程可得,椭圆上的点(-3 ,- 1),点(3,- 1)到222点 P 的距离都是7 .解法二:依据题设条件,设椭圆的参数方程是x =a cos θ,y =b sin θ, 此中 a > b > 0 待定,0≤ θ< 2π,∵ e = 3,2 ∴ a =2b .设椭圆上的点( x , y )到点 P 的距离为 d ,则d 2=x 2+( y -3)2=a 2cos 2θ +( b sin θ-3)2=- 3b 2·(sin θ+1) 2+4b 2+3.222b假如1>1,即 b <1272,则当 sin θ=- 1 时, d (从而 d )有最大值,由题设得() =2b2( +3) 2,由此得b =7-3>1,与 <1矛盾 .b22 2b 2所以必有1≤1 成立,于是当 sin θ=-1时, d 2(从而 d )有最大值,由题设得(7 )2b2b2=4b 2+3.由此得 b =1, a =2. 所以椭圆参数方程x =2cos θ, y =sin θ.消去参数得 x2+y 2=1,由 sin θ=1 ,cos θ=±3知椭圆上的点 (- 3,-1),( 3 ,4222- 1)到 P 点的距离都是7 .2评论:此题表现认识析几何与函数、三角知识的横向联系,解答中要注意议论.深入拓展依据图形的几何性质,以P 为圆心,以 7 为半径作圆,圆与椭圆相切时,切点与P 的距离为7 ,此时的椭圆和切点即为所求. 读者不如一试 .x 2+( y - 3) 2=7,提示:由2x 2+4 2=4 2,y b得 3y 2+3y - 9=4b 2- 7,4由 =0 得 b 2=1,即椭圆方程为 x 2+4y 2=4.所求点为(-3,- 1)、( 3,- 1) .22●闯关训练夯实基础1. ( 2005 年北京东城区目标检测)以正方形的相对极点 、 为焦点的椭圆,恰ABCD A C好过正方形四边的中点,则该椭圆的离心率为102 B. 5 1A.3351D. 102C.22分析:成立坐标系,设出椭圆方程,由条件求出椭圆方程,可得e =102.2答案: D2. 已知 F 1(- 3, 0)、F 2(3, 0)是椭圆x 2 + y 2= 1 的两个焦点, P 是椭圆上的点,当m n∠ F 1PF 2=2π时,△ F 1PF 2 的面积最大,则有3=12, n =3=24 , n =6 =6, n =3=12 , n =62分析:由条件求出椭圆方程即得 m =12, n =3.答案: A3. ( 2005 年启东市第二次调研)设P ( 2 ,2 )、P (-2 ,- 2 ), M 是双曲线12y = 1上位于第一象限的点,对于命题①| 2| - |1|=2;②以线段1为直径的圆与圆xMPMP2MPx 2+y 2=2 相切;③存在常数 b ,使得 M 到直线 y =- x +b 的距离等于2| MP 1|. 此中全部正确命2题的序号是 ____________.分析:由双曲线定义可知①正确,②绘图由题意可知正确,③由距离公式及| MP 1| 可知正确 .答案:①②③4. ( 2004 年全国Ⅱ, 15)设中心在原点的椭圆与双曲线2 2- 2 2=1 有公共的焦点,且xy它们的离心率互为倒数,则该椭圆的方程是_________________.分析:双曲线中, a =1=b ,∴ F (± 1, 0), e = c= 2 . ∴椭圆的焦点为(± 1, 0),2a离心率为2. ∴长半轴长为2 ,短半轴长为1.2∴方程为x 2+y 2=1.2答案: x 2+y 2=125. ( 1)试议论方程( 1-k ) x 2+( 3-k 2) y 2=4( k ∈ R )所表示的曲线;( 2)试给出方程x 2 y2k+=1 表示双曲线的充要条件 .k 26 6k 2k 1解:( 1) 3- k 2>1-k >0 k ∈(- 1, 1),方程所表示的曲线是焦点在x 轴上的椭圆;1- k >3- k 2>0 k ∈(-3 ,- 1),方程所表示的曲线是焦点在 y 轴上的椭圆; 1-k =3-k 2>0 k =- 1,表示的是一个圆; ( 1- k )( 3- k 2) <0 k ∈(-∞,- 3 )∪( 1, 3 ),表示的是双曲线; k =1, k =-3 ,表示的是两条平行直线; k = 3 ,表示的图形不存在 .( 2)由( k 2+k - 6)( 6k 2- k -1)<0(k +3)( k -2)( 3k +1)( 2k - 1)<0 k ∈(- 3,- 1)∪( 1,2).326. ( 2003 年湖北八市模拟试题)已知抛物线y 2 =2px 上有一内接正△ AOB ,O 为坐标原点 .yAOxB( 1)求证:点 A 、 B 对于 x 轴对称; ( 2)求△ AOB 外接圆的方程 .( 1)证明:设 A ( x 1, y 1)、 B ( x 2, y 2),∵| |=|| ,∴x 2+ 22211=2+2.OAOByxy又∵ y 12=2px 1, y 22=2px 2, 22∴ x 2 - x 1 +2p (x 2- x 1) =0, 即( x 2-x 1)( x 1+x 2+2p )=0.又∵ x 1、x 2 与 p 同号,∴ x 1+x 2+2p ≠ 0. ∴ x 2- x 1=0,即 x 1=x 2. 由抛物线对称性,知点A 、B 对于 x 轴对称 .( 2)解:由( 1)知∠ AOx =30°,则y 2=2px , x =6p ,y =3 x ∴y =2 3 p .3∴ A ( 6p , 2 3 p ) .方法一:待定系数法, △ AOB 外接圆过原点 O ,且圆心在 x 轴上,可设其方程为 x 2+y 2+dx =0.将点 A ( 6p , 2 3 p )代入,得 d =- 8p . 故△ AOB 外接圆方程为 x 2+y 2- 8px =0.方法二:直接求圆心、半径,设半径为 r ,则圆心( r ,0) .培育能力7. (理)( 2004 年北京, 17)以下列图,过抛物线2=2px ( p > 0)上必定点 P (x , y )y(> 0),作两条直线分别交抛物线于(1,1)、 ( 2, 2) .yA xyB x y( 1)求该抛物线上纵坐标为p的点到其焦点 F 的距离;2yPO AxB( 2)当 PA 与 PB 的斜率存在且倾斜角互补时,求是非零常数 .解:( 1)当 y =p时, = p.2 x 8又抛物线 y 2=2px 的准线方程为x =- p,2由抛物线定义得所求距离为p-(- p) =5p.8 2 8( 2)设直线 PA 的斜率为 k PA ,直线 PB 的斜率为22=2px ,由 y=2px , y0 11相减得( y 1- y 0)( y 1+y 0) =2p ( x 1- x 0),故 ky 1y 0 =2 p(x ≠ x ) .PA1x 1 x 0 y 1 y 0y1y2的值,并证明直线AB的斜率y0 k PB.同理可得 k PB =2 p( x 2 ≠ x 0).y 2y 0由 PA 、 PB 倾斜角互补知 k PA =- k PB ,即2 p 2 p,所以 y +y =- 2y ,=-y 1y 0y 2 y 0 1 2 0故y1y 2=- 2.y 0设直线 AB 的斜率为 k.AB22由 y 2 =2px 2, y 1 =2px 1, 相减得( y 2- y 1)( y 2+y 1) =2p ( x 2- x 1), 所以 k AB = y2y1= 2 p( x 1≠ x 2) .x 2 x 1 y 1y 2将 y 1+y 2=-2y 0( y 0> 0)代入得k AB =2 p =- p,所以 k AB 是非零常数 . y 1 y 2 y 0(文)以下列图,抛物线对于x 轴对称,它的极点在座标原点,点( 1,2)、 ( 1, 1)、PA xyB ( x 2, y 2)均在抛物线上 .y PO AxB( 1)写出该抛物线的方程及其准线方程;( 2)当 PA 与 PB 的斜率存在且倾斜角互补时,求y 1+y 2 的值及直线 AB 的斜率 .解:( 1)由已知条件,可设抛物线的方程为 y 2=2px . ∵点 P ( 1, 2)在抛物线上,∴ 22=2p ·1,得 p =2.故所求抛物线的方程是 y 2=4x ,准线方程是 x =- 1. ( 2)设直线 的斜率为 k PA ,直线 的斜率为 k PB .PAPB则 k PA =y 12( x 1≠ 1),k PB =y 22( x 2≠ 1) .x 1 1x 2 1∵ PA 与 PB 的斜率存在且倾斜角互补,∴ k PA =- k PB .由 A (x 1, y 1)、 B ( x 2, y 2)在抛物线上,得2y 1 =4x 1,①2y 2 =4x 2,②∴ y 12=- y 2 2 .1 y 12 1 1 y 2 2 1 4 4∴ y 1+2=-( y 2+2) . ∴ y 1+y 2=- 4. 由①-②得直线 AB 的斜率y 2 y 14=- 4) .=- 1( x ≠ xAB12x 2x 1 y 1 y 2 48.( 2003 年北京东城区模拟试题)从椭圆 x2+ y 2 =1( a > b > 0)上一点 M 向 x 轴作垂线,a 2b 2恰巧经过椭圆的左焦点 F 1,且它的长轴右端点A 与短轴上端点B 的连线 AB ∥ OM .( 1)求椭圆的离心率;( 2)若 Q 是椭圆上随意一点, F 2 是右焦点,求∠ F 1QF 2 的取值范围;( 3)过 F 1 作 AB 的平行线交椭圆于 C 、 D 两点,若 | CD |=3 ,求椭圆的方程 .解:( 1)由已知可设 (- , ),Mcy则有( c) 2y2a 2+=1.b2∵ M 在第二象限,∴ M (- c ,b 2) .a又由 AB ∥ OM ,可知 k AB =k OM .∴- b 2 =- b. ∴b =c . ∴ a = 2 b .acac2a2( 2)设 | F 1Q |= m ,| F 2Q |= n ,22则 m +n =2a , mn > 0.| F 1F 2|=2 c ,a =2c ,∴ cos ∠ 1 2= m 2 n 2 4c 2F QF2mn( m n) 22mn 4c 2 4a 2 4c2=2mn=2mn - 1= a 2 - 1≥ a 2 - 1= a 2 - 1=0.mn m n 2 a 2()2 当且仅当 m =n =a 时,等号成立 .故∠ F QF ∈[ 0, π ].122(3)∵ ∥ , CD =- b=- 2 .CD AB ka2设直线 CD 的方程为 y =-2(x +c ),2即 y =-2( x +b ).222x+ y =1,a 22b则 消去 y ,整理得y =-2(x +b ).2( a 2+2b 2)x 2+2a 2bx - a 2b 2=0.设 C (x 1, y 1)、 D ( x 2, y 2),∵ a 2=2b 2,∴ x 1+x 2=-2a 2b =- 4b 3=- b ,a 22b 24b 2x 1· x 2=-a 2b 2 =- 2b 4 =- b 2.a 2 2b 24b 22∴ | CD |= 1 k 2| x 1-x 2|=1 k 2· (x 1x 2 )24x 1x 2=1 (2 ) 2 · ( b)22b 2=9b 2 =3.22∴ b 2=2,则 a 2=4.∴椭圆的方程为 x 2+ y 2 =1.4 2 研究创新9. ( 2005 年春天上海, 22)( 1)求右焦点坐标是( 2, 0),且经过点(- 2,- 2 )的椭圆的标准方程 .( 2)已知椭圆 C 的方程是 x 2 + y 2=1( a >b >0). 设斜率为 k 的直线 l 交椭圆 C 于 A 、Ba 2b 2两点,的中点为 . 证明:当直线 l 平行挪动时,动点在一条过原点的定直线上 .AB MM ( 3)利用( 2)所揭露的椭圆几何性质,用作图方法找出下边给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.( 1)解:设椭圆的标准方程为x2+y2 =1, a >b >0,a 2b 2 ∴ a 2=b 2+4,即椭圆的方程为x 2 +y2 =1.b 2 4 b 2∵点(- 2,-2 )在椭圆上,∴4+2 =1.b24 b 2解得 b2=4或 b2=-2(舍).由此得 a2=8,即椭圆的标准方程为x2+ y2=1.8 4 (2)证明:设直线l的方程为y=kx +m,与椭圆 C的交点 A( x, y)、B( x , y ),1122y=kx+m,则有x2+ y2=1.a 2b2222222222解得( b+a k) x +2a kmx+a m- a b =0.2222∵ >0,∴m<b+a k,即- b 2 a 2 k 2<m< b 2 a 2 k 2.2a 2 km, y+y=kx +m+kx +m=b 22b 2m,则 x +x =-b2a 2k 2 a 2k 2121212∴ AB中点 M的坐标为(-a 2 km b2 mb2 a 2k 2,b 2a 2 k 2).∴线段 AB的中点 M在过原点的直线b2x+a2ky=0上.( 3)解:以下列图,作两条平行直线分别交椭圆于A、 B和 C、 D,并分别取 AB、 CD的中点 M、 N,连接直线MN;又作两条平行直线(与前两条直线不平行)分别交椭圆于A、B 和11 C1、D1,并分别取 A1B1、C1D1的中点 M1、N1,连接直线 M1N1,那么直线 MN和 M1N1的交点 O即为椭圆中心 .C AMA1ON C1BM1DB1N 1●思悟小结在知识的交汇点处命题,是高考命题的趋向,而分析几何与函数、三角、数列、向量等知识的亲密联系,正是高考命题的热门,为此在学习时应抓住以下几点:1.客观题求解时应注意绘图,抓住波及到的一些元素的几何意义,用数形联合法去分析解决 .2.四点重视:①重视定义在解题中的作用;②重视平面几何知识在解题中的简化功能;③重视根与系数关系在解题中的作用;④重视曲线的几何特色与方程的代数特色的一致3. 注意用好以下数学思想、方法:.①方程思想;②函数思想;③对称思想;④参数思想;⑤转变思想;⑥分类思想.除上述几种常用数学思想外,整体思想、数形联合思想、主元分析思想、正难则反省想、结构思想等也是分析几何解题中不行缺乏的思想方法. 在复习中一定赐予足够的重视,真实发挥数学解题思想作为联系知识与能力中的作用,从而提升简化计算能力.●教师下载中心教课点睛本节是圆锥曲线的综合应用,主假如曲线方程的运用、变量范围的计算、最值确实定等,解决这种问题的重点是依照分析几何自己的特色,找寻一个打破口,那么怎样找到解决问题的打破口呢?(1)联合定义利用图形中几何量之间的大小关系 . ( 2)成立目标函数,转变为求函数的最值问题 . ( 3)利用代数基本不等式 . 代数基本不等式的应用,常常需要创建条件,并进行奇妙的构想 . ( 4)联合参数方程,利用三角函数的有界性. 直线、圆或椭圆的参数方程,它们的一个共同特色是均含有三角式 . 所以,它们的应用价值在于:①经过参数示曲线上点的坐标;②利用三角函数的有界性及其变形公式来帮助求解诸如最值、题.(5)结构一个二次方程,利用鉴别式≥ 0.拓展题例【例 1】( 2005 年启东市第二次调研题)抛物线y2=4px(p>0)的准线与x 轴交于 M 点,过点 M作直线 l 交抛物线于 A、 B 两点.( 1)若线段AB的垂直均分线交x 轴于 N( x ,0),求证: x>3p;00( 2)若直线l的斜率挨次为p,p2,p3,,线段AB的垂直均分线与x 轴的交点挨次为 N, N, N,,当0<p<1时,求111的值 .++ +123| N1N2 | | N2N3 || N10 N11 |(1)证明:设直线l方程为y=k(x+p),代入y2=4px.得 k2x2+(2k2p-4p)x+k2p2=0.=4(k2p- 2p)2- 4k2·k2p2>0,得 0<k2<1.令 A(x, y)、 B( x , y),则 x +x=-2k 2 p 4 p, y +y=k(x+x +2p) =4 p,112212k 21212kAB中点坐标为( 2 p k 2 p , 2 p ).k 2k垂直均分线为y - 2 p=-1(x- 2 p k 2 p) .AB k k k2令y =0,得x0= k 2 p 2 p= +2 p.k 2p2k由上可知 0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)解:∵l的斜率挨次为p,p2,p3,时,AB中垂线与x轴交点挨次为N1,N2,N3,(0<p<1) .∴点N的坐标为(2, 0). +np 2n1| N n N n+1|=| (p+2)-( p+2) |= 2(1p 2 ),p2n1p2n 1p 2n1θ简洁地表范围等问1p 2n 1| N n N n 1 |=,2(1 p 2 )13421p 3 (1 p 19 )所求的值为 2(1p 2 ) [ p +p + +p ] = 2(1 p) 2 (1p) .【例 2】 ( 2003 年南京市模拟试题)已知双曲线: x 2- y2=1( >0, > 0), B 是右C2 b 2a极点, F 是右焦点,点 A 在 x 轴正半轴上,且知足 | OA |、| OB | 、| OF | 成等比数列,过 F作双曲线 C 在第一、三象限的渐近线的垂线l ,垂足为 P .yDPEAB FxO l( 1)求证: PA · OP =PA · FP ;( 2)若 l 与双曲线 C 的左、右两支分别订交于点D 、E ,求双曲线 C 的离心率 e 的取值范围 .( 1)证法一:yDPEOABFlxl : y =- a( x -c ) . b y =- a( x - c ),bby = x .解得( a2,ab). ∵ | OA | 、| OB | 、 | OF | 成等比数列,∴( a2, 0).ccc∴ PA =( 0,-ab), OP =( a 2,ab),c cc b2,ab) .FP =(-cc∴ PA · OP =-a 2b 2, PA · FP =-a 2b 2.c 2c 2∴ PA · OP =PA · FP .证法二:同上得 P ( a 2,ab) .cc∴ PA ⊥x 轴,PA · OP - PA · FP =PA · OF =0.∴ PA · OP =PA · FP .y =- a(x - c ),( 2)解:bb 2x 2- a 2y 2=a 2b 2.422a222∴ b x -( x - c ) =a b ,即( b 2- a4) x 2+2 a4cx -( a 4c 2+a 2b 2) =0.b 2b 2b 2a 4c 2 22)(2 a b∵ x 1· x 2=ba 4< 0,b 2b2∴ b 4> a 4,即 b 2> a 2,c 2- a 2> a 2.∴ e 2> 2,即 e > 2 .。
高考数学真题分类大全 专题25 圆锥曲线综合解析

专题25圆锥曲线综合第一部分真题分类1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是()A B C .2D【答案】D【解析】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒=.故选:D.2.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .3.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .2⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【解析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即02e <≤;当32b b c ->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c++≤,化简得,()2220cb -≤,显然该不等式不成立.故选:C .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为()AB C .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2021·全国高考真题(文))已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.6.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m-=>的一条渐近线为0my +=,则C 的焦距为_________.【答案】40my +=化简得y =,即b a =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =.故答案为:4.7.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.【答案】32x =-【解析】抛物线C :22y px =(0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧,又||6FQ = ,(6,0),(6,)2pQ PQ p ∴+∴=-uu u r 因为PQ OP ⊥,所以PQ OP ⋅= 2602p p ⨯-=,0,3p p >∴=Q ,所以C 的准线方程为32x =-故答案为:32x =-.8.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>的离心率为3.(1)证明:a ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【解析】(1)3c e a ===,3b a ∴=,因此,a ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,1015⎛⎫ ⎪ ⎪⎝⎭在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得10b >.设点()11,P x y 、()22,Q x y,则12129210210x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,所以,12129y y x x +=+,由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝所以,直线l方程为910y x ⎛⎫-- ⎪ ⎭⎝⎭,即y =所以,直线l0y --=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.9.(2021·湖南高考真题)已知椭圆()2222:10x y C a b a b+=>>经过点()20A ,,且离心率为2.(1)求椭圆C 的方程;(2)设直线1y x =-与椭圆C 相交于P Q ,两点,求AP AQ ⋅的值.【答案】(1)2214x y +=;(2)15.【解析】(1)椭圆()2222:10x y C a b a b+=>>经过点()20A ,,所以2a =,2c ca ==,所以c =222431b a c =-=-=,所以椭圆C 的方程为2214x y +=.(2)由22141x y y x ⎧+=⎪⎨⎪=-⎩得2580x x -=,解得128,05x x ==,所以118583155x y ⎧=⎪⎪⎨⎪=-=⎪⎩,或110011x y =⎧⎨=-=-⎩,可得83,55P ⎛⎫ ⎪⎝⎭,()0,1Q -,或者83,55Q ⎛⎫⎪⎝⎭,()0,1P -,所以()834312,02,155555AP AQ ⎛⎫⋅=-⋅--=-= ⎪⎝⎭ .10.(2021·天津高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.【答案】(1)2215x y +=;(2)0x y -=.【解析】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为5c e a ==,故2c =,1b ==,因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215x y +=上一点,先证明直线MN 的方程为0015x xy y +=,联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭,直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭,因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=,所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-,所以,直线l的方程为1x y =,即0x y -=.第二部分模拟训练一、单选题1.已知P (x 0,y 0)是椭圆C :24x +y 2=1上的一点,F 1,F 2分别是椭圆C 的左、右焦点,若12PF PF ⋅<0,则x 0的取值范围是A .2626,33⎛⎫-⎪ ⎪⎝⎭B .2323,33⎛⎫-⎪ ⎪⎝⎭C .33,33⎛⎫- ⎪ ⎪⎝⎭D.,33⎛⎫- ⎪ ⎪⎝⎭【答案】A【解析】如图,设以O为原点、半焦距c =为半径的圆x 2+y 2=3与椭圆交于A ,B 两点.由2222314x y x y ⎧+⎪⎨+⎪⎩==得263x ±=,要使12PF PF ⋅<0,则点P 在A 、B 之间,∴x 0的取值范围是2626,33⎛⎫- ⎪ ⎪⎝⎭.故选A.2.已知抛物线C 1:21615y x =和圆C 2:(x -6)2+(y -1)2=1,过圆C 2上一点P 作圆的切线MN 交抛物线C ,于M ,N 两点,若点P 为MN 的中点,则切线MN 的斜率k >1时的直线方程为()A .4x -3y -22=0B .4x -3y -16=0C .2x -y -11+5=0D .4x -3y -26=0【答案】D【解析】画出曲线图像如下图:由题意知,切线MN 的斜率k 存在且不为0,设点00(,)P x y ,设直线MN 的方程为:(0)x my n m =+≠,其中11k m=>,则01m <<,联立21615x my ny x =+⎧⎪⎨=⎪⎩,可得2161601515y my n --=,则有,121615y y m +=,2121216()2215x x m y y n m n +=++=+,根据中点坐标公式可得,20815x m n =+,0815y m =,又直线MN 与圆C 21=,即22(6)1m n m --=+①,依题意,直线C 2P 与直线MN 垂直,则28111518615mm mn -⋅=-+-,整理得218861515n m m =--+②,将②代入①并整理得,43264240642402250m m m m -+-+=,降次化简可得,32(43)(16482075)0m m m m ----=③,令32()16482075g m m m m =---,则222()48962048(1)68g m m m m '=--=--,因为01m <<,所以2()48(1)680g m m '=--<,即()g m 在(0,1)单调递减,则()(0)750g m g <=-<在(0,1)上恒成立,即()=0g m 在(0,1)无解,从而③式的解只有一个,34m =,代入②式可得,132n =,所以,直线MN 的方程为:31342x y =+,整理得,4x -3y -26=0.故选:D.3.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则221213e e +的值为()A .1B .2512C .4D .16【答案】C【解析】如图,设椭圆的长半轴长为1a ,双曲线的半实轴长为2a ,则根据椭圆及双曲线的定义1211222,2PF PF a PF PF a +=-=,112212,PF a a PF a a ∴=+=-,设12122,3F F c F PF π=∠=,则在12PF F ∆中由余弦定理得()()()()2221212121242cos3c a a a a a a a a π=++--+-,∴化简2221234a a c +=,该式变成2221314e e +=,故选:C.4.已知双曲线2221(0)x y a a -=>的离心率为3,抛物线22(0)y px p =>的焦点与双曲线的右焦点F 重合,其准线与双曲线交于点(),0,2M M N y MF FQ >=,点R 在x 轴上.若||||RN RQ -最大,则点R 的坐标为()A .(6,0)B .(8,0)C .(9,0)D .(10,0)【答案】D【解析】因为双曲线2221(0)x y a a -=>的离心率为233,即233c a =,又221a c +=,所以2a c ==,即(20)F ,,因此抛物线的准线方程为2x =-,联立221(2,(2,3332x y M N x ⎧-=⎪⇒---⎨⎪=-⎩,设(,)Q x y ,由2MF FQ = 可得()()2(2)22(4,60203x Q y ⎧--=-⎪⇒-⎨-=-⎪⎩,结合下图可知,当R 点运动到R ',即,,N Q R 三点共线时,||||RN RQ -最大,设此时(,0)R r ',则有//NQ QR ',即33363610424r r -+=⇒=+-,因此(10,0)R ,故选:D.5.已知抛物线2:4C y x =和点(2,0)D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①以BE 为直径的圆与抛物线准线相离;②直线OB 与直线OE 的斜率乘积为2-;③设过点A ,B ,E 的圆的圆心坐标为(,)a b ,半径为r ,则224a r -=.其中,所有正确判断的序号是()A .①②B .①③C .②③D .①②③【答案】D【解析】如图,设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE的中点.设B ,E 到准线的距离分别为1d ,2d ,M 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线,则12||||||222d d BF EF BE d R ++==>=.所以①正确.由题意可设直线DE 的方程为2x my =+,代入抛物线C 的方程,有2480y my --=.设点B ,E 的坐标分别为()11,x y ,()22,x y ,则124y y m +=,128y y =-.所以()()()21212121222244x x my my m y y m y y =++=+++=.则直线OB 与直线OE 的斜率乘积为12122y y x x =-.所以②正确.将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-.根据抛物线的对称性可知,A ,E 两点关于x 轴对称,所以过点A ,B ,E 的圆的圆心N 在x 轴上.由上,有124y y m +=,21244x x m +=+,则()()2224212121212||44164832BE x x x x y y y y m m =+-++-=++.所以,线段BE 的中垂线与x 轴的交点(即圆心N )横坐标为224m +,所以224a m =+.于是,222222421212||||244128222BE x x y y r MN m m m ++⎛⎫⎛⎫⎛⎫=+=+-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,代入21244x x m +=+,124y y m +=,得24241612r m m =++,所以()()22224224416124a r m m m -=+-++=.所以③正确.故选:D 6.已知(0,3)A ,若点P 是抛物线28x y =上任意一点,点Q 是圆22(2)1x y +-=上任意一点,则2||||PA PQ 的最小值为()A .4-B .1-C .2-D .1+【答案】A【解析】设点,由于点P 是抛物线上任意一点,则20008(0)x y y =≥, 点(0,3)A ,则22222000000(3)8(3)29PA x y y y y y =+-=+-=++,由于点Q 是圆22(2)1x y +-=上任意一点,所以要使2||PA PQ 的值最小,则PQ 的值要最大,即点P 到圆心的距离加上圆的半径为PQ 的最大值,则0max 113PQ y =+==+,∴22002000000()4()12||129333)3(3243y y y y P P y y y Q y A -++++≥==+++++-+,003312()y y +++≥=∴2||PA PQ的最小值为4-,故答案选A .7.以正方形的四个顶点分别作为椭圆的两个焦点和短轴的两个端点,A ,B ,M 是椭圆上的任意三点(异于椭圆顶点),若存在锐角θ,使cos sin OM OA OB θθ=⋅+⋅ ,(0为坐标原点)则直线OA ,OB 的斜率乘积为___.【答案】12-或-2【解析】由题意可设椭圆方程为2222x y 12b b+=,又设A (1x ,1y ),B (2x ,2y ),()1212OM cosθOA sinθOB M cosθx sinθx cosθy sinθy =⋅+⋅⇒⋅+⋅⋅+⋅ ,因为M 点在该椭圆上,∴()()22121222cosθx sinθx cosθy sinθy 12b b ⋅+⋅⋅+⋅+=,则12121222122sinθcosθ2sinθcosθ102b b 2x x y y y y x x ⋅⋅+=⇒=-又因为A 、B 点在也该椭圆上,∴221122x y 12b b +=,222222x y 12b b+=∴1x 12<<,即直线OA 、OB 的斜率乘积为12-,同理当椭圆方程为2222y x 12b b+=时直线OA 、OB 的斜率乘积为﹣2.故答案为12-或﹣2.8.在平面直角坐标系xOy 中,椭圆()222139x y a a +=>与为双曲线22214x y m -=有公共焦点1F ,2F .设P 是椭圆与双曲线的一个交点,则12PF F △的面积是_____________.【答案】6.【解析】根据对称性,不妨设P 在第一象限.由题设可知()()22221249444F F a m c =-=+=.即2213a m -=,229a c -=,224c m -=.根据椭圆与双曲线的定义得,在12PF F △中,由余弦定理得()()222222222222513a c c m a m c a m a m ---+-===--.所以,1212sin 13F PF ∠=,()122212121112sin 62213PF F S PF PF F PF a m =⋅∠=⨯-⨯⋅⋅=△.故答案为:69.已知1F ,2F 是双曲线22:1259x y Γ-=的左、右焦点,点P 为Γ上异于顶点的点,直线l 分别与以1PF ,2PF 为直径的圆相切于A ,B 两点,若向量AB ,12F F 的夹角为θ,则cos θ=___________.【答案】34【解析】如图,设以PF 1,PF 2为直径的圆的圆心分别为C ,D ,连接AC ,BD ,过D 作DE ⊥AC 于点E ,连接CD ,则||DE =,因为直线AB 是圆C 和圆D 的公切线,且切点分别是A ,B ,所以AC ⊥AB ,BD ⊥AB ,则四边形ABDE 是矩形,所以|AB |=|DE |,|AE |=|BD |.且1||2PF AC =,2||2PF BD =,易知|CE |=|AC |-|AE |=|AC |-|BD |=1222PF PF -,根据双曲线的定义知,|PF 1|-|PF 2|=10,所以|CE |=5.因为12||2F F CD ==222||||+||CD CE DE =|可得||3DE =,即|AB |=3,因为向量12,AB F F 的夹角θ即为,ED CD 的夹角,所以||cos||34DE CD θ==.故答案为:33434.10.在直角坐标系xOy 中,双曲线22221x y a b-=(00a b >>,)的离心率2e >,其渐近线与圆22(2)4x y +-=交x 轴上方于A B ,两点,有下列三个结论:①||||OA OB OA OB →→→→-<+;②||OA OB →→-存在最大值;③||6OA OB →→+>.则正确结论的序号为_______.【答案】①③【解析】 2c b e a a==>⇒>,∴60AOB ∠< ,对①,根据向量加法的平行四边形法则,结合60AOB ∠< ,可得||||OA OB OA OB →→→→-<+成立,故①正确;对②,||||OA OB AB →→-= ,由于60AOB ∠< ,∴AOB ∠没有最大值,∴||AB 没有最大值,故②错误;对③,当60AOB ∠= 时,||||22cos 30OA OB ==⋅=∴21||12122362OA OB OA OB →→+=++⋅⋅⋅= ,又 60AOB ∠< ,∴2||36OA OB →→+>,∴,故③正确;故答案为:①③.。
高中圆锥曲线综合部分总复习

圆锥曲线与方程综合部分一、知识点梳理椭圆、双曲线:二、章节知识点回顾:椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.椭圆的标准方程:12222=+b y a x ,12222=+b x a y (0>>b a )3.椭圆的性质:由椭圆方程12222=+by a x (0>>b a )(1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中. (2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比a c e =⇒2)(1abe -=10<<e椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线 即a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(→两条平行线)两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(→两条射线)双曲线的形状与两定点间距离、定差有关 5.双曲线的标准方程及特点:(1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种:焦点在x 轴上时双曲线的标准方程为:12222=-b y a x (0>a ,0>b );焦点在y 轴上时双曲线的标准方程为:12222=-bx a y (0>a ,0>b )6.c b a ,,有关系式222b a c +=成立,且0,0,0>>>c b a 其中a 与b 的大小关系:可以为b a b a b a ><=,,7焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上 8.双曲线的几何性质:(1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心 (2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 (3)渐近线过双曲线12222=-by a x 的渐近线x a b y ±=(0=±b y a x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率范围:1>e 双曲线形状与e 的关系:1122222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔由此可知,双曲线的离心率越大,它的开口就越阔 9.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e 10.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222b y a x 11.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c 中a,b 不同(互换)c 相同共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-112.双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦 焦点弦公式:当双曲线焦点在x 轴上时,过左焦点与左支交于两点时: )(221x x e a AB +--= 过右焦点与右支交于两点时:)(221x x e a AB ++-= 当双曲线焦点在y 轴上时,过左焦点与左支交于两点时:)(221y y e a AB +--= 过右焦点与右支交于两点时:)(221y y e a AB ++-=13.双曲线的通径:定义:过焦点且垂直于对称轴的相交弦 ab d 22=14 抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 15.抛物线的准线方程:(1))0(22>=p px y , 焦点:)0,2(p ,准线l :2px -=(2))0(22>=p py x , 焦点:)2,0(p ,准线l :2py -=(3))0(22>-=p px y , 焦点:)0,2(p -,准线l :2px =(4) )0(22>-=p py x , 焦点:)2,0(p -,准线l :2py =相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242pp = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 16.抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 17抛物线的焦半径公式: 抛物线)0(22>=p px y ,0022x pp x PF +=+= 抛物线)0(22>-=p px y ,0022x pp x PF -=-= 抛物线)0(22>=p py x ,0022y pp y PF +=+= 抛物线)0(22>-=p py x ,0022y pp y PF -=-= 18.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点) 将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到 关于x 的二次方程02=++c bx ax (*) 若0>∆,相交;0=∆,相切;0<∆,相离 综上,得:联立⎩⎨⎧=+=px y b kx y 22,得关于x 的方程02=++c bx ax当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则若0>∆,两个公共点(交点) 0=∆,一个公共点(切点) 0<∆,无公共点 (相离) (2)相交弦长: 弦长公式:21k ad +∆=, (3)焦点弦公式:抛物线)0(22>=p px y , )(21x x p AB ++= 抛物线)0(22>-=p px y , )(21x x p AB +-= 抛物线)0(22>=p py x , )(21y y p AB ++= 抛物线)0(22>-=p py x ,)(21y y p AB +-=(4)通径:定义:过焦点且垂直于对称轴的相交弦 通径:p d 2= (5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212p y y k p y y θsin 24422221p p kp y y =+=-⇒θθ221sin 2sin 1p y y AB =-=⇒ (6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421px x =----------------------------------------------------------------------------------------------------------------- 椭圆习题: 选择题1.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .()+∞,0B .()2,0C .()+∞,1D .()1,04.以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 5.椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为( )A .20B .22C .28D .246.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13322=-y x D .1222=-y x 填空题:7.若椭圆221x my +=_______________. 8.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
高三高考数学总复习《圆锥曲线》题型归纳与汇总

高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节 圆锥曲线综合考纲解读1.掌握与圆锥曲线有关的最值、定值和参数范围问题.2.会处理动曲线(含直线)过定点的问题.3.会证明与曲线上的动点有关的定值问题.4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值. 命题趋势研究从内容上看,预测2015年高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题.从形式上看,以解答题为主,难度较大.从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力. 知识点精讲一、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下: (1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 二、求最值问题常用的两种方法(1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法.(2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法.三、求定值、最值等圆锥曲线综合问题的“三重视”(1)重视定义在解题中的作用(把定义作为解题的着眼点).(2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用. (3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系). 四、求参数的取值范围据已知条件及题目要求等量或不等量关系,再求参数的范围. 题型归纳及思路提示题型150 平面向量在解析几何中的应用思路提示解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面.(1)用向量的数量积解决有关角的问题.直角⇔0a b =,钝角⇔0a b <(且,a b 不反向),锐角⇔0a b >(且,a b 不同向).(2)利用向量的坐标表示解决共线问题.一、利用向量的数量积解决有关夹角(锐角、直角、钝角)的问题 其步骤是:先写出向量坐标式,再用向量数量积的坐标公式cos ,a b <>=例10.44过抛物线22(0)x py p =>的焦点F 作直线交抛物线于A ,B 两点,O 为坐标原点.求证:△ABO 的是钝角三角形.分析 证明△ABO 的是钝角三角形常用的方法是利用余弦定理,但用余弦定理来解决需计算出,,OB OA AB 的长,显然较复杂.因为O ,A ,B 不共线,故可利用0OA OB <来证明∠AOB >90°,从而得证.解析 设11(,)A x y ,22(,)B x y ,抛物线22(0)x py p =>的焦点坐标(0,)2pF . 根据题意知,直线AB 的斜率存在(若不存在,则A ,B 在原点,矛盾),设直线AB 的方程为2p y kx =+,由222p y kx x py⎧=+⎪⎨⎪=⎩,得2220x pkx p --=,则122x x pk +=,212x x p =-.因为A ,B 两点在抛物线上,所以2112x py =,2222x py =,两式相乘得,2221212244x x p y y p ==. 11(,)OA x y =,22(,)OB x y =,22212123044p p OA OB x x y y p =+=-+=-<, 又因为O ,A ,B 三点不共线,所以∠AOB >90°,△ABO 的是钝角三角形. 评注 直线l 与抛物线22(0)x py p =>交于A ,B 两点,则 (1)直线l 在y 轴上的截距等于2p 时,∠AOB =90°; (2)直线l 在y 轴上的截距大于2p 时,∠AOB <90°; (3)直线l 在y 轴上的截距大于0且小于2p 时,∠AOB >90°.变式1(2012重庆理20)如图10-34所示,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.变式2设A ,B 分别为椭圆22143x y +=的左右顶点,P 为直线4x =上不同于(4,0)的任意一点,若直线AP ,BP 分别与椭圆交于异于A ,B 的点M ,N ,证明:点B 在以MN 为直径的圆内.变式3已知1m >,直线2:02m l x my --=,椭圆222:1x C y m+=,F 1,F 2分别为椭圆C 的左右焦点.(1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF 1F 2和△BF 1F 2和的重心分别是G ,H ;若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.例10.45在直角坐标系xOy 中,点P 到两点(0,3),3)的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点. (1)写出C 的方程; (2)若OA ⊥OB ,求k 的值.解析 (1)设(,)P x y ,由椭圆定义可知,点P 的轨迹C 是以(0,3)-,3)为焦点,长半轴为2的椭圆.其短半轴1b =,故曲线C 的方程为2214y x +=. (2)设11(,)A x y ,22(,)B x y,由22141y x y kx ⎧+=⎪⎨⎪=+⎩,即22(4)230k x kx ++-=,由韦达定理知,12224k x x k +=-+,12234x x k =-+. 若OA ⊥OB ,即12120x x y y +=,而2121212()1y y k x x k x x =+++,所以212122232(1)()()1044k x x y y k k k k +=+-+-+=++,即2410k -+=, 解得12k =±. 评注 本题的结论可由【例10.44变式3】的评注中的重要结论顺利得到:由题意,OA ⊥OB ,故有∠AOB =90°,设原点O 到直线的距离为OH d =,则有22211154a bOH=+=,故可得5OH d ==,又1y kx =+,所以251d k ==+,解得12k =±.利用此结论求解,可以对利用常规方法求解出的结果加以验证,从而提高解题的准确率,做到胸有成竹.变式1如图10-35所示,椭圆2222:1(0)x y C a b a b+=>>的顶点为A 1,A 2,B 1,B 2,焦点为F 1,F 2,117A B =,112211222B A B A B F B F SS=.(1)求椭圆C 的方程; (2)设n 为过原点的直线,l 是与n 垂直相交于P 点,与椭圆相交于A ,B 两点的直线,1OP =,是否存在上述直线l 使0OA OB =成立?若存在求出直线l 的方程;若不存在,请说明理由.变式2如图10-36所示,椭圆2222:1(0)x y C a b a b+=>>的一个焦点是(1,0)F ,O 为坐标原点,设过点F 的直线l 交椭圆于A ,B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.二、利用向量的坐标表示解决共线问题向量,a b 共线的条件是a b λ=或1221x y x y =.例10.46在平面直角坐标系xOy 中,经过点2)且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P ,Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP +OQ 与AB 共线?若存在,求k 的值;若不存在,请说明理由. 分析 将向量共线转化为坐标关系求解.解析 (1)设直线l 方程为2y kx =+,代入椭圆得22(2)12x kx ++=即22(21)4220k x kx +++=,①则222(42)4(21)21680k k k ∆=-+⨯=->,解得22k <-,或22k >. (2)设11(,)P x y ,22(,)Q x y ,则OP +OQ =1212(,)x x y y ++, 由方程①得122212kx x k+=-+,② 1212()22y y k x x +=++又(2,0),(0,1)A B ,∴(2,1)AB =-.所以向量OP +OQ 与AB 共线等价于12122()x x y y +=-+, 将②③代入上式,解得22k =, 由(1)知2k <-,或2k >,故没有符合题意的常数k . 变式1设椭圆22221(0)x y a b a b +=>>的左右焦点分别为F 1,F 2,离心率22e =,直线2:a l x c=,如图10-37所示,M ,N 是l 上的两个动点,120F M F N =.(1)若1225F M F N ==,求,a b 的值;(2)证明:当MN 取最小值时,12F M F N +与12F F 共线.例10.47设A ,B 是椭圆2212x y +=上的两点,并且点(2,0)N -满足NA NB λ=,当11[,]53λ∈时,求直线AB 斜率的取值范围.分析 已知λ的取值范围,求直线斜率范围关键在于如何用λ表示k ,突破口在于将NA NB λ=转化为坐标关系.解析 因为NA NB λ=,所以A ,B , N 三点共线,又点N 的坐标为(2,0)-,设直线AB 的方程为(2)y k x =+,则0k ≠,由2212(2)x y y k x ⎧+=⎪⎨⎪=+⎩,消去x 得222(21)420k y ky k +-+=,由条件可知,222(4)4(21)200k k k k ⎧∆=--+⨯>⎨≠⎩解得0k <<. 设11(,)A x y ,22(,)B x y ,则122412ky y k +=+,2122212k y y k =+,由NA NB λ=,得1122(2,)(2,)x y x y λ+=+.所以有12122(2)x x y y λλ+=+⎧⎨=⎩,12222212224(1)12212k y y y k ky y y k λλ⎧+=+=⎪⎪+⎨⎪==⎪+⎩, 消去2y 得22(1)812k λλ+=+,令2(1)1()2h λλλλλ+==++,11[,]53λ∈,则()h λ在区间11[,]53上为减函数,从而163≤2812k +≤365.解得12-≤k≤6-或≤k≤,符合02k <<,因此直线AB 斜率的取值范围为[12-,6-]∪[6,12]. 评注 本题在消元上有个技巧,当12x x λ=时消去y 得关于x 的一元二次方程.122(1)b x x x a λ+=+=-,2122c x x x aλ==,消去2x 就会得λ与,,a b c 之间的关系;当12y y λ=时消去x .变式1已知F 1,F 2分别为椭圆22132x y +=的左右焦点,直线1l 过点F 1且垂直于椭圆的长轴,动直线2l 垂直于直线1l ,垂足为D ,线段DF 2的垂直平分线交2l 于点M . (1)求动点M 的轨迹C 的方程;(2)过点F 1作直线交曲线C 于两个不同的点P 和Q ,设11F P FQ λ=,若[2,3]λ∈,求22F P F Q 的取值范围.变式2过点(1,0)F 的直线交抛物线24y x =于A ,B 两点,交直线:1l x =-于点M ,已知1MA AF λ=,2MB BF λ=,求12λλ+的值.题型151 定点问题思路提示(1)直线过定点,由对称性知定点一般在坐标轴上,如直线y kx b =+,若b 为常量,则直线恒过(0,)b 点;若b k 为常量,则直线恒过(,0)bk-. (2)一般曲线过定点,把曲线方程变为12(,)(,)0f x y f x y λ+=(λ为参数),解方程组12(,)0(,)0f x y f x y =⎧⎨=⎩即得定点. 模型一:三大圆锥曲线(椭圆、双曲线、抛物线)中的顶点直角三角形的斜边所在的直线过定点.例10.48已知椭圆22143x y +=,直线:l y kx m =+与椭圆交于A ,B 两点(A ,B 不是原点),且以AB 为直径的圆过椭圆的右顶点.求证:直线l 过定点,并求出该定点的坐标. 分析 要求直线过定点,必须知道直线:l y kx m =+中k 与m 的关系.解析 设11(,)A x y ,22(,)B x y ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得 222(43)84120k x kmx m +++-=,由条件可知,222(8)4(43)(412)0km k m ∆=-+->,即2243m k <+,则122843kmx x k +=-+,212241243m x x k -=+,(**)因为以AB 为直径的圆过椭圆的右顶点(2,0),所以1122(2,)(2,)0x y x y --=,即1212122()40x x x x y y -+++=,即1212122()4()()0x x x x kx m kx m -+++++=,整理得,221212(1)(2)()40k x x km x x m ++-+++=,将(**)代入,化简得2271640m km k ++=,即2m k =-或27k m =-. (1)当2m k =-时,:2l y kx k =-过右顶点(2,0),与题意不符,故舍去; (2)当27k m =-时,2:7k l y kx =-过定点2(,0)7,且满足2243m k <+,符合. 所以:l y kx m =+过定点2(,0)7.评注 已知椭圆22221(0)x y a b a b+=>>,直线:l y kx m =+与椭圆交于A ,B 两点,且以AB 为直径的圆过椭圆的右顶点A 1,求证:如图10-38所示,设11(,)A x y ,22(,)B x y ,由22221x y ab y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得 222222222()20a k b x a kmx a m a b +++-=,由条件可知,222222222(2)4()()0a km a k b a m a b ∆=-+->,即2222m a k b <+.(注:截距的平方小于二次方程的二次项系数,请记住!)则2122222a km x x a k b +=-+,22212222()a m b x x a k b -=+,(**)因为AB 为直径的圆过椭圆的右顶点A 1(,0)a ,所以110A A A B =,又111(,)A A x a y =-,122(,)A B x a y =-所以1122(,)(,)0x a y x a y --=,即2121212()0x x a x x a y y -+++=,即2121212()()()0x x a x x a kx m kx m -+++++=,整理得,2221212(1)()()0k x x km a x x m a ++-+++=,将(**)代入,化简得2222()[()()]0m ak a b m a a b k +++-=.(1)当m ak =-时,:l y kx ak =-过右顶点(,0)a ,与题意不符,故舍去;(2)当2222()a a b k m a b -=-+时,2222():a a b k l y kx a b -=-+过定点2222()(,0)a a b a b -+,且满足2222m a k b <+,符合题意.所以,:l y kx m =+过定点2222()(,0)a a b a b-+. 同理可证,若AB 为直径的圆过左顶点(,0)a -,则l 过定点2222()(,0)a a b a b --+; 过上顶点(0,)b 时,l 过定点2222()(0,)b b a a b -+; 过下顶点(0,)b -时,l 过定点2222()(0,)b b a a b --+. 类比椭圆,对于双曲线22221(0,0)x y a b a b -=>>,上异于右顶点的两动点A ,B ,若AB 为直径的圆过右顶点(,0)a ,则AB l 过定点2222()(,0)a a b a b +-;同理,若该圆过左顶点(,0)a -,则AB l 过定点2222()(,0)a a b a b-+-; 变式1已知椭圆2214x y +=的左顶点为A ,不过点A 的直线:l y kx b =+与椭圆交于不同的两点P ,Q ,当0AP AQ =,求k 与b 的关系,并证明直线l 过定点.变式2(2012北京海淀高三期末理19)已知焦点在x 轴上的椭圆C 过点(0,1),且离心率为2,Q 为椭圆C 的左顶点. (1)求椭圆C 的标准方程;(2)已知过点6(,0)5-的直线l 与椭圆C 交与A ,B 两点.(Ⅰ)若直线l 垂直于x 轴,求∠AQB 的大小;(Ⅱ)若直线l 与x 轴不垂直,是否存在直线l 使得△QAB 为等腰三角形?如果存在,求出直线l 的方程;如果不存在,请说明理由.例10.49已知抛物线22(0)y px p =>上异于顶点的两动点A ,B 满足以AB 为直径的圆过顶点. 求证:AB 所在的直线过定点,并求出该定点的坐标. 分析 要证明AB l 过定点,必须先求得其方程.解析 由题意知AB l 的斜率不为0(否则只有一个交点),故可设:AB l x ty m =+,设11(,)A x y ,22(,)B x y ,由22y px x ty m⎧=⎨=+⎩,消去x 得2220y pty pm --=,从而222(2)4(2)480pt pm p t pm ∆=---=+>,即220pt m +>,且121222y y pty y pm +=⎧⎨=-⎩,(*)因为以AB 为直径的圆过顶点(0,0)O ,所以0OA OB ⋅=,即12120x x y y +=,也即221212022y y y y p p⋅+=,把式(*)代入化简得(2)0m m p -=,得0m =或2m p =. (1)当0m =时,x ty =,AB l 过顶点(0,0)O ,与题意不符,故舍去;(2)当2m p =时,2x ty p =+,令0y =,得2x p =,所以AB l 过定点(2,0)p ,此时2m p=满足220pt m +>.图10-39综上,AB l 过定点(2,0)p .评注:(1)①将斜率存在的直线的方程设为y kx b =+,将斜率不为0的直线的方程设为x ty m =+ ;②抛物线22y px =中,221212121224y y x x y y y y p +=+ ;③对于过定点问题,必须引入参数,最后令参数的系数为0.如本题,先引入参数,t m 之后,就剩下参数t ,直线2x ty p =+中令参数t 的系数y 为0,则直线过定点(2,0)p .(2)抛物线22x py = (0)p >上两异于原点O 的动点A,B 满足OA OB ⊥,则AB 所在的直线过定点(0,2)p ;抛物线22y px = (0)p >上两异于原点O 的动点A,B 满足OA OB ⊥,则AB 所在的直线过定点(2,0)p .变式1 如图10-39所示,已知定点00(,)P x y 在抛物线22y px = (p 上,过点P 作两直线12,l l 分别交抛物线于A,B ,且以AB 为直径的圆过点P ,证明:直线AB 过定点,并求出此定点的坐标.变式2 已知抛物线24y x =,过点(1,2)M 作两直线12,l l ,A B 两点,且12,l l 的斜率12,k k 满足122k k =.求证:直线AB 过定点,并求出此定点的坐标.模型二:三大圆锥曲线(椭圆,双曲线,抛物线)中,若过焦点的弦为AB ,则焦点所在坐标轴上存在唯一定点N ,使得NA NB ⋅为定值.例10.50 (2012北京海淀二模理18)已知椭圆2222:1(0)x y Ca b a b+=>>的右焦点为(1,0)F ,且点(1,2-在椭圆C 上. (1)求椭圆C 的标准方程;(2)已知动直线l 过点F ,且与椭圆C 交于,A B 两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由. 解析 (1)由题意知:1c =.根据椭圆的定义得:22a ==即a =所以2211b =-=.所以椭圆C 的标准方程为2212x y +=. (2) 假设在x 轴上存在点(,0)Q m ,使得716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,(A B .则7,0)(,0)16m m ⋅=-,解得54m =±.(i)当直线l 的斜率不存在时,(1,(1,22A B -.由于557(1(1,4416+⋅+≠-,所以54m ≠-.(ii)下面证明54m =时,716QA QB ⋅=-恒成立. 显然直线l 的斜率为0时,716QA QB ⋅=-.当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,1122(,),(,).A x y B x y由22121x y x ty ⎧+=⎪⎨⎪=+⎩可得:22(2)210.t y ty ++-= 22(2)4(2)0t t ∆=++>.1221222,21.2t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩因为111x ty =+,221x ty =+,所以 112212125511(,)(,)()()4444QA QB x y x y ty ty y y ⋅=-⋅-=--+2212122222211121(1)()(1)416242162217.2(2)1616t t t y y t y y t t t t t t =+-++=-++⨯+++--+=+=-+综上所述,在x 轴上存在点5(,0)4Q ,使得716QA QB ⋅=-恒成立. 变式1 已知双曲线222x y -=的左、右焦点分别为12,F F ,过点2F 的动直线与双曲线相交于,A B 两点.在x 轴上是否存在定点C ,使得CA CB ⋅为常数?若存在,求出点C 的坐图10-40标;若不存在,请说明理由.题型152 定直线问题模型:已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||.||||AP AQ PB QB = 求证:点Q 总在某定直线上,并求出该直线的方程.证明:如图10-40所示,设1122(,),(,),(,)A x y B x y Q x y ,由题意知||||||||PA PB AQ QB =, 设A 在P ,Q 之间,(0)PA AQ λλ=>,又Q 在P ,B PB BQ λ=-,因为||||PB BQ >,所以1λ>.由PA AQ λ=得101011(,)(,)x x y y x x y y λ--=--,解得01011.1x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩同理,由PB BQ λ=-得202022(,)(,)x x y y x x y y λ--=---,解得02021.1x xx y yy λλλλ-⎧=⎪⎪-⎨-⎪=⎪-⎩因为点A 在椭圆上,所以220022()()111x x y y a b λλλλ+++++=, 即2220022()()(1)x x y y a b λλλ+++=+ ① 同理,点B 在椭圆上,得2220022()()(1)x x y y a bλλλ--+=-. ② 由①-②得00222(2)2(2)4x x y y a b λλλ⨯⨯+=,即00221x x y y a b +=. 所以点Q 在定直线00221x x y ya b+=上.类比椭圆,对于双曲线有点Q 在定直线00221x x y ya b-=上. 再有P ,Q 的对等性知,当P 在椭圆内,仍有上述结论,双曲线亦同.已知抛物线22y px = (0)p >,定点00(,)P x y 不在抛物线上,过点P 的动直线交抛物线于,A B 两点,在直线AB 上取点Q ,满足||||.||||AP AQ PB QB = 求证:点Q 在某定直线上,并求其方程.证明:设1122(,),(,),(,)A x y B x y Q x y ,由题意知||||||||PA PB AQ QB =, 设A 在P ,Q 之间,(0)PA AQ λλ=>,又Q 在P ,B 之间,故PB BQ λ=-,因为||||PB BQ >,所以1λ>,由PA AQ λ=知101011(,)(,)x x y y x x y y λ--=--,解得01011,1x xx y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩故点A 坐标为00(,)11x x y yλλλλ++++. 同理,由PB BQ λ=-知202022(,)(,)x x y y x x y y λ--=---,解得02021.1x xx y yy λλλλ-⎧=⎪⎪-⎨-⎪=⎪-⎩故点B 坐标为00(,)11x x y yλλλλ----. 因为点A 在抛物线上,所以200()2()11y y x xp λλλλ++=++,即200()2(1)()y y p x x λλλ+=++ ① 同理 200()2(1)()y y p x x λλλ-=--. ②由①-②得002(2)4()y y p x x λλ⨯=+,即00()y y p x x =+. 所以点Q 在定直线00()y y p x x =+上.注:三大圆锥曲线(椭圆、双曲线、抛物线)中,当定点00(,)P x y 在曲线上时,相应的定直线00221x x y y a b +=,00221x x y ya b-=,00()y y p x x =+均为在定点00(,)P x y 处的切线.例10.51 设椭圆2222:1(0)x y C a b a b+=>>过点M ,且左焦点为1(F .(1)求椭圆C 的方程;(2)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点,A B 时,在线段AB 上取点Q ,满足||||||||AP QB AQ PB =.证明:点Q 总在某定直线上.分析 用待定系数法求解椭圆的方程,巧妙地利用定比分点解答点Q 的轨迹问题.解析 (1)由题意知2222222211c a bc a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,解得224,2a b ==,所求椭圆方程为22142x y +=. (2)如图10-41所示,设1122(,),(,),(,)A x y B x y Q x y , 由题意知||||||||PA PB AQ QB =, 不妨设A 在P ,Q 之间,(0)PA AQ λλ=>,又Q 在P ,B PB BQ λ=-,因为||||PB BQ >,所以1λ>,由PA AQ λ=得1111(4,1)(,)x y x x y y λ--=--,解得11411.1x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩同理,由PB BQ λ=-得2222(4,1)(,)x y x x y y λ--=---,解得22411.1x x y y λλλλ-⎧=⎪⎪-⎨-⎪=⎪-⎩因为点A 在椭圆上,所以2241()()11142x y λλλλ+++++=, 即222(4)(1)(1)42x y λλλ+++=+ ① 同理,点B 在椭圆上,得222(4)(1)(1)42x y λλλ--+=-. ②由①-②得8222442x y λλλ⨯⨯+=,因为0λ≠所以12yx +=. 所以点Q 在定直线220x y +-=上.评注 由模型的结论不难知动点(,)Q x y 总在定直线00221x x y ya b+=上,22004,2,4,1a b x y ====,得4142x y+=,即220x y +-=. 题型153 定值问题思路提示求定值问题常见的方法有两种:(1)从特殊入手,求出其值,再证明这个值与变量无关,这符合一般与特殊的思维辩证关系.简称为:特殊探路,一般论证.(2)直接推理,计算,并在计算推理的过程中消去变量,从而得到定值.模型:三大圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P 与曲线上的两动点A ,B 满足直线PA 与直线PB 的斜率互为相反数,则直线AB 的斜率为定值.例10.52 已知椭圆22:143x y C +=,A 为椭圆C 上的点,其坐标为3(1,)2A ,,E F 为椭圆C 上的两动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明:直线EF 的斜率为定值,并求出该定值.分析 要求直线EF 的斜率,必须知道E ,F 的坐标.解析 设直线AE 的方程为3(1)(0)2y k x k =-+≠,联立221433(1)2x y y k x ⎧+=⎪⎪⎨⎪=-+⎪⎩,消y 得22223(43)(128)4()1202k x k k x k ++-+--=,则222234()1241232(43)43E A k k k x k x k ----==++ ① 又直线AE 的斜率与AF 的斜率互为相反数,故以上k 用k -代替22412343F k k x k +-=+ ②所以33[(1)][(1)]()222F E F E F E EFF E F E F Ek x k x y y k x x k k x x x x x x --+--+--++===---, 把①,②两式代入上式,得12EF k =,为定值.评注 本题中可以用换元法简化计算,可以设31,2x t y s -=-=,得31,2x t y s =+=+,将,x y 代入椭圆方程中得2233(1)4()122t s +++=,且s kt =(k 为直线AE 的斜率),联立直线方程与椭圆方程得2233(1)4()122s kt t s =⎧⎪⎨+++=⎪⎩,消s 得关于t 的一元二次方程: 22(43)(126)0k t k t +++=,得122121264312643k t k k k s k +⎧=-⎪⎪+⎨+⎪=-⎪+⎩,同理222221264312643k t k k k s k -⎧=⎪⎪+⎨-⎪=-⎪+⎩, 由113(1,)2E t s ++,223(1,)2F t s ++,得222221212261212612143431261262424343EF k k k ks s k k k k k k t t k k k -++-++====-+-+++为定值. 变式1 已知A ,B ,C 是长轴为4,焦点在x 轴上的椭圆上的三点,点A 是长轴的一个端点,BC 过椭圆的中心O ,且0,||2||AC BC BC AC ⋅==.(1) 求椭圆的方程;(2)如果椭圆上的两点,P Q ,使得PCQ ∠的平分线垂直于OA ,问是否总存在实数λ,使得PQ AB λ=?说明理由.变式2 如图10-42所示,过抛物线22(0)y px p =>上一定00(,)P x y 0(0)y ≠,作两条直线分别交抛物线于1122(,),(,)A x y B x y .(1) 求该抛物线上纵坐标为2p的点到焦点F 的距离; (2) 当PA 与PB 的斜率存在且倾斜角互补时,求12y y y +的值,并证明直线AB 的斜率是非零常数.题型154 最值问题思路提示有两种求解方法:一是几何方法,所求最值量具有明显的几何意义时可利用几何性质结合图形直观求解;二是目标函数法,即选取适当的变量,建立目标函数,然后按照求函数的最值方法求解,同时要注意变量的范围.图10-43例10.53 设椭圆2212516x y +=的左、右焦点分别为12,F F ,点M 是椭圆上任意一点,点A 的坐标为(2,1),求1||||MF MA +的最大值和最小值.分析 本题若设(,)M x y ,建立目标函数1||||(,)MA MF f x y +=,则会作茧自缚.但是注意到1F 为椭圆左焦点,联想到椭圆定义及三角形中边的关系不等式时,问题就容易获解. 解析 如图10-43所示,12(3,0),(3,0)F F -,因为M 在椭圆上,所以有12||||210MF MF a +==,令1||||Z MF MA =+,得210||||Z MA MF =+-.当2,,M A F 三点不共线时,有222||||||||AF MA MF AF -<-<当M 落在2F A 的延长线时,22||||||MA MF F A -=-,当M 落在2AF的延长线时,22||||||MA MF F A -=.所以max 210||1010Z F A =+==+,min 210||10Z F A =-=评注 这里利用椭圆定义、三角形两边之差小于或等于(注意等号成立的条件)第三边,使与曲线有关的最值转化为直线段间的最值.应明确这里不能用11||||||FM AM F A +≥=1||||F M AM +,原因是取不到等号,如果要取到等号,那么M 必须在线段1F A 上,但这是不可能的变式1 如图10-44所示,已知点P 是抛物线24y x =上的点,设点P 到此抛物线的准线的距离为1d ,到直线:2120l x y +-=的距离为2d ,求12d d +的最小值.变式 2 已知点P 为双曲线2214x y -=上的动点,(55M F ,求||||||MP FP -的最大值及此时点P 的坐标.例10.54已知椭圆2214y x +=,点M 为椭圆上的动点,若,C D 的坐标分别是(0,,求||||MC MD 的最大值.分析求积的最大值,由“和为定值积有最大值”知,必须找出和为定值.解析 由题设知,D C 是椭圆的上、下焦点,故由椭圆的定义知||||4MC MD +==. 所以22||||4||||()()422MC MD MC MD +≤==.当且仅当||||MC MD =时取等号,即M 为左、右顶点时取等号.所以,当M 为左、右顶点时,||||MC MD 取得最大值4.评注 本题运用基本不等式求最值,但要注意使用基本不等式的条件:一正,二定,三相等,四同时,积为定值时,和最小,0)a b a b +≥>;和为定值时,积最大2()(,0)2a b ab a b +≤>,取等号的条件均为a b =. 变式1 已知椭圆2214y x +=在第一象限部分为曲线C ,动点P 在C 上,C 在P 点处的切线与,x y 轴的交点分别为,A B ,且向量OM OA OB =+,求||OM 的最小值.例10.55 如图10-45所示,已知抛物线2:E y x =与圆222:(4)(0)M x y r r -+=>相交于,,,A B C D 四点.(1) 求r 的取值范围;(2)当四边形ABCD 的面积最大时, 求对角线,AC BD 的交点P 的坐标.解析 (1)将2y x =代入222(4)x y r -+= 因为E 与M 有四个交点的充要条件是方程①有两个不等的正根12,x x ,由此得2212212(7)4(16)070160r x x x x r ⎧∆=--->⎪+=>⎨⎪=->⎩,解得215164r<<.又0r >,所以r 的取值范围是4)2. (2)不妨设E 与M 的四个交点坐标分别为11((,A x B x2(,C x2(D x ,则直线,AC BD 的方程分别为121()y xx =-,121()y x x=-.解得点P 的坐标为.设t =t =1)知702t <<.由于四边形ABCD 为等腰梯形,因而其面积211||2S x x =⋅-.即22121212([()4]S x x x x x x =++⋅+-.将127x x +=t =代入上式,并令2()f t S =,得27()(72)(72)(0)2f t t t t =+⋅-<<.求导数得'()2(27)(67)f t t t =-+-,令'()0f t =,解得77,62t t ==-(舍去). 显然当706t <<时,'()0f t >;当7762t <<时,'()0f t <.故当且仅当76t =时,()f t 有最大值,即四边形ABCD 的面积最大.故所求的点P 的坐标为7(,0)6.另解,2231128()(72)(72)(72)(144)()223f t t t t t =+-=⋅+-≤⨯,当且仅当72144t t +=-时,即76t =时取等号,所以点P 的坐标为7(,0)6.评注 本题主要有两个考查点:一个是考查将曲线与曲线的交点问题转化为二次方程的根的问题,是较基本的问题;另一个是考查四边形ABCD 的面积最大值问题,是本题的核心点.要注意本题中表面上求点的坐标,实质上是求四边形ABCD 的面积最大值,而且在求目标函数最值的过程中,利用了导数判断单调性的方法,从而使本题的综合性大大提高. 变式1 已知平面内一动点P 到点(1,0)F 的距离与点P 到y 轴的距离的差等于1. (1) 求动点P 的轨迹C 的轨迹;(2)过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点A,B ,2l 与轨迹C 相交于点D ,E ,求AD EB ⋅的最小值.最有效训练题47(限时45分钟)1.经过椭圆2212x y +=的一个焦点作倾斜角为45的直线l 交椭圆于A ,B 两点.设O 为坐标原点,则OA OB ⋅等于( ) A. 3- B. 13-C. 13-或3-D. 13± 2.设12,F F 是双曲线221(0)4x y a a a-=>的两个焦点,点P 在双曲线上,12120,||||2PF PF PF PF ⋅==,则a 的值为A. 1B.23.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是,p q ,则11p q+等于( ) A. 2a B.12a C. 4a D. 4a4.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x⊥轴,直线AB 交y 轴于点P,若2AP PB =,则椭圆的离心率是( )A.2 B.2 C.13 D.125.若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴长的最小值为()C.2D. 6.如果AB 是椭圆22221(0)x y a b a b+=>>的任意一条与x 轴不垂直的弦,O为椭圆的中心,e 为椭圆的离心率,M为AB 的中点,则AB OM k k ⋅的值为( ) A.1e - B.1e - C.21e - D.21e -7.已知椭圆的焦点是1(F和2F ,离心率为e =P为椭圆上一点,1223PF PF ⋅=,则12PF F ∆面积为________. 8.如图10-46所示,P是双曲线2214x y -=右支(在第一象限内)上的任意一点,12,A A 分别是左、右顶点,O 是坐标原点,直线12,,PA PO PA 之积123k k k ⋅⋅的取值范围是_______.9.已知椭圆的焦点为1(3,0)F -,2(3,0)F ,且与直线x y -有公共点,则其中长轴最短的椭圆方程为____________.图10-48-110.已知两点A,B 分别在直线y x =和y x =-上运动,且||5AB =,动点P 满足2OP OA OB =+(O 为坐标原点),点P 的轨迹记为曲线C .(1)求曲线C 的方程;(2)过曲线C 上任意一点作它的切线l ,与椭圆2214x y +=交于M ,N 两点,求证:OM ON ⋅为定值.11.如图10-47所示,已知椭圆22221(0)x y a b a b+=>>过点(1,2,离心率为2,左、右焦点分别为12,F F ,点P 为直线:2l x y +=上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为,A B 和,C D ,O 为坐标原点.(1)求椭圆的标准方程;(2)设直线1PF ,2PF 的斜率分别为12,k k .①证明:12132k k -=; ②问直线l 上是否存在点P ,使得直线,,,OA OB OC OD 的斜率,,,OA OB OC OD k k k k 满足0OA OB OC OD k k k k +++=?若存在,求出所有满足条件的点P 的坐标;若不存在,说明理由.12.如图10-48所示,等边三角形OAB 的边长为 且其三个顶点均在抛物线2:2(0)E x py p =>上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线1y =-相交于点Q .证明:以PQ 为直径的圆恒过y 轴上某定点.。