二元一次方程组教案(教学设计)
二元一次方程组教学设计

二元一次方程组教学设计二元一次方程组教学设计在教学工作者开展教学活动前,有必要进行细致的教学设计准备工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
教学设计要怎么写呢?以下是小编为大家收集的二元一次方程组教学设计,仅供参考,大家一起来看看吧。
二元一次方程组教学设计1二元一次方程组是一元一次方程教学的延续与深化。
很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”这个等量关系可列方程:x=2×[(x—1)—1];(2)设女同学y名,则男同学2(y—1)名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。
如此解决问题比较“绕”,数学的特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。
由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。
由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:从而实现问题的解决。
课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。
二元一次方程组教案精选3篇

二元一次方程组教案精选3篇元一次方程组教学设计篇一了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
二元一次方程组的含义判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
一、引入、实物投影1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?2、请每个学习小组讨论(讨论2分钟,然后发言)这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x 个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次练习(投影)下列方程有哪些是二元一次方程+2y=1 xy+x=1 3x-=5 x2-2=3xxy=1 2x(y+1)=c 2x-y=1 x+y=0二、议一议、师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成x-y=2x+1=2(y-1)像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
二元一次方程教案

二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。
怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。
2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
二元一次方程组第一课时教学设计

二元一次方程组第一课时教学设计第一篇:二元一次方程组第一课时教学设计二元一次方程组(第一课时)教学设计一、教学目标(-)知识目标1.了解二元一次方程、二元一次方程组和它的解的概念.2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.3.会检验一对数值是不是某个二元一次方程组的解.(二)能力目标培养学生分析问题、解决问题的能力和计算能力.(三)德育目标培养学生严格认真的学习态度.(四)美育目标通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.二、学法引导1.教学方法:讨论法、练习法、尝试指导法.2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.三、重点•难点•疑点及解决办法(-)重点使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.(二)难点了解二元一次方程组的解的含义.(三)疑点及解决办法检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.四、课时安排一课时.五、教具学具准备电脑或投影仪、自制胶片.六、师生互动活动设计1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.七、教学步骤(-)明确目标本节课的教学目标为理解二元一次方程及二元一次方程组的概念并会判断一对未知数的值是否为二元一次方程组的解.(二)整体感知由复习方程及其解,导入二元一次方程及二元一次方程组的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验二元一次方程组解的问题.(三)教学过程1.创设情境、复习导入(1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?回答老师提出的问题并自由举例.【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.(2)依据意思列出方程1、小红x岁,小明y岁,小红比小明大2岁。
二元一次方程组教学设计

二元一次方程组教学设计第一篇:二元一次方程组教学设计3.3二元一次方程组(1课时)教学设计【教学重点与难点】教学重点:二元一次方程、二元一次方程组、二元一次方程组的定义及解的意义,以及检验一对数值是不是某个二元一次方程组的解教学难点:求二元一次方程的特殊解【教学目标】1.能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解2.通过实例认识二元一次方程和二元一次方程组都是反映数量关系的重要数学模型,能设两个未知数并列方程组表示实际问题中的两种相关的等量关系3通过对本课知识的探究与应用,提高学生的逻辑思维能力和分析、解决问题的能力。
【教学过程】一、创设情境提出问题(设计说明:从学生亲身体验中提出问题,引导学生思考,自然进入新课)问题:星期天,我们8个人去合肥动物园玩,买门票花了34元.每张成人票5元,每张儿童票3元。
他们到底去了几个成人、几个儿童呢?若设他们中有x个成人,y个儿童.由此你能得到怎样的方程? 先放开让学生说,接着提出下面的问题:你得到的两个方程是一元一次方程吗?与一元一次方程比较有什么不同?如果让你给它起名字,你认为应该叫它什么合适?二、探索新知解决问题1.二元一次方程的概念(设计说明:由实际问题引导学生开始对二元一次方程概念的探索。
学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于学生对概念的理解)学生给方程x+y=8,5x+3y=34命名之后,类比一元一次方程进一步讨论下面的问题:问题1:请你写出几个二元一次方程,和同桌交流,判断写出的方程是否符合要求问题2:请找出二元一次方程的特点①含有两个未知数②含未知数项的次数是一次③是整式方程问题3:二元一次方程的定义(类比一元一次方程的定义由学生归纳得出)含有两个未知数且含未知数项的最高次数都是1的方程叫二元一次方程练一练:请判断下列各方程中,哪些是二元一次方程,哪些不是?并说明理由⑴2x+5y=10 ⑵ 2x+y+z=1 ⑶⑹2x+10xy =0+y=20(4)x2+2x+1=0 ⑸2a+3b=5 解析:(2)中含有三个未知数,(3)中含有分式,(4)中 x2的次数是2,(5)中10xy 的次数是2,所以,(2)、(3)、(4)、(6)都不是二元一次方程,(1)、(5)是二元一次方程(教学说明:本环节设计的问题引导学生用类比法分析二元一次方程的特征,逐步得出二元一次方程的定义,并在应用中进一步巩固对定义的理解)2.二元一次方程的解(设计说明:用类比的方法学习二元一次方程解的意义,在求解的过程中体会二元一次方程解的不唯一性,在正确理解的基础上归纳出解决问题的一般方法)问题1 :满足方程x+y=22且符合问题实际意义的x,y的值有哪些? 问题2:二元一次方程的解结合问题1,类比一元一次方程解的意义归纳出二元一次方程的解的意义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.同时指出:(1)一元一次方程只有一个解,而二元一次方程有无限多解(本题中需要考虑x,y的实际意义),其中一个未知数(x或y)每取一个值,另一个未知数(x或y)就有惟一的值与它相对应.(2)二元一次方程的每一个解是一对数值(教学说明:用填表的方式学生容易找到x,y的值,然后结合表格数据得出二元一次方程解的意义,并进一步体会二元一次方程解的不唯一性)3.二元一次方程组方程X+Y=8和5X+3Y=34中,X的含义相同吗?Y呢?,x、y的含义分别相同.因而x,y必须同时满足方程X+Y=8和5X+3Y=34.把它们联立起来,得:像这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.说明:方程组各方程中,同一字母必须代表同一数量,才能合在一起练习已知x、y都是未知数,判别下列方程组是否为二元一次方程组? ①②③④ 解析:①④是二元一次方程组,②中第一个方程是二元二次方程,③中的两个方程共含有3个未知数,所以②③不是二元一次方程组4.二元一次方程组的解问题1: 请找出同时满足方程X+Y=8和5X+3Y=34的x,y的值.指导学生找出x,y的值,并进一步说明这一组数值就是方程组的解问题2:二元一次方程组的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解三、巩固训练熟练技能(设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对相关观念的理解,形成初步技能。
二元一次方程组教学设计

二元一次方程组教学设计二元一次方程组教学设计(精选5篇)作为一名老师,时常要开展教学设计的准备工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
我们应该怎么写教学设计呢?下面是店铺为大家收集的二元一次方程组教学设计(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程组教学设计1教学目标1.认识二元一次方程和二元一次方程组。
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。
重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。
二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。
视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作。
满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。
二元一次方程组教案3 篇

二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
八年级数学上册《认识二元一次方程组》教案、教学设计

3.使学生认识到数学知识在解决实际问题中的重要作用,增强学生的应用意识。
在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发学生的学习兴趣。以下是具体的教学设计:
1.导入:通过生活中的实际问题,引导学生发现并认识二元一次方程组。
(1)过程性评价:关注学生在课堂上的参与程度、合作交流能力、问题解决能力等;
(2)总结性评价:通过课后作业、测试等方式,评价学生对二元一次方程组知识的掌握程度;
(3)个性化评价:根据学生的个体差异,给予有针对性的评价和建议,激发学生的学习动力。
4.教学反馈:
(1)及时了解学生的学习情况,针对学生存在的问题进行针对性的辅导;
八年级的学生已经具备了一定的数学基础,掌握了线性方程的相关知识,但对于二元一次方程组的认识还不够深入。在此阶段,学生的抽象逻辑思维能力逐渐增强,但仍然需要通过具体实例来理解和掌握抽象的数学概念。此外,学生在解决实际问题时,可能存在将问题转化为数学模型的困难,需要教师在教学过程中给予适当的引导和帮助。
3.鼓励学生主动提问,积极参与课堂讨论,提高自身数学素养。
五、作业布置
为了巩固学生对二元一次方程组知识的掌握,提高学生的解题能力和应用意识,特布置以下作业:
1.基础练习题:完成课本P56页第1-6题,要求学生熟练掌握二元一次方程组的定义、一般形式及其解法。
2.实践应用题:根据课堂所学的代入法、消元法,解决以下实际问题:
(1)小红和小李同时从同一地点出发,小红以每小时5公里的速度向北走,小李以每小时4公里的速度向东走,问两小时后,两人相距多远?
2.教师提问:让学生尝试用之前学过的知识解决这个问题,并引导学生发现问题的难点,即需要同时考虑两个未知数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二元一次方程组》教学设计
一.课标要求与分析
能根据具体问题中的数量关系列出方程,体会方程式刻画现实世界数量关系的有效模型;能根据具体问题的实际意义,检验方程的解是否合理。
第一条是过程性目标,行为动词:体会;第二条是结果性目标。
二.教材分析
本节教材是初中数学的重要内容之一。
学生已学过一元一次方程,在此基础上,从解决多个未知量的实际问题出发,建立二元一次方程组,是方程有关方面的继续和深化,也为以后学习多元方程做铺垫,起着承上启下的作用。
三.学情分析
优势:学生在七年级上学期,系统地学习一元一次方程的相关概念及一元一次方程的解法,对于实际问题中出现的未知量及数量关系有了较深的认识。
对于建立二元一次方程及方程组的模型描述实际问题有着很大的兴趣,较强的愿望。
劣势:学生缺乏生活实际,分析能力有相对薄弱。
四.教学重、难点
重点:二元一次方程、二元一次方程组及其解的含义。
难点:弄懂二元一次方程组解的含义。
五.教学目标
1.通过自主学习、自学检测,学生理解二元一次方程,二元一次方程组的概念;
2.通过展示反馈、小组探究,学生理解二元一次方程(组)的解,并会检验一对数是不是某个二元一次方程组的解。
3.学生学会用类比的方法迁移知识,并体验二元一次方程组在处理问题中的优越性。
通过对二元一次方程(组)的概念学习,感受数学与生活的联系,感受数学乐趣。
六.教学流程
(一)创景(复习)引入(3分钟)
学生欣赏三张校内篮球比赛的照片,教师引出问题,请学生利用已学知识解决。
问题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?(只列方程不计算)
预设:学生用两分钟时间列出方程,并作答。
解:设这个队胜x场,则负(10-x)场.
根据题意知2x+(10-x)=16.
追问1:这是我们学过的哪一类方程?
追问2:什么是一元一次方程?(符合三点)
师:在利用一元一次方程解决此题时,需要用含未知数的式子表示另一个量,那么能不能直接设两个未知数,更容易的列出方程?(引出课题)
要求:学生出示学习目标了解本节课学习内容,师板书课题。
(二)分析引导(3分钟)
师1:此题包含哪些等量关系?学生表述,教师列表格。
师2:能不能设两个未知数列方程?学生思考后作答。
解:设这个队胜x场,负y场.
x+y=10
2x+y=16
预设:方程1学生不一定能想到,引导学生考虑是否还有一个方程?你会给方程1和2起名字吗?用大括号联立起来就是二元一次方程组。
请同学们翻开教材,阅读88,89页,回答下列问题,5分钟之后看谁可以独立完成练习。
(三)自主学习(5分钟)
要求:阅读教材88,89页回答下列问题
1.什么是二元一次方程?请举例。
2.什么是二元一次方程组?请举例。
3.你还学会了什么?
5分钟后,比一比,谁能正确地完成练习
(四)自学检测,展示归纳(9分钟)
第一组题目:请判断下列各方程中,哪些是二元一次方程,哪些不是?并说明理由。
(1)2x+5y=10 (2)2x+y+z=1 (3)+y=2
(4)+x+1=0 (5)2a+3b=5 (6)2x+3xy=10
学生作答,答对每人加1分,然后学生总结二元一次方程的概念。
二元一次方程:①含有两个未知数;②含有未知数的项的次数是1;③整式方程。
(教师板书)
第二组题目:判断下列方程组哪些是二元一次方程组?
学生根据题目理解定义中“在方程组中有两个未知数”,并在教材中划出相关定义。
(五)小组探究 分散难点(8分钟)
要求学生以小组为单位,读题填表格。
1.有哪些值满足方程①且符合问题的实际意义呢?x
y
有哪些值满足方程②且符合问题的实际意义呢?
2x 2x ⎩⎨⎧=+=+16210Y X Y X ①②
x
y
追问1:在实际问题下,方程①有多少组符合条件的值?方程②呢?
追问2:如果没有实际问题作背景,方程①有多少组值?
追问3:有没有一组解同时符合满足方程①和方程②?
总结:二元一次方程的解的概念,二元一次方程组的解的概念,注意对方程组的解要理解“同时满足两个方程”的条件。
(六)巩固练习(2分钟)
把下列方程组的解和相应的方程组用线段连起来:
x=1 y=1-x
y=2 3x+2y=5
x=3 y=2x
y=-2 x+y=3
(七)实际应用(3分钟)
小明:上周末,我们一家8个人去绥滨植物园玩,买门票花了34元。
小红:哦,那你们家去几个大人,几个小孩呢?
小亮:真笨,自己不会算吗?成人票每人5元,小孩每人3元啊!
提问:聪明的同学们,你能帮他们算算吗?
(八)分享收获(2分钟)
师:这节课你有哪些收获给大家分享一下!
预设:学生谈知识点收获。
教师补充:一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程问题,因此,一旦解决了方程问题,一切问题将迎刃而解! ——法国数学家笛卡尔
(九)当堂检测(4分钟)
1.判断下列各组未知数的值是不是二元一次方程组的解:
2.已知方程⑴5x+3y=7 ⑵ 5x-7=2 ⑶ 2xy=1 ⑷ x2-y=1
⑸ 5(x-y)+2(2x-3y)=4,是二元一次方程的有___________________(标序号即可)
(十)布置作业(1分钟)
教材P90 必做题:1. 2(写书上)选做题:3.4 (作业本)
练习册P40 必做题:1.2.4 选做题:3. 能力提升3
七.板书设计
§8.1 二元一次方程组
二元一次方程定义:①
②
③
x+y=10
2x+y=16
八.教学反思
在学习二元一次方程时,第一,我引用本校篮球联赛积分问题作为引入。
学生被这种有趣的问题吸引,积极思考问题的答案,以“趣”引思,使学生处于兴奋状态和积极思维状态,不但能诱发学生主动学习,而且还能增长知识;第二,通过学生自学后的检测反应学生的自学效果, 也以此督促学生的自学态度,培养自学能力,这一点是本课的创新之处;第三,小组合作探究有效地分散了本节课的难点,最后用笛卡尔的话总结也起到了升华的作用。
810
+=⎧⎨-=⎩x y x y ,111.x y ,=⎧⎨=⎩35x y ,.=⎧⎨=⎩91.
x x ,=⎧⎨=-⎩
本节课我采取了启发式教学、探究式教学等多种教学模式,放手于学生,让学生自问自答,而我只是在旁边引导,充分发挥学生的积极性。
另外这节课,还有一些重点内容没有展现出来,比如说二元一次方程组的解这个部分,表现
的不够严谨,不够完美。
在今后的教育教学中,我要向老教师虚心学习,来弥
补自身的不足。