七年级数学下垂线线导学案 )
七年级数学下册第五章相交线与平行线512垂线第2课时垂线段导学案新人教版

5.1.2垂线第二课时垂线段有一个角中是 ____ 时,就说这两条直线互相垂直, 其中一条直线叫做另一条直线的,他们的交点叫做 _______2,过一点有且只有 ________ 直线与已知直线垂直。
) ----------------------------------------------直线L 上有点,A, AA,A 3,A 4,O,点P 在直线外, 连接直线外一点 P 到直线上各点,比较线段PA,P A i, PA 2,PA 3,PA 4,PO,的长短,哪一条线段—一 最短?最短 _____ 。
注意:我们称线段PA 为点P 到直线L 的垂线段。
从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段1.提出问题:在灌溉时候,要把河流 AB 中的水引导农田 P 处,如何挖河渠使渠道最短? 不知道吧。
学完下面的 知识,一 、2.探究再回来解决他吧什十么发现。
1,当两条直线相交所成的四个角中, 3,结论:连接直线外一点与直线上各点的所有直线中,垂线段最短。
简而言之:垂线段最短。
3. 现在能完成1的问题了吧?动手画起来。
4. 直线外一点到这条直线的垂线段的距离的长度,叫做点到直线的距离。
上图中,线段PA注意:垂线,垂线段和点到直线的距离是三个不同的概念,不能混淆。
垂线是直线,垂线段是线段,点到直线的距离是一个数量。
的长度就是点P到直线L的距离。
5. 垂线段的画法(师生共同完成)。
已知:如图,三角形ABC / BAC是钝角。
(1)画出点C到AB的距离。
(2)过点A画BC的垂线。
(3)量出点B到AC的距离。
三.试一试。
1. 课本6页练习。
2. 如图。
BCL AC,CB=8cm.AC=6cm,AB=10cm,那么点B到AC的距离是.点A到BC的距离是___________ .A,B两点之间的距离是________ .1. 如图所示。
一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路两侧的村庄。
人教版七年级数学下册导学案:5.1.2 垂线

七年级数学下册导学案1.两条直线互相垂直,•其中的一条直线叫做另一条直线的_______,•交点叫做________.2.过一点有且只有_______与已知直线_______.3.连结直线外一点与直线上各点的所有线段中,________最短.4.直线外一点到这条直线的________的长度,叫做点到直线的距离.5. 垂直用符号“⊥”来表示,若“直线AB垂直于直线CD,垂足为O”,则记为___________,6.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______7.改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。
例1.(1)同一平面内,点与直线的位置关系:和(2)已知直线a有条垂线(3)作图:①过直线l上一点A,作直线AB l 垂足为A②过直线AB外一点C,作CD AB,垂足为D.(4)垂线的性质:例2.垂直的推理应用:(1)∵∠AOD=90°()∴AB⊥CD ()(2)∵ AB⊥CD ()∴∠AOD=90°()3.如图1直线AB,CD与EF相交,构成_______个角,其中∠1与∠5是_______,∠3与∠5是______,∠4与∠5是_______.图1 图2 图34.如图2所示,CD⊥AB,则点D是_____,∠ADC=∠CDB=________.5.如图3所示,l1⊥l2,垂足为_____,∠1与∠2是一组_____的邻补角,∠1•与______是一对_______的对顶角.6.如图(1),OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.7.如图(2),AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________.8.如图(3),直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB的位置关系是_________.1.如图所示,l1⊥l2,图中与直线L1垂直的直线是()A.直线a B.直线L2C.直线a,b D.直线a,b,c2.如图所示,下列说法不正确的是()A.∠1与∠B是同位角B.∠1与∠4是内错角C.∠3与∠B是同旁内角D.∠C与∠A不是同旁内角3.过点P向线段AB所在直线引垂线,正确的是()4.已知点A,与点A的距离是5cm的直线可画()A.1条B.2条C.3条D.无数条5.如图,∠ACB=90°CD⊥AB,线段AC、BC、CD中最短的是()A.ACB.BCC.CDD.不能6.如图:直线AB、CD相交于点O, OE AB于点O,,则7.已知如图,BC ⊥AC,BC= 8,AC= 6,AB= 10,则点B到AC的距离是 , 点A到BC的距离是 ,点A、点B之间的的距离是8.如图,= 90°,,=3,= 4,= 5 (1)点A到BC的距离是, 点B到AC的距离是 ,(2)求线段CD的长9.已知直线AB、CD交于O, OE CD,OF AB,且,求和的度数10.我国“十一五”规划其中一重要目标是,建设社会主义新农村,国家对农村公路建设投资近1000亿人民币.西部的某落后山村准备在河流M上架上一座桥梁,如图所示,桥建在何处才能使A,B两个村庄的之间修建路面最短?。
湘教版七年级数学下册4.5 垂线(第2课时)导学案

4.5 垂线(第2课时)一、新课引入〈一〉复习旧知1.在同一平面内,垂直于同一条直线的两条直线互相______.2.在同一平面内,如果一条直线垂直于两条平行直线中的一条直线,那么这条直线必___于另一条.〈二〉导读目标学习目标:1.会过一点作已知直线的垂线,掌握垂线段的概念及其性质.2.会作出直线外一点到已知直线的距离,并进行相关的计算.3.学习初步的几何推理的方法,培养逻辑思维能力.重点:会过一点作已知直线的垂线,掌握垂线段的概念及其性质.难点:会过一点作已知直线的垂线,掌握垂线段的概念及其性质.二、预习导学阅读教材P98-100的内容,解答下列问题:(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过一点画已知直线l的垂线,这样的垂线能画出几条?(3)什么叫点到直线的垂线段?斜线段?垂线段的性质是什么?什么叫点到直线的距离?三、合作探究〈一〉经过一点作已知直线的垂线的探究1.用三角尺或量角器过一点画已知直线的垂线,如图.(1)经过直线l上一点P画l的垂线a;(2)经过直线l外一点P画l的垂线b.思考:这样的垂线分别可以画出几条呢?归纳:在同一平面内,过一点有且只有一条直线与已知直线垂直.〈二〉垂线段性质探究(1)如图,设PO垂直于直线l,O为垂足,线段PO叫做点P到直线l的垂线段.经过点P的其他直线交l于A,B,C,D,…,线段PA,PB,PC,PD,…都不是垂线段,称为斜线段.(2)观察图中的线段,PA,PB,PC,PD,PO中哪条线段最短?归纳:直线外一点与直线上各点连接的所有线段中,垂线段最短.或者简单地说成:垂线段最短.〈三〉点到直线的距离探究阅读教材P100-101的内容,解答下列问题:1.什么是点到直线的距离?2.(1) 你能量出点P到直线l 的距离吗?(2)如图,某工厂要在河岸l上建一个水泵房引水到C处,问建在哪个位置上才最节省水管?为什么?〈四〉垂线的性质运用例如图,在三角形ABC中,∠ABC=90°,BD⊥AC,垂足为D,AB=5,BC=12,AC=13.求:(1)点A到直线BC的距离;(2)点B到直线AC的距离.四、解法指导五、堂上练习六、课堂小结七、课后作业教材P102习题4.5 A组第5题.教材P103习题4.5 B组第8题.。
人教版七年级数学下册 5-1-2 垂线(第一课时) 教案

5.1 相交线5.1.2 垂线(第一课时)教学反思教学目标1.理解垂线的概念.2.理解垂线的性质——在同一平面内,过一点有且只有一条直线垂直于已知直线.3.会用三角尺或量角器过一点画一条直线的垂线.教学重难点重点:两条直线互相垂直的概念、性质和画法.难点:过一点作已知直线的垂线.课前准备相交线模型、多媒体课件教学过程导入新课导入一:教师:在前面我们学习了两条直线相交形成了四个角,这四个角会产生4对邻补角和2对对顶角.你们还记得它们的定义吗?学生回答,老师纠正.教师:如果两条直线相交,形成的四个角中有一个角是直角时,这两条直线有怎样的特殊关系?日常生活中有没有这方面的实例呢?今天我们就来研究这个问题.(板书课题:5.1.2垂线(第一课时))导入二:教师:同学们观察教室里的课桌面相邻的两边,黑板面相邻的两边,方格纸的横线和竖线……这些给大家什么印象?学生回答,教师指出:“垂直”这两个字对大家并不陌生,在小学,我们已经学习过“垂直”,对于“垂直”的知识我们已经了解了一些.今天,我们就在原有知识的基础上,继续探究“垂直”.(板书课题:5.1.2垂线(第一课时))设计意图通过生活中我们经常见到的现象引出垂直,通过新问题来激发学生的学习兴趣.探究新知探究点一:认识垂线和垂直教师:拿出相交线模型,如图1,演示模型,提问学生:固定木条a,转动木条b,当b的位置发生变化时,什么量随之发生变化?学生:当b 的位置变化时,a,b 所形成的四个夹角的度数随之发生变化. 教师:在b 转动的过程中,当a ,b 所形成的夹角∠α=90°时(如图2所示),木条a 与b 所形成的其他三个角的度数是多少?为什么?图2学生:另外三个角也是90°.教师:这种特殊的位置关系,即∠α=90°时,我们就说a 与b 互相垂直.我们身边存在大量的形如两条直线相互垂直的实例,请同学们举一些例子.学生发言,教师肯定.教师追问:根据前面的活动,你们能说出什么样的两条直线互相垂直吗? 师生活动鼓励学生大胆发表自己的见解,学生可能会说两条直线相交所构成的四个角都是直角时,两条直线互相垂直,这时可以引导学生认识到:两直线相交所构成的四个角中,只要有一个角是直角,就可以得出其他三个角也是直角.教师总结并板书垂直的概念:两条直线相交所构成的角中有一个角是直角时,我们就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.教师强调:“互相垂直”与“垂线”的区别与联系:“互相垂直”是指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名.如果两条直线“互相垂直”,那么其中一条直线必定是另一条直线的“垂线”;如果一条直线是另一条直线的“垂线”,那么它们必定“互相垂直”.设计意图垂直是两条直线相交的特殊情形,两条直线垂直所形成的四个角之间的关系,需要由“邻补角和为180°”“对顶角相等”得出.相交线模型的演示与有关问题的引导,使学生对垂直的认识由感性上升到理性,从而加深学生对垂直的理解.教师:许多几何图形都可以用符号来表示,例如,角用“∠”表示,三角形用“△”表示等等,垂直也有它自己的符号.教师:垂直用符号“⊥”表示,如图3所示,直线AB 垂直于直线CD ,垂足为O ,就可记为“AB ⊥CD ,垂足为O ”.(教师板书)图3教师:根据垂直的定义,结合图3,当AB⊥CD时,∠AOD是多少度?学生:∠AOD=90°.教师:我们如何用几何推理语言来描述这个结论.学生大胆发言,教师引导并板书:因为AB⊥CD,所以∠AOC=90°(垂直的定义).教师:把这个推理倒过来,当∠AOC=90°,直线AB,CD具备什么特殊的位置关系?学生:垂直.教师:如何用几何推理语言描述这个结论.学生发言,教师板书:因为∠AOC =90°,所以AB⊥CD(垂直的定义).设计意图教学中在明确给出垂直的定义后,借助图形用符号语言来表示,让学生从文字语言、图形语言、符号语言等不同角度来认识垂直,实现了三种语言之间的转化,在此过程中,培养了学生用几何语言表达问题的能力,增强了学生的符号感.探究点二:垂线的画法及性质教师:根据垂直的定义,我们知道要想画垂线,必须有直角,我们的学习用具中有存在直角的吗?学生:三角尺、量角器中存在直角.教师:现在我们就开始研究用三角尺和直尺或者量角器画垂线的方法,出示课本探究.如图4所示.(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)经过直线l外一点B画l的垂线,这样的垂线能画出几条?(1) (2)图4学生独立尝试,小组合作交流,完成下面填空和思考:1.垂线的画法:第一步:靠,即三角尺的一条直角边紧靠;第二步:过,即三角尺的另一条直角边过;第三步:画,即画出垂线.2.(1)与直线l垂直的直线能画条.(2)经过直线上一点能画条直线与已知直线垂直.(3)经过直线外一点能画条直线与已知直线垂直.教师在学生合作交流的基础上组织两名学生用三角尺演示第(2)(3)问,并展示上述填空.教师:如果把(2)(3)两条结论合并在一起,你们认为应该怎样表达.学生发言,教师引导得出垂线的性质并板书.垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直.设计意图在本环节的教学中有两个重要的任务,除了让学生掌握垂线的性质外,还应让学生在探究性质的过程中,掌握过一点作已知直线的垂线的方法,它是几何作图中的一种常用的基本作图,需要学生熟练掌握.虽然学生在小学已经接触过垂线的作法,但要在各种情境中熟练作图,对学生来说也是一个难点,尤其是过已知点作线段的垂线.因此在这一环节的教学中应给予学生充分的机会来感受、体会、总结、训练垂线的作法,教师也可以在此基础上演示总结用三角尺过一点画已知直线的垂线的方法:一靠,即三角尺的一条直角边紧靠已知直线也就是与已知直线重合;二过,即三角尺的另一条直角边过已知点;三画,即画出垂线.使学生能够顺利突破难点.新知应用例1 判断下列语句是否正确?(1)两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( )(2)若两条直线相交构成的四个角相等,则这两条直线互相垂直.( )(3)一条直线的垂线只能画一条.( )(4)过一点可以任意画已知直线的垂线.( )答案:(1)正确(2)正确(3)错误(4)错误师生活动教师读题,学生抢答.设计意图考查学生由角的关系来判断两直线的位置关系,强化对垂直概念的理解..或线段AB的垂线.图5师生活动找三位同学在黑板上板演,其他同学自己动手画图,画完之后请同学们点评.(1) (2) (3)图6教师引导学生归纳:画一条射线或线段的垂线,就是画它们所在直线的垂线.设计意图训练学生在各种情境中熟练作图,通过此练习,给学生充分的机会来感受、体会、总结、训练在各种条件下垂线的作法.课堂练习(见导学案“当堂达标”)参考答案1.C2.B3.D4.B5.C6.D7. 垂直 AB ⊥CD DOB BOC COA 8.30° 9.解:OD ⊥OE.理由:∵ OD 平分∠BOC ,∴ ∠COD =12∠BOC.∵ OE 平分∠AOC ,∴ ∠COE =12∠AOC. ∴ ∠EOD =∠COD+∠COE=12(∠BOC+∠AOC)=12×180°=90°,即OD ⊥OE.10.解:(1)∠AOD =120°.(2)∠AOD =110°.(3)猜想∠AOD 与∠BOC 互补.理由如下:如题图①,∵ ∠AOD =∠AOC+∠COD =∠AOC+90°,∠BOC =∠AOB-∠AOC =90°-∠AOC ,所以∠AOD+∠BOC =180°,即∠AOD 与∠BOC 互补.(见导学案“课后提升”)参考答案1.解:∵ OE 平分∠BOD ,∴ ∠DOE =∠BOE. ∵ ∠AOD ∶∠DOE =4∶1,∴ ∠AOD ∶∠DOE ∶∠BOE =4∶1∶1.又∵ ∠AOB =180°,∴ ∠DOE =∠BOE =180°×16=30°,∴ ∠COB =∠COD-∠DOE-∠BOE =180°-30°-30°=120°. 又∵ OF 平分∠COB ,∴ ∠COF =∠BOF =12∠COB =60°,∴ ∠AOF =∠AOB-∠BOF =180°-60°=120°. (此题解法多种,只提供一种)2.解:有可能有三个或两个或一个.如图7所示.课堂小结1.本节课主要学习了两条直线互相垂直、垂线以及垂足的概念和垂线的一条性质.2.会用三角尺或量角器过一点画已知直线、射线、线段的垂线.3.要关注三种语言,即文字语言、图形语言、符号语言之间的转化.布置作业教材第8页习题5.1第3,4,5题板书设计。
七年级下第五章512垂线导学案

课题:5.1.2 垂线(2)【学习目标】1•经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,培养学生用几何语言准确表达的能力。
2. 了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离。
【自主学习】1•上学期我们学习过“什么什么最短”的几何知识,还记得吗? _____________________ 。
2•思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?3•自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑?【合作探究】1 •问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。
那么最短渠道问题会变成是怎样的数学问题?(提示:用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短?)2. 学具感受自制学具:在硬纸板上固定木条L , L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA长度也随之变化.观察:当PA最短时,直线a与L的位置关系如何?用三角尺检验一下。
3. 画图验证(1) 画直线L,在L外取一点P;(2) 过P点出P0丄L,垂足为0;(3) 点A1,A2,A3…… 在L上,连接PA、PA2、PA3……;⑷用度量法比较线段P0、PA1、PA2、PA3……的大小,.得出线段_________ 最小。
4. 归纳结论.连接直线外一点与直线上各点的所有线段中,简单说成: .5. 知识类比(1) 垂线段与垂线有何区别联系?(2) 垂线段与线段有何区别与联系?6. 解决问题:此时你会解决课本P5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。
7. 探究“点到直线的距离”?定义:(1)学习课本P6第二段内容回答什么叫“点到直线的距离”?默写一遍:叫做点到直线的距离。
人教版七年级数学下册 第五章 5.1.2 垂线 导学案

5.1相交线5.1.2垂线第1课时垂线一、新课导入1.导入课题:观察周围的景物:墙与地面、桌腿与地面、公路两边的电线杆与地面的位置关系都给我们垂直的印象,导出课题——垂线.2.学习目标:(1)能说出垂线、垂线段的意义、会用三角尺或量角器过一点画已知直线的垂线.(2)记住垂线的性质并会利用所学知识进行简单的推理.3.学习重、难点:重点:正确理解垂线、垂线段的概念.难点:能利用垂线的性质进行简单的推理.二、分层学习1.自学指导:(1)自学内容:课本P3至P4“探究”之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,对重、难点内容做好标记.不清楚,不懂的地方可以小组讨论.(4)自学参考提纲:①垂线的定义:结合相交线模型和图5.1-4体会当∠α=90°时,a和b互相垂直,这说明:当两条直线相交成的四个角中,有一个角是90°时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.②垂线的定义推理过程(如图1):因为AB⊥CD(已知),所以∠AOC=∠AOD=∠BOC=∠BOD=90°(垂直定义).反之因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).③如图2,直线a ⊥b,∠1 = 35°,则∠2 =55°.④当两条直线相交所成的四个角相等时,这两条直线有什么位置关系?为什么?互相垂直.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师在学生自学时巡视课堂,关注学生的学习进度和学习中存在的问题.②差异指导:对在自学中遇到疑难或认识有偏差的学生进行点拨引导.(2)生助生:学生通过小组交流探讨各自遇到的问题.4.强化:(1)垂线、垂线段的概念.(2)举例说明生活中的垂直现象.1.自学指导:(1)自学内容:课本P5练习之前的内容.(2)自学时间:3分钟.(3)自学要求:根据探究提纲动手操作画图;在动手过程中互助交流作图方法.(4)探究提纲:①如图,用三角尺或量角器画已知直线l的垂线,这样的垂线能画几条?小组内交流,明确直线l的垂线有无数条,即垂线存在,但位置有不确定性.②如图1,在直线l上取一点A,过点A画直线l的垂线,能画几条?如图2,经过直线l外一点B画直线l的垂线,这样的垂线能画几条?③从②中你能得出什么结论?在同一平面内,过一点有且只有一条直线与已知直线垂直.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否会列表,是否理解表中的数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)用三角尺过已知点画已知直线的垂线的方法:①一边靠线;②移动找点;③画垂线.(2)垂线的存在性和唯一性:在同一平面上,过一点有且只有一条直线与已知直线垂直.(3)练习:画一条线段或射线的垂线,就是画它们所在直线的垂线,如图,请你过点P画出射线AB或线段AB的垂线.三、评价1.学生学习的自我评价:各小组长谈学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中表现出的态度、情感、方法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,学生的主体地位突出了,真正亲历了知识形成的全过程.在自主学习、同桌合作交流的活动中升华了对知识的理解.教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多.在本节课实施中的每一个学习活动,都以学生个性思维、自我感悟为前提多次设计了让学生自主探索、合作交流的时间与空间.通过学生和谐有效地互动,强化了学生的自主学习意识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图所示,若AB⊥CD于点O,则∠AOD=90°;若∠BOD=90°,则AB⊥CD.2.(10分)如图所示,已知AO⊥BC于点O,那么∠1与∠2的关系是∠1+∠2=90°.第1题图第2题图第3题图第4题图3.(10分)如图,OA⊥OB,OC是一条射线,若∠AOC=120°,则∠BOC=30°.4.(10分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(B)A.26°B.64°C.54°D.以上答案都不对5.(15分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC =35°,求∠AOD和∠BOD的度数.解:因为EO⊥AB,所以∠EOB=∠EOA=90°,所以∠COB=∠COE+∠EOB=125°.又因为∠AOD=∠BOC(对顶角相等),所以∠AOD=125°.因为∠AOC=∠AOE-∠COE=55°,所以∠BOD=∠AOC=55°(对顶角相等).二、综合应用(20分)6.如图,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一直线上吗?为什么?解:A、B、C三点在同一直线上.∵AB⊥l,BC⊥l.且交点都为B.∴A、B、C三点在同一直线上(在同一平面内,过一点有且只有一条直线与已知直线垂直).三、拓展延伸(20分)7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°-(∠2+∠AOC)=180°-90°=90°.(2)由已知条件∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°-30°=60°,所以由对顶角相等可得∠BOD=60°,所以∠MOD=90°+∠BOD=150°.5.1.2垂线第2课时垂线段一、新课导入1.导入课题:如图所示,在铁路旁边有一个村庄A,现要建一个火车站,为了使此村庄的人乘火车最方便(即距离最近),应怎样选择火车站的位置呢?学完这节课,相信你就会明白!2.学习目标:(1)能说出垂线段的意义和点到直线的距离的含义.(2)记住垂线段的性质,并能利用它进行简单的推理.3.学习重、难点:重点:正确理解垂线段的概念和点到直线的距离.难点:利用垂线段的性质进行简单的推理.4.自学指导(1)自学内容:课本P5的练习以下的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,联系生活实际体会并测量.(4)自学参考提纲:①什么叫垂线段?②在课本P5“探究”中,先通过目测估计最短的线段是PO,再通过度量或叠合法比较验证你的结论.③由②可得到:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.④点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如右图,PO的长度叫做点P到直线l的距离.PO、PA、PB、PC中最短的线段是PO.⑤在课本P5“思考”图中画出水渠开挖的路线,若图中比例尺为1∶100000,水渠大约要挖多长?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师参与到学生自学过程中,了解学生的认知情况.(2)差异指导:对个别学习有困难和认识有偏差的学生进行点拨和指导.2.生助生:小组内相互交流、探讨.四、强化1.垂线段最短.2.点到直线的距离.3.练习:如右图,三角形ABC中,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段?ACBC (2)三条边AB、AC、BC中哪条边最长?为什么?AB五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,我们从学生熟悉的生活实例入手,探讨了有关垂线段的意义和点到直线的距离问题,让学生真正经历了知识形成的全过程.同时课堂强调了学生的动手操作,让学生经历大胆猜测,合作交流等学习过程,为后面的学习打下坚实的基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)体育课上,老师测量跳远成绩的依据是(C)A.垂直的定义B.两点之间,线段最短C.垂线段最短D.两点确定一条直线2.(10分)点到直线的距离是指(D)A.直线外一点到这条直线上一点之间的距离B.直线外或直线上一点到直线的垂线段的长度C.直线外一点到这条直线的垂线的长度D.直线外一点到这条直线的垂线段的长度3.(10分)P是直线AB外一点,过点P作PO⊥AB,垂足为O,若C为直线AB上任意一点,则线段PC与线段PO的大小关系是(C)A.PC>POB.PC<POC.PC≥POD.PC≤PO4.(10分)如图,三角形ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是(B)A.3B.2.8C.3.5D.45.(20分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画直线CD的垂线,与AB相交于F点;(3)线段PE,PO,PF三者中最短的是PE,依据是垂线段最短.二、综合应用(20分)6.一辆汽车在直线形的公路AB上由A向B行驶,C、D是分别位于公路AB两侧的加油站.(1)设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中分别画出点M、N的位置;(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离C、D两加油站都越来越近?在哪一段路上距离加油站D越来越近,而离加油站C却越来越远?解:(1)如图.(2)在公路AB的AM段距离C、D两加油站都越来越近,在MN段距离加油站D越来越近,而加油站C却越来越远.三、拓展延伸(20分)7.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线各点的连线中,垂线段最短”是把河水引入蓄水池H 中开渠最短的根据.。
人教版数学七年级下册5.1《垂线》名师教案

活动一画图实践
1.作直线EF的垂线.
(1)直线EF,画出直线EF的垂线,能画几条?EF
小组内交流,明确直线EF的垂线有多少条?即存在,但位置有不______性.〔无数条〕〔不确定〕
(2)怎样才能确定直线EF的垂线位置呢?
在直线EF上取一点A,过点A画EF的垂线, 能画几条?再经过直线EF外一点B画直线EF的垂线,这样的垂线能画出几条?
垂线性质:
答案:1条,如图:
2条,如图:
垂线的性质:在同一平面内,过一点有且只有一条直线与直线垂直.
〔4〕如图AB与直线BC垂直。
点A与直线BC上各点的距离长短不一,我们可以
发现其中最短的应该是线段AB。线段AB的长度就
是点A到直线BC的距离。请量一量线段AB的长度.
结论:.
简记为:.
(5)直线外一点到这条直线的,叫做点到直线的距离.
(4)点到直线的距离是从直线外一点向这条直线所作的垂线段的长度,它是一个数量概念,只能量出或求出,而不能画出,画出的是垂线段,不是点到直线的距离;点到直线的距离问题通常伴随着过一点作直线的垂线,作图的准确性直接影响到计算与区分,务必仔细、标准.
4、随堂检测
一、选择题
1.如下图,以下说法不正确的选项是( )
4、学习难点
掌握垂线的性质,并会利用所学知识进展简单的推理.
二、教学设计
〔一〕课前设计
1、预习任务
任务1
阅读教材P3-4,思考:垂线的定义是什么?我们用符号语言怎么表示?
任务2
阅读教材P4-5垂线有哪些性质?过一点如何作直线的垂线?
任务3
阅读教材P5,什么是点到直线的距离?
2、预习自测
〔1〕、两条直线相交所成的四个角中,有一个角是时,这两条直线就互相垂直.其中一条直线叫做另一条直线的,它们的交点叫做.假设“直线AB垂直于直线CD,垂足为O〞,那么记为__________________,并在图中任意一个角处作上直角记号.
新人教版七年级数学下册第五章《垂线(第2课时)》导学案

新人教版七年级数学下册第五章《垂线(第 2 课时)》导教案学目:1.理解垂段的观点、点到直的距离的概念,并会胸怀点到直的距离。
2.掌握垂的性,并会利用所学知行的推理用。
学要点:垂段的性。
学点:垂性的用点,到直的距离的理解。
学前准:直l 外一点 P 画 l 的垂,并明的垂能画出几条?【后小】今日你有什么收?有什么疑惑?【当堂】一、 :1.如 1 所示 , 以下法不正确的选项是 ( )A. 点 B 到 AC的垂段是段 AB;B. 点 C 到 AB的垂段是段 ACC. 段 AD是点 D 到 BC的垂段 ; D. 段 BD是点 B 到 AD的垂段【入】【自主学,合作沟通】教材第五至六四前方部分,解决以下:1. 如,接直l 外一点P与直 l 上各点O,A,B,C,⋯⋯,此中PO l (我称PO点 P 到直l的垂段)。
比段 PO、PA、PB、PC⋯⋯的短,些段中,哪一条最短?P2.性 2 接直外一点与直上各点的全部段A B O C中,最短。
成:最短。
3.点到直的距离:直外一点到条直的 ______________的度叫做点到直的距离。
4.达成本 5 的思虑取的【生互,精点拔】例 . 如, AC⊥ BC, AC=3, BC=4, AB=5, B 到 AC 的距离是___________, 点 A 到 BC的距离是 __________ ,点 C到 AB的距离是 __________。
如, CD⊥ AB, 有CDCB(填>或< ) ,依据是_______________小牛刀 :C如 ,AC⊥BC,C 垂足 ,CD⊥AB,D 垂足 ,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点 C 到 AB的距离是 _______,点 A到 BC的距离是 ________, 点 B 到 CD 的距离是 _____,A、 B 两点的距离是 _________.B D A【精点拔】:学生出教精点拔A ADC O DBC B(1)(2)(3)2.如 1 所示 , 能表示点到直 ( 段 ) 的距离的段有 ( )A.2条B.3条C.4条D.5条3.如2所示,AD⊥ BD,BC⊥ CD,AB=acm,BC=bcm,BD的范是 ( )A.大于 acmB.小于bcmC.大于 acm或小于 bcmD. 大于 bcm且小于 acm4.到直 L 的距离等于 2cm 的点有 ( )A.0个B.1个;C.无数个D.没法确立5.点P直m外一点,点A,B,C直m上三点,PA=4cm,PB=5cm,PC=2cm,点P到的距离 ( )A.4cmB.2cm;C.小于2cmD.不大于2cm【后作】必做11. 已知钝角∠ AOB,点 D在射线 OB上 .纠错栏车行驶到点P 地点时,距离乡村(1)画直线 DE⊥OB;AB上分别画出 P,Q 两点地(2)画直线 DF⊥OA,垂足为 F.2.如图,直线AB,CD订交于点O,OE CD ,OF AB, DOF65 , 求BOE 和AOC 的度数。