GPU1浪涌保护器选型
浪涌保护器的设计选型

浪涌保护器设计目录1 总则 (1)3建筑物防雷分类 (1)4 建筑物的防雷措施 (2)5 防雷装置(略) (6)6 防雷击电磁脉冲 (7)6.1基本规定 (7)6.2 防雷区和防雷击电磁脉冲 (7)6.3 屏蔽、接地和等电位连接的要求 (9)6.4 安装和选择电涌保护器的要求 (21)电涌保护器的有效电压保护水平值的选取 (22)选用S P D举例 (23)OBO的SPD典型配置 (24)【SPD的安装接线】 (26)1 总则(1)为使建(构)筑物防雷设计因地制宜地采取防雷措施,防止或减少雷击建筑物所发生的人身伤亡和文物、财产损失,以及雷击电磁脉冲引发的电气和电子系统损坏或错误运行,做到安全可靠、技术先进、经济合理,制定本规范。
(2)本规范适用于新建、扩建、改建建筑物的防雷设计。
(3)建(构)筑物防雷设计,应在认真调查地理、地质、土壤、气象、环境等条件和雷电活动规律,以及被保护物的特点等的基础上,详细研究并确定防雷装置的形式及其布置。
(4)建(构)筑物防雷设计,除应符合本规范外,尚应符合国家现行有关标准的规定。
3建筑物防雷分类表3-1 防雷分类对比4 建筑物的防雷措施4.1 基本规定表中k c—分流系数,单根引下线时为1,2根引下线及接闪器不成闭合环的多根引下线时为0.66,接闪器成闭合环或网状的多根引下线应为0.44。
l x—引下线上需考虑隔距的计算点到最近的等电位联结点(即金属物或电气/电子线路与防雷装置之间直接或通过SPD相连接之点)的长度,m。
R i—接地装置的冲击接地电阻,Ω;h x—被保护物或计算点的高度,m。
h —接闪线或接闪网的支柱高度,m;l—接闪线的水平长度,m。
l1—从接闪网中间最低点沿导体至最近支柱的距离,m;n —从接闪网中间最低点沿导体至最近不同支柱并有同一距离l1的个数,但至少应取2。
表4-2 防闪电感应的措施表4-3 防反击和闪电电涌侵入的措施5 防雷装置(略)6 防雷击电磁脉冲6.1基本规定(1)在工程的设计阶段不明确电子系统规模和具体位置的情况下,若预计将来会有需要防雷击电磁脉冲的电气和电子系统,应在设计时应将建筑物的金属支撑物、金属框架或钢筋混凝土的钢筋等自然构件、金属管道、配电的保护接地系统等与防雷装置组成一个共用接地系统,并应在需要之处预埋等电位连接板。
浪涌保护器的设计选型

(1)考察建筑物所处地理位置及供电进线方式首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。
推荐选择第一级浪涌保护器的最大通流量应大于以下标准值:高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs)郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs)城市内(埋地进线):40KA(8/20μs)第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs);第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。
(2)检查建筑物内供电系统的类别•单相、三相及直流供电系统在220V单相供电系统中,只需选用两片保护模块组合。
如FRD-20-2A,FRD-40-2A。
在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。
在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。
一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。
首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。
在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。
其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。
试论浪涌保护器的配置与选用

试论浪涌保护器的配置与选用我们生活和工作的所在,都有浪涌的情况出现。
浪涌也叫突波,就是超出正常值的大电流、高电压波动。
浪涌在电路中持续时间通常只有很短,以微妙计,但导致的故障可能会使你长时间的工作成果毁于一旦,造成严重损失。
良好的保护可以避免这些情况发生。
本文主要简析浪涌保护器在用电系统中的应用。
标签:浪涌浪涌保护器过压保护雷电泄放响应1 什么是浪涌浪涌也叫突波,就是超出正常值的大电流、高电压波动。
浪涌在电路中持续时间通常只有很短,但导致的故障可能会使你长时间的工作成果毁于一旦,造成严重损失。
即使是很小的电涌或峰值电压也可以最终摧毁或影响昂贵的电子设备的性能,如电脑、电话、传真、电视、音频/视频设备和其它家用电器和工具。
电脑芯片的普遍使用越发需要电涌保护,因为这些芯片往往对电压波动都十分敏感。
因此安装电源电涌保护器十分必要。
浪涌的主要来源:雷电、大电流设备开关动作产生的过电压、静电放电、线路故障、以及建筑物内的电气设备如空调、水泵、电梯等感性负荷的投切引起的。
尤其是雷电造成的伤害是巨大的,后果是严重的。
雷电由高能的低频成份与极具渗透性的高频成份组成。
其主要通过两种形式,一种是通过金属管线或地线直接传导雷电致损设备;一种是闪电通道及泄流通道的雷电电磁脉冲以各种耦合方式感应到金属管线或地线产生浪涌致损设备。
对于电子信息设备而言,危害主要来自于由雷电引起的雷电电磁脉冲的耦合能量,通过以下三个通道所产生的瞬态浪涌。
金属管线通道,如自来水管、电源线、天馈线、信号线、航空障碍灯引线等产生的浪涌;地线通道,地电们反击;空间通道,电磁小组的辐射能量。
电气设备与环境间的接口可能被两个因素所影响:A互感(无线设备之间的相互干扰),B输入(有线设备之间的相互干扰)。
干扰信号和浪涌对电路的不利影响是不能忽视的问题。
在过去继电器的短时间过载输入可能是没有危险的,但是现在是使用半导体电路的时代里,即使是低能量脉冲也能造成损坏(如集成块就容易被损坏)。
浅析浪涌保护器的应用及选型

浅析浪涌保护器的应用及选型
浪涌保护器是一种用于保护电力设备和电子设备免受电力浪涌的损坏的重要装置。
在现代工业生产和日常生活中,电力浪涌现象十分普遍,例如雷击、电力闪击、电力电子设备开关、电感线圈切换等都可能会导致电力浪涌。
如果不及时采取防护措施,电力浪涌可能会对电力设备和电子设备造成不可逆转的损坏,甚至导致火灾等重大后果。
因此,在现代产业生产中,安装浪涌保护器已经成为一种必须的浪涌保护手段。
浪涌保护器的应用范围非常广泛,除了在生产和日常生活中使用外,它还广泛应用于电信、计算机、广播电视、工厂自动化、医疗和军事等领域。
无论场所和应用场景如何,灯涌保护器都是安全运行电气设备的必要保障。
选择浪涌保护器时,应根据实际需要来考虑。
首先需要考虑的是其防护等级,这决定了浪涌保护器可以防护的电力浪涌大小。
其次,还需要考虑选择哪种产品类型,可以选择有线、无线、RF、光纤等不同种类的产品,其使用效果有一定的差异。
此外,还需要考虑其安装位置和连接方式,例如,是否需要在电气设备的前端或后端安装浪涌保护器等。
总之,浪涌保护器是现代产业生产不可或缺的一种电力保护装置。
正确地选择和应用浪涌保护器,可以保障设备的安全运行,提高生产和日常生活的安全和卫生水平。
一级浪涌保护器参数

一级浪涌保护器参数
1. 额定电压:根据具体应用需求设置,通常可选范围为110V、220V、380V等。
3. 浪涌放电能量:该参数表示保护器能够吸收的最大浪涌能量,典型数值为1000J、2000J、3000J等。
4. 响应时间:即保护器从检测到浪涌电压超过额定电压到启动保护装置的时间。
一级浪涌保护器的响应时间通常为纳秒级别。
5. 耐压等级:表示保护器能够承受的最大冲击电压,如1.2/50us电压波形下能够承受的最大峰值电压为6000V。
6. 安装方式:可选的安装方式包括插座式、板式、导轨式等,根据实际需求选择合适的方式。
7. 外观尺寸:保护器的外观尺寸应适应不同安装环境的需求,典型尺寸为
100mm×80mm×40mm。
8. 工作温度范围:保护器应能够在一定的温度范围内正常工作,常见的工作温度范围为-40℃至+85℃。
9. 防护等级:为了防止外界灰尘、水分等进入保护器内部影响其正常工作,保护器应具备一定的防护等级,如IP20、IP54等。
以上是一级浪涌保护器的一些常见参数,具体选型时需要根据实际需求进行选择和确认。
浪涌保护器的选型要求

浪涌保护器的选型要求摘要:本文通过介绍浪涌保护器的分类,从设计角度分析了浪涌保护器及其保护元件的选型要点和布置原则,给出浪涌保护器的正确使用方法。
关键词:浪涌保护器;选型;要求浪涌保护器作为一种新兴的防雷电保护器件,是弱电设备防雷的主要手段,也是内部防雷保护的主要措施,正在被越来越广泛的应用。
一、浪涌保护器的分类通常按工作原理,浪涌保护器分为电压开关型、限压型和混合型浪涌保护器。
1.1电压开关型浪涌保护器无电涌出现时为高阻抗,当突然出现电压电涌时变为低阻抗。
通常采用放电间隙、充气放电管、硅可控整流器或三段双向可控硅元件,做电压开关型电涌保护器的组件。
可疏导0.03μs的雷冲击电流,由于它的雷电泄放能量大,所以通常装在建筑物入口处。
但是其缺点是残压较高,一般可达2~4kV。
1.2限压型浪涌保护器无电涌出现时为高阻抗,随着电涌电流和电压的增加,阻抗连续变小。
通常采用压敏电阻、抑制二极管作限压型电涌保护器的组件。
可以用于疏导0.4μs的雷电冲击电流,虽然其雷电泄放能量小,但是过电压抑制能力好,用来限制因前级雷电流泄放后,在后级产生的过高电压。
1.3混合型将开关型和限压型原件组合在一起的一种SPD,随着施加的冲击电压特性不同,SPD有时会呈现开关型SPD特性,有时呈现限压型SPD特性,有时同时呈现两种特性。
电压开关型浪涌保护器为间隙放电型器件,其雷电能量泻放能力大,在线路上使用的主要作用是泻放雷电能量;限压型浪涌保护器为压敏电阻器件,其雷电能量泻放能力小,但其过电压抑制能力好,在线路上使用的主要作用是限制过电压。
因为,一般在建筑物入口处选用电压开关型浪涌保护器来泄放雷电能量,然后,在后级电路使用限压型浪涌保护器来限制因前级雷电能量泻放后,在后级线路产生的高过电压。
两种浪涌保护器需配合使用,方能保证配电线路中设备的安全。
二、浪涌保护器的选型安装浪涌保护器的安装位置如图1所示。
在任何两雷电防护区的交界处应装设浪涌保护器。
浪涌保护器选型标准

浪涌保护器选型标准
浪涌保护器是电子设备中非常重要的一个部分,它可以有效地保护设备免受电压浪涌的影响。
在选择浪涌保护器时,需要考虑一系列的标准和因素,以确保选择到合适的产品,下面将介绍浪涌保护器选型的标准。
首先,需要考虑的是浪涌保护器的工作电压。
在选择浪涌保护器时,需要确保其工作电压范围能够覆盖到待保护设备的工作电压范围,以确保浪涌保护器能够有效地工作。
其次,需要考虑的是浪涌保护器的响应时间。
在电压浪涌发生时,浪涌保护器需要能够迅速响应并启动保护机制,以保护设备不受损害。
因此,浪涌保护器的响应时间非常重要,一般来说,响应时间越短越好。
另外,还需要考虑浪涌保护器的额定放电电流。
浪涌保护器在工作时需要能够承受一定的浪涌电流,因此其额定放电电流需要能够满足待保护设备的需求,以确保设备不受损害。
此外,还需要考虑浪涌保护器的安装方式。
根据不同的应用场
景和设备特点,浪涌保护器的安装方式也会有所不同,需要根据实际情况选择合适的安装方式。
最后,还需要考虑浪涌保护器的可靠性和稳定性。
浪涌保护器作为设备的重要保护部分,其可靠性和稳定性非常重要,需要选择具有良好品质和可靠性的产品,以确保设备在电压浪涌发生时能够得到有效的保护。
综上所述,选择浪涌保护器时需要考虑工作电压、响应时间、额定放电电流、安装方式以及可靠性和稳定性等多个方面的因素。
只有综合考虑这些因素,才能选择到合适的浪涌保护器,为设备的安全运行提供保障。
浪涌保护器选型标准

浪涌保护器选型标准浪涌保护器是电气系统中非常重要的一部分,它可以有效地保护电气设备免受电压浪涌的影响。
在选择浪涌保护器时,需要考虑一系列的标准和因素,以确保所选的浪涌保护器能够满足系统的需求并且具有良好的性能。
以下是浪涌保护器选型的一些标准和建议。
首先,需要考虑的是浪涌保护器的额定电压。
在选择浪涌保护器时,需要确保其额定电压能够覆盖整个系统的工作电压范围,以保护系统免受电压浪涌的影响。
此外,还需要考虑系统中可能出现的过电压情况,以确定浪涌保护器的最大工作电压。
其次,浪涌保护器的额定电流也是一个重要的考虑因素。
在选择浪涌保护器时,需要确保其额定电流能够满足系统中可能出现的电流浪涌情况,以保护系统中的电气设备免受电流过载的影响。
此外,还需要考虑系统中可能出现的短路电流情况,以确定浪涌保护器的最大工作电流。
另外,浪涌保护器的响应时间也是一个需要考虑的因素。
在选择浪涌保护器时,需要确保其响应时间足够快,以在电压浪涌出现时能够及时地引导电流流向地,保护系统中的电气设备免受损坏。
通常情况下,浪涌保护器的响应时间应该在纳秒级别。
此外,浪涌保护器的容量和耐受能力也需要考虑。
在选择浪涌保护器时,需要确保其具有足够的容量和耐受能力,以应对系统中可能出现的大功率电压浪涌情况,保护系统中的电气设备免受损坏。
最后,还需要考虑浪涌保护器的安装和维护便利性。
在选择浪涌保护器时,需要确保其安装和维护便利,以降低系统的维护成本和提高系统的可靠性。
综上所述,浪涌保护器选型的标准包括额定电压、额定电流、响应时间、容量和耐受能力、安装和维护便利性等因素。
在选择浪涌保护器时,需要综合考虑这些因素,以确保所选的浪涌保护器能够满足系统的需求并且具有良好的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
施耐德后备保护器
后备保护器浪涌保护器
iSCB1 25L2/4P iSCB2 120L1/4P后备保护器选型,及其与扬
后备保护器选型及与扬州浪涌电气公司益雷品牌后备保护器选型对照表
iSCB1 25L2/4P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-T1-25/4P iSCB1 25L2/3P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-T1-25/3P iSCB1 25L1/4P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-T1-25/4P iSCB1 25L1/3P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-T1-25/3P iSCB2 120L2/4P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-100/4P iSCB2 120L2/3P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-100/34P iSCB2 120L1/4P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-100/4P iSCB2 120L1/3P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-100/4P iSCB2 65H2/4P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-60/4P iSCB2 65H2/3P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-60/3P
iSCB2 65H1/4P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-60/4P iSCB2 65H1/3P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-60/3P iSCB2 20N2/4P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-20/4P iSCB2 20N2/3P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-20/3P iSCB2 20N2/2P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-20/2P iSCB2 20N1/4P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-20/4P iSCB2 20N1/3P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-20/3P iSCB2 20N1/2P扬州浪涌电气公司“益雷”品牌产品对应的型号YL-SCB-20/2P。