七年级数学下各章知识点汇总

合集下载

七年级下册数学知识点总结与归纳

七年级下册数学知识点总结与归纳

第一章 二元一次方程组1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做二元一次。

方程一般形式是 ax+by=c(a ≠0,b ≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解⎩⎨⎧==b y a x 7.加减消元法:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)第二章 整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

bc a 22-的 系数为-2,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

122++-x ab a ,项有4项,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,叫 次 项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:m n m n a a a +=g (n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

人教版七年级数学下册知识点总结归纳

人教版七年级数学下册知识点总结归纳

人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。

垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

在同一平面内,过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

同位角相等,两直线平行。

判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

内错角相等,两直线平行。

判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

同旁内角互补,两直线平行。

5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。

两直线平行,同位角相等。

性质2 两条平行线被第三条直线所截,内错角相等。

两直线平行,内错角相等。

性质3 两条平行线被第三条直线所截,同旁内角互补。

两直线平行,同旁内角互补。

5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。

题设是已知事项,结论是由已知事项推出的事项。

数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。

如果题设成立,那么结论一定成立,这样的命题叫做真命题。

题设成立时,不能保证结论一定成立,这样的命题中做假命题。

七年级数学下册全部知识点归纳(含概念公式实用)

七年级数学下册全部知识点归纳(含概念公式实用)

第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中全部字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包含它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1〞。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包含项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不肯定是单项式。

4、整式不肯定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。

3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。

〔2〕按去括号法则去括号。

〔3〕合并同类项。

4、代数式求值的一般步骤:〔1〕代数式化简。

〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。

七年级下册数学各章知识点总结

七年级下册数学各章知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)

上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)

上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)第1章平行线在同一平面内,两条直线的位置关系只有两种:相交与平行。

平行线的定义为:在同一平面内,不相交的两条直线叫做平行线,用符号“∥”表示。

为什么要有“在同一平面内”这个条件?因为平行线只存在于同一平面内,如果不在同一平面内,两条直线可能会相交。

平行线的基本事实是:经过直线外一点,有且只有一条直线与这条直线平行。

为什么要经过“直线外”一点?因为如果经过直线上的点,会有无数条直线与这条直线平行。

用三角尺和直尺画平行线的方法是:一贴,二靠,三推,四画。

需要注意的是,作图题要写出结论。

同位角、内错角、同旁内角是判断平行线关系的重要概念。

在判断过程中,需要画出给定的两个角的边(共三条边),公共边就是截线,剩下两条边就是被截线。

同位角在截线的同旁,被截线的同一侧;内错角在截线的异侧,被截线之间;同旁内角在截线的同旁,被截线之间。

练时需要填写正确的角对应关系。

平行线的判定有多种方法:同位角相等、内错角相等、同旁内角互补、平行线的定义、平行于同一条直线的两条直线平行、在同一平面内,垂直于同一条直线的两条直线互相平行。

在练中需要根据给定条件判断两条直线是否平行。

平行线的性质包括同位角相等、内错角相等、同旁内角互补。

在练中需要根据已知条件计算未知角度。

图形的平移是指一个图形沿某个方向移动,在XXX的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移。

平移不改变图形的形状、大小和方向,且一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。

在描述一个图形的平移时,必须指出平移的方向和距离。

练:已知△ABC和其平移后的△DEF,点A的对应点是D,点B的对应点是E,线段AC的对应线段是DF,线段AB的对应线段是DE,平移的方向是从△ABC到△DEF的方向,平移的距离是未知。

若AC=AB=5,BC=4,平移的距离是3,则CF=4,DB=5,AE=3,四边形AEFC的周长是14.折叠问题:1)如图,将一张纸条ABCD沿EF折叠,若折叠角∠XXX°,则∠1=64°。

七年级下数学(重要知识点总结)

七年级下数学(重要知识点总结)

七年级数学(下)重要知识点总结第一章:整式的运算一、概念1、代数式:2、单项式:由数字与字母的乘积的代数式叫做单项式。

单项式不含加减运算,分母中不含字母。

3、多项式:几个单项式的和叫做多项式。

多项式含加减运算。

4、整式:单项式和多项式统称为整式。

二、公式、法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。

(6)负指数幂:11()(0)p p p a a a a -==≠(底倒,指反)(7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。

(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。

(9)平方差公式:(a+b )(a-b)=a 2-b 2 公式特点:(有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同 推广(项数变化):连用变化:(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):完全平方和公式中间项=完全平方差公式中间项=完全平方公式中间项=例如:229x +mxy+4y 是一个完全平方和公式,则m = ;是一个完全平方差公式,则m = ;是一个完全平方公式,则m = ;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第二章 平行线与相交线一、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。

人教版七年级数学下册知识点及典型试题汇总——适用于期末总复习

人教版七年级数学下册知识点及典型试题汇总——适用于期末总复习

人教版七年级数学下册知识点汇总第五章相交线与平行线相交线相交线垂线同位角、内错角、同旁内角平行线:在同一平面内,不相交的两条直线叫平行线定义:___________________________________________判定1 :同位角相等,两直线平行平行线及其判定平行线及其判定平行线的判定判定2 :内错角相等,两直线平行判定3 :同旁内角互补,两直线平行判定4 :平行于同一条直线的两直线平行性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等平行线的性质性质3:两直线平行,同旁内角互补性质4:平行于同一条直线的两直线平行命题、定理平移、知识网络结构二、知识要点1、在同一平面内,2、在同一平面内, 两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

不相交的两条直线叫平行线。

如果两条直线只有-可编辑修改-一个公共点,称这两条直线相交;如相交线与平行线的两个角叫同位角。

图3中,共有对同位角:果两条直线没有公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角的性质:邻补角互补。

如图1所示,与互为邻补角,_____ 与___ 互为邻补角。

____ + _ = 180 ° ;______ +____ = 180 ° ;_____ +____ = 180 ° ;____ +____ = 180 °。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。

对顶角的性质:对顶角相等。

如图1所示,与互为对顶角。

= ;=5、两条直线相交所成的角中,如果有一个是直角或90。

时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

如图2所示,当=90。

时,丄o b垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(完整版)初中数学各章节详细知识点

(完整版)初中数学各章节详细知识点

各章节知识点七年级上册
第一章《有理数》
1.正数与负数的概念
2.正数与负数的实际意义
3.有理数的概念
4.数轴的概念
5.相反数的概念
6.绝对值的概念
7.有理数的大小比较
8.有理数的加法法则(6分)
9.有理数的减法法则
10.有理数的乘法法则
11.有理数的运算律
12.有理数的除法法则
13.有理数的混合运算法则(6分)
14.有理数的乘方相关概念(乘方、幂、底数、指数)
15.有理数的乘方法则
16.科学记数法(3分)
17.近似数(有效数字)
第二章《整式的加减》
1.单项式及其相关概念(单项式、系数、次数)
2.多项式及其相关概念(多项式、项、常数项、次数)
3.整式
4.同类项的概念
5.合并同类项的法则
6.去括号法则
7.整式加减的运算法则(6分)
第三章《一元一次方程》
1.方程的概念
2.一元一次方程的概念
第 1 页共10 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下各章知识点汇总第五章平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等3、判断两直线平行的条件:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

(5)如果两条直线都和第三条直线垂直,那么这两条直线也互相平行。

4、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)内错角相等,同旁内角互补。

5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,那么……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。

(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。

连接各组对应点的线段平行且相等。

第六章实数一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫ 二、知识回顾算术平方根的定义:平方根的定义: 平方根的性质: 立方根的定义: 立方根的性质: 练习:1、—8是 的平方根; 64的平方根是 ;=64 ; —64的立方根是 ;=9 ; 9的平方根是 。

2、大于17-而小于11的所有整数为 几个基本公式:(注意字母a 的取值范围)2)(a = ;2a =无理数的定义:实数的定义:实数与 上的点是一一对应的第七章 平面直角坐标系1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b )⎪⎪⎪⎪⎪⎩⎨⎩⎨⎧⎪⎪⎩⎩⎨⎧_____________________________________________实数2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。

3、在平面内画两条互相垂直,并且有公共原点的数轴。

这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。

平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。

坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。

X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。

象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。

一般情况下,x轴和y轴取相同的单位长度。

4、特殊位置的点的坐标的特点:(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

5.点到轴及原点的距离点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;6.在平面直角坐标系中对称点的特点:1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。

3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。

7.各象限内和坐标轴上的点和坐标的规律:第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)x轴上的点纵坐标为0,y轴横坐标为0。

第八章二元一次方程组1、二元一次方程组的意义:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。

把两个一次方程结合在一起,那么这两个方程就组成了一个二元一次方程组。

有几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

2、二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。

3、三元一次方程组:在3个方程组中,共含有3个未知数,且每个未知数的次数都是1次,像这样的方程组叫做三元一次方程组.第九章不等式与不等式组1、不等式:用不等号将两个解析式结合连结起来所成的式子。

2. 不等式的性质:1)不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

4)不等式的两边都乘以0,不等号变等号。

3.不等式的解集在数轴上的表示:大向右,小向左,有等号是实心,无等号是空心.4、不等式组:几个含有相同未知数的不等式联立起来,叫做不等式组.5、解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。

以两条不等式组成的不等式组为例,①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。

若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。

此乃“大小,小大取中间”④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。

此乃“大大,小小无处找”不等式组的解集顺口溜:同大取大同小取小大小小大取中间大大小小没有解6.解一元一次不等式的步骤:(1)去分母,(2)去括号,(3)移项,(4)合并同类项, (5)系数化为1,求得解集。

3. 解一元一次不等式组的步骤:(1)求出每个不等式的解集;(2)求出每个不等式的解集的公共部分;(一般利用数轴)(3)用不等式来表示公共部分。

第十章数据的收集、整理与描述1、全面调查:考察全体对象的调查叫做全面调查,也叫普查。

2、抽样调查:只抽取一部分对象进行调查,然后根据数据推断全体对象的情况。

要考察的全体对象称为总体,组成总体的每一个考察对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。

3、直方图的绘制方法:①集中和记录数据,求出其最大值和最小值。

数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。

②将数据分成若干组,并做好记号。

分组的数量在5-12之间较为适宜。

③计算组距的宽度。

用组数去除最大值和最小值之差,求出组距的宽度。

④计算各组的界限位。

各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去组距的一半,第一组的上界为其下界值加上组距。

第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。

⑤统计各组数据出现频数,作频数分布表。

⑥作直方图。

以组距为底长,以频数为高,作各组的矩形图。

4、从数据谈节水:加强环境保护,节约用水。

第七章三角形1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。

2、三角形三个内角的和等于180度。

3、直角三角形的两个锐角互余4、三角形的三条角平分线交于一点(三角形的内部),三条中线交于一点(三角形的内部);三角形的三条高所在的直线交于一点(锐角三角形三条高交于内部、直角三角形三条高交于直角顶点上、钝角三角形三条高交于外部)。

(4)等腰三角形的两个底角相等。

(5)等腰三角形的底角只能是锐角。

6、三角形具有稳定性,四边形不具有稳定性。

7.三角形内角和为180°,三角形的一个外交等于与他不相邻的两个内角的和,三角形的一个外角大于与它不相邻的任何一个内角。

多边形8.有一些线段首位顺次相接组成的图形叫做多边形9、多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

10、连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,否则就是凹多边形。

12.各个角都相等,各条边都相等的多边形叫做正多边形。

13、n边形的内角和等于(n-2)×180°多边形的外角和等于360°14、n边形对角线条数=n(n-3)镶嵌15.镶嵌也叫作密铺,指的是:用一些不重叠摆放的多边形把平面的一部分无缝隙的完全覆盖。

16.用一种正多边形可以镶嵌一个平面的有正三角形、正四边形、正六边形。

相关文档
最新文档