计数原理教材分析ppt 人教课标版共41页文档
合集下载
计数原理(PPT)2-1

基础知识
一、分类计数原理 (加法原理) 完成一件事,有n类办法. 在第1类办法中有
m1种不同的方法,在第2类办法中有m2种不同的 方法,……,在第n类办法中有mn种不同的方法, 则完成这件事共有
N= m1+m2+… +mn 种不同的方法 二、分步计数原理 (乘法原理)
完成一件事,需要分成n个步骤。做第1步有m1 种不同的方法,做第2步有m2种不同的方法, ……, 做第n步有mn种不同的方法,则完成这件事共有
问题1 从温州到杭州旅游,可以乘火车,也可以乘汽车。
若一天中火车有3列,汽车有2辆。那么一天中乘坐这些 交通工具从温州到杭州有多少种不同的走法?
变式: 从温州到杭州旅游,可以乘火车,也可以乘汽
车,还可以乘飞机。若一天中火车有3列,汽车有2辆, 飞机有4架。那么一天中乘坐这些交通工具从温州到 杭州有多少种不同的走法?
N= m1×m2×… ×mnnt/8296.html 适合北方人加盟的面馆
2005年,银河系旋臂的结构被观测到。银河系按哈勃分类应该是一个巨大的棒旋星系SBc(旋臂宽松的棒旋星系),总质量是太阳质量的0.6万亿-3万亿倍,有大约1,000亿颗恒星。 从80年代开始,天文学家怀疑银河系是一个棒旋星系而不是一个普通的旋涡星系。2005年,斯必泽空间望远镜证实了这项怀疑,还确认了在银河核心的棒状结构比预期的还大。 银河的盘面估计直径为9.8万光年,太阳至银河中心的距离大约是2.6万光年,盘面在中心向外凸起。银河的中心有巨大的质量和紧密的结构,因此怀疑它有超大质量黑洞,因为已经有许多星系被相信有超大质量的黑洞在核心。 就像许多典型的星系一样,环绕银河系中心的天体,在轨道上的速度并不由与中心的距离和银河质量的分布来决定。在离开了核心凸起或是在外围,恒星的典型速度在210~240千米/秒之间。因此这些恒星绕行银河的周期只与轨道的长度有关。这与太阳系不同,在太阳系,距离不同就有不同的 轨道速度对应。 银河的棒状结构长约2.7万光年,以44±10度的角度横亘在太阳与银河中心之间,它主要由红色的恒星组成,大多是老年的恒星。被推论与观察到的银河旋臂结构的每一条旋臂都给予一个数字对应(像所有旋涡星系的旋臂),大约可以分出一百段。有四条主要的旋臂起源于银河的核心,包括: 2 and 8 - 三千秒差距臂和英仙座旋臂。3 and 7 - 矩尺座旋臂和天鹅座旋臂(与最近发现的延伸在一起 - 6)。4 and 10 -南十字座旋臂和盾牌座旋臂。 5 and 9 -船底座旋臂和人马座旋臂。还有两个小旋臂或分支,包括:11 -猎户座旋臂(包含太阳和太阳系在内- 12)。最新研究发现银河系可能只有两条主要旋臂——人马座旋臂和矩尺座旋臂,其绝大部分是气体,只有少量恒星点缀其中。 谷德带(本星团)是从猎户臂一端伸展出去的一条亮星集中的带,主要成员是B2~B5型星,也有一些O型星、弥漫星云和几个星协,最靠近的OB星协是天蝎-半人马星协,距离太阳大约400光年。在主要的旋臂外侧是外环或称为麒麟座环,是由天文学家布赖恩·颜尼(Brian Yanny)和韩第·周 ·纽柏格(Heidi Jo Newberg)提出的,是环绕在银河系外由恒星组成的环,其中包括在数十亿年前与其他星系作用诞生的恒星和气体。 银河的盘面被一个球状的银晕包围着,直径25万~40万光年。由于盘面上的气体和尘埃会吸收部分波长的电磁波,所以银晕的组成结构还不清楚。盘面(特别是旋臂)是恒星诞生的活跃区域,但是银晕中没有这些活动,疏散星团也主要出现于盘面上。
计数原理全部课件集ppt完美课件 人教课标版3

第一步:确定参加上午活动的同学即从3名中任 选1名,有3种选法. 第二步:确定参加下午活动的同学,有2种方法
根据分步计数原理 丙 甲 丙 甲 乙
相应的排法 甲乙 甲丙 乙甲 乙丙 丙甲 丙乙
把上面问题中被取的对象叫做元素,于是问 题1就可以叙述为:
1
23 4 3 42 42 3
2 1 34
3 41 41 3
3
1 24 2 41 4 1 2
4
12
3
2 31 31 2
有此可写出所有的三位数: 123,124,132,134,142,143; 213,214,231,234,241,243, 312,314,321,324,341,342; 412,413,421,423,431,432。
计 数 原 理 全 部课件 集ppt完 美课件 人 教 课标版 3
2、排列数:
从n个不同的元素中取出m(m≤n)个元素
的所有排列的个数,叫做从n个不同的元素中
取出m个元素的排列数。用符号
A
m n
表示。
“排列”和“排列数”有什么区别和联
“系一?个排列”是指:从n 个不同元素中,任取 m
按照一定的顺序排成一列,不是数;
(4)从2,3,5,7,11中任取两个数相除
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作过另一个点的 射线
(9)有10个车站,共需要多少种车票?
(10)有10个车站,共需要多少种不同的票价?
计 数 原 理 全 部课件 集ppt完 美课件 人 教 课标版 3
件。
计 数 原 理 全 部课件 集ppt完 美课件 人 教 课标版 3
2025届高中数学一轮复习课件《计数原理》ppt

高考一轮总复习•数学
第20页
解析:(1)因为学生只能从东门或西门进入校园, 所以 3 名学生进入校园的方式共 23= 8(种).因为教师只可以从南门或北门进入校园, 所以 2 名教师进入校园的方式共有 22= 4(种).所以 2 名教师和 3 名学生进入校园的方式共有 8×4=32(种).故选 D.
A.12 种 B.24 种 C.72 种 D.216 种
高考一轮总复习•数学
第15页
(2)设 I={1,2,3,4},A 与 B 是 I 的子集,若 A∩B={1,2},则称(A,B)为一个“理想配集”.若
将(A,B)与(B,A)看成不同的“理想配集”,
按其中一个子集中元素个数分类23个个;; 4个.
即十位数字最小. 称该数为“驼峰数”.比如 102,546 为“驼峰数”,由数字 1,2,3,4 构成的无重复数字 的“驼峰数”有________个.
高考一轮总复习•数学
第22页
解析:(1)由分步乘法计数原理知,用 0,1,…,9 十个数字组成三位数(可有重复数字) 的个数为 9×10×10=900,组成没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252.故选 B.
(2)根据题意知,a,b,c 的取值范围都是区间[7,14]中的 8 个整数,故公差 d 的范围是区 间[-3,3]中的整数.①当公差 d=0 时,有 C18=8(种);②当公差 d=±1 时,b 不取 7 和 14, 有 2×C16=12(种);③当公差 d=±2 时,b 不取 7,8,13,14,有 2×C14=8(种);④当公差 d=±3 时,b 只能取 10 或 11,有 2×C12=4(种).综上,共有 8+12+8+4=32(种)不同的分珠计数 法.
计数原理_1-课件

• [点评] 本题求的是“选垄方法”,而不是 “种植方法”,若求不同种植方法,则A种 第1垄,B种第8垄与A种第8垄,B种第1垄为 不同方法,应有不同种植方法2×6=12 种.
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
• 由分类加法计数原理知,可以组成的不同 的自然数为4+16+64+256=340(个).
• [点评] (1)在同一题目中涉及到这两个定 理时,必须搞清是先“分类”,还是先 “分步”,“分类”和“分步”的标准又 是什么.
• (2)该题是先分类,后分步,按自然数的位 数“分类”,按组成数的过程“分步”.
• [点评] 解两个计数原理的综合应用题时, 最容易出现不知道应用哪个原理来解题的 情况,其思维障碍在于没有区分该问题是 “分类”还是“分步”,突破方法在于认 真审题,明确“完成一件事”的含义.具 体应用时灵活性很大,要在做题过程中不 断体会和思考,基本原则是“化繁为 简”.
• 一、选择题
• 1.一个礼堂有4个门,若从一个门进,从 任一门出,共有不同走法
• [答案] 13 42
• 5.在一块并排10垄的田地上,选择2垄分 别种植A、B两种作物,每种作物种植一垄, 为有利于作物生长,要求A、B两种作物的 间隔不小于6垄,则不同的选垄方法有 ________种(结果用数字作答).
• [答案] 6
• [解析] A种第1垄,B可种8、9、10垄有3 种方法,A种第2垄,B可种9、10垄有2种 方法,A种第3垄,B只能种第10垄,∴共 有选垄方法3+2+1=6种.
• [解析] 第一类:“多面手”去参加英语 时,选出只会日语的一人即可,有2种选 法.
6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)

探究一
探究二
探究三
素养形成
当堂检测
解:(1)分四类:第1类,从一班学生中选1人,有7种选法;第2类,从二班 学生中选1人,有8种选法;第3类,从三班学生中选1人,有9种选法;第4 类,从四班学生中选1人,有10种选法. 由分类加法计数原理知共有不同的选法N=7+8+9+10=34(种). (2)分四步:第1、2、3、4步分别从一、二、三、四班学生中选一 人任组长.
加法计数原理知共有不同的选法
N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.使用两个原理的原则 使用两个原理解题时,一定要从“分类”“分步”的角度入手.“分类”是 对于较复杂应用问题的元素分成互相排挤的几类,逐类解决,用分 类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然 后逐步解决,这时可用分步乘法计数原理. 2.应用两个计数原理计数的四个步骤 (1)明确完成的这件事是什么. (2)思考如何完成这件事. (3)判断它属于分类还是分步,是先分类后分步,还是先分步后分类. (4)选择计数原理进行计算.
探究二探Leabharlann 三素养形成当堂检测
变式训练2要从教学楼的一层走到三层,已知从一层到二层有4个扶 梯可走,从二层到三层有2个扶梯可走,则从一层到三层有多少种不 同的走法? 解:第1步,从一层到二层有4种不同的走法; 第2步,从二层到三层有2种不同的走法. 根据分步乘法计数原理知,从教学楼的一层到三层的不同走法有
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.分类加法计数原理的推广 分类加法计数原理:完成一件事有n类不同的方案,在第1类方案中 有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n 类方案中有mn种不同的方法,那么完成这件事共有 N=m1+m2+m3+…+mn种不同的方法. 2.能用分类加法计数原理解决的问题具有如下特点 (1)完成一件事有若干种方案,这些方案可以分成n类; (2)用每一类中的每一种方法都可以单独完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数.
计数原理-完整版课件

解析: ∵C06+C16+C26+C36+C46+C56+C66=26=64, ∴C16+C26+C36+C46+C56=64-2=62. 答案: 62
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,
令
r 3
-
k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,
令
r 3
-
k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.
基本计数原理PPT课件

第7页/共40页
学案P46-1
练习 要从甲、乙、丙3幅不同的画中选出2 幅,分别挂在左、右两边墙上的指定位置,问共 有多少种不同的挂法?
分 左边
两 步
甲
完
成乙
右边 乙 丙 甲 丙
第一步 第二步 3×2
甲
丙
乙
第8页/共40页
例 2.解下列各题: (1) 要从甲、乙、丙 3 名工人中选出 2 名分别上
第一步, m1 = 10; 第二步, m2 = 10; 第三步, m3 = 10. 根据乘法原理, 共可以设置
N = 10×10×10 = 103 种三位数的密码。
首位数字不为0的密码数?首位数字是0的密码数?
第35页/共40页
练习 一个三位密码锁,各位上数字由0,1,2,3,4,5,
6,7,8,9十个数字组成,可以设置多少种三位数的密码( 各位上的数字允许重复)?首位数字不为0的密码数是多 少?首位数字是0的密码数又是多少?
说明 N= m1+m2+… + mn 种不同的方法
1)各类办法之间相互独立,都能独立的完成这件事,要 计算方法种数,只需将各类方法数相加,因此分类计数原 理又称加法原理 2)首先要根据具体的问题确定一个分类标准,在分 类标准下进行分类,然后对每类方法计数.
第4页/共40页
问题2:从甲地到乙地,有3条道路,从乙地到丙 地有2条道路,那么从甲地经乙地到丙地共有多少 种不同的走法 ?
日班和晚班,有多少种不同的选法?
(2) 有 4 名学生报名参加数学、物理、化学竞赛, 每人限报一科,有多少种不同的报名方法?
(3) 有 4 名学生争夺数学、物理、化学竞赛的冠军, 你有多少种不同的结果?(每个科目冠军只有 一人)
《计数原理》ppt

326(种)
实例与练习:
5、某校电子八班有男生 26人,女生 20人,若要选男、女生各1人作为学生代 表参加学代会,共有多少种选法?
解:20x26=520(种)
6、两个袋子中分别装有10个红色球 和6个白色球。从中取出一个红色球和一 个白色球,共有多少种方法?
解:10x6=60(种)
分析: 第一步, 由长沙去郴州有3种方法,
第二步, 由郴州去广州有2种方法;
火车2 火车3 火车3
汽车2 汽车1 汽车2
所以 从长沙经郴州到广州共有3 ×2 = 6 种不同的方法。
[ 延伸]:如果小李回家的时候需要转一次车后再
乘飞机,飞机有两个航班(如图),则共有多少种不 同的走法?
重庆
火车1 火车2 火车 3
分析: 从重庆到西昌有2类方法,
火车1 火车2
Ⅰ.乘火车,3种方法;
火车 3
Ⅱ.乘汽车,2种方法; 重庆
汽车1
西昌
汽车2
所以 从重庆到西昌共有 3 + 2 = 5 种不同方法。
[延伸]:
如果重庆到西昌,除了3班火车2班汽车外还有 2班飞机,那么王先生有多少种不同的走法呢?
共有: 3+2+2=7 种
3×3×3×3 =34 = 81
作业:
第122页,习题, 第1、2、4、5题
例2:体育福利彩票的中奖号码有7位数码,每 位数若是0~9这十个数字中任一个,则每次摇 奖产生的号码有多少种可能?
第一位 第二位 第三位 第四位 第五位 第六位 第七位
10 × 10 ×10 × 10 × 10 × 10 × 10 =107
法中有 mn 种不同的方法,那么 mn 种不同的方法,那么完成
实例与练习:
5、某校电子八班有男生 26人,女生 20人,若要选男、女生各1人作为学生代 表参加学代会,共有多少种选法?
解:20x26=520(种)
6、两个袋子中分别装有10个红色球 和6个白色球。从中取出一个红色球和一 个白色球,共有多少种方法?
解:10x6=60(种)
分析: 第一步, 由长沙去郴州有3种方法,
第二步, 由郴州去广州有2种方法;
火车2 火车3 火车3
汽车2 汽车1 汽车2
所以 从长沙经郴州到广州共有3 ×2 = 6 种不同的方法。
[ 延伸]:如果小李回家的时候需要转一次车后再
乘飞机,飞机有两个航班(如图),则共有多少种不 同的走法?
重庆
火车1 火车2 火车 3
分析: 从重庆到西昌有2类方法,
火车1 火车2
Ⅰ.乘火车,3种方法;
火车 3
Ⅱ.乘汽车,2种方法; 重庆
汽车1
西昌
汽车2
所以 从重庆到西昌共有 3 + 2 = 5 种不同方法。
[延伸]:
如果重庆到西昌,除了3班火车2班汽车外还有 2班飞机,那么王先生有多少种不同的走法呢?
共有: 3+2+2=7 种
3×3×3×3 =34 = 81
作业:
第122页,习题, 第1、2、4、5题
例2:体育福利彩票的中奖号码有7位数码,每 位数若是0~9这十个数字中任一个,则每次摇 奖产生的号码有多少种可能?
第一位 第二位 第三位 第四位 第五位 第六位 第七位
10 × 10 ×10 × 10 × 10 × 10 × 10 =107
法中有 mn 种不同的方法,那么 mn 种不同的方法,那么完成