科学计数法课件(人教版)

合集下载

人教版七年级数学上册第一章科学计数法课件

人教版七年级数学上册第一章科学计数法课件

此答案有 何问題?
此数不可大于 或等于10!
此数亦不 可小于1!
例1:将下列各数用科学记数法表示
230000 =2.3×100000 =2.3×105 =9.99×1000000000 =9.99×109
9990000000 15800……000 31个0
=1.58×10…….000 =1.58×1033 33个0
人教版七年级上册第一章 有理数
1.5.2科学计数法
请读出下面的数据来,说出表示数 据的感受
1 300 000 000 人 300 000 000 米/秒

696 000 000米
数太大,读写不方 便,怎么办?
有没有使得这些 大数易写,易读, 易于计算的一种 表示方法呢?
探究新知

1.计算: 102=( 100 ),103=( 1000 ),
104=(10000),105=( 100000 ),……
2. 1000 000=( 106 ) 100 000 000 000=( 1011 )
2×104
得出结论:
指数为2,幂的最末有2个零,指数为3,幂 的最末有3个零,指数为4,幂的最末有4个零, 指数为5,幂的最末有5个零,一般地指数为n, 幂的最末有n个零,反之亦然。
解:
0.5×(1.3×109)
按一年为365天计算
6.5×108×365
=6500000000×365 =2.3725×1011
(kg)
=0.5×1300000000
=650000000 =6.5×108
(kg)
答:全国每天大约需要粮食6.5×108kg,一年大 约需要粮食2.3725×1011kg。
2 3 4 10 , 10 , 10 你知道 分别等于多少吗? 10n 的意义和规

《科学记数法》优质ppt人教版1

《科学记数法》优质ppt人教版1

为 0.000 000 017 m,该直径可用科学记数
法表示为
1. 7×10-8
m.
17. 将-0.001 24 用科学记数法表示应为
-1. 24×10-3
.
《科学记数法》优质ppt人教版1
《科学记数法》优质ppt人教版1
18. 某户居民家的水龙头有漏水现象,据观察, 1 分钟漏水 40 滴,若一年(按 365 天计算) 由于这种现象而浪费的水的质量为 1.051 2×103 千克,则 1 滴水的质量为多少克?(结 果用科学记数法表示)
解:1. 051 2×103×1 000÷(365×24×60×40) =5×10-2(克). 答:1滴水的质量为5×10-2克.
《科学记数法》优质ppt人教版1
《科学记数法》优质ppt人教版1
19. 水珠不断地滴在一块石头上,经过 40 年, 石头上形成了一个深为 3.6×10-2 m 的小洞, 问平均每个月小洞的深度增加多少?(单位: m,用科学记数法表示)
14. 中国的光伏技术不断进步,电子元件的尺寸
大幅度缩小,在锌片上某种电子元件大约只占
0.000 000 7 mm2,这个数用科学记数法表示
为( A ) A. 7×10-7 mm2
B. 0.7×10-6 mm2
C. 7×10-8 mm2 D. 70×10-8 mm2
《科学记数法》优质ppt人教版1
《科学记数法》优质ppt人教版1

(3)1.731×10-7= 0. 000 000 173 1

(4)-3.05×10-8=
-0. 000 000 030 5

(5)1.029×10-5=
0. 000 010 29
.

人教版初一上册数学1.5.2科学计数法.课件

人教版初一上册数学1.5.2科学计数法.课件
解: 2×0.05×60×60×4 =1440 =1.44×103(毫升)
答:水龙头滴了1.44×103毫升水。
比 较 大 小
在以下的各数中,最大的数为( D) (A)7.2 ×105 (B)2.5×106
(C)9.9 ×105
(D)1× 107
在下列各数中最小的为(B)
(A)3.14 ×1010 (B)3.1×1010 (C)3.2×1010 (D)3.142×1010
观察探究 10的乘方有如下的特点:
102… 100 103 1000 104 10000
一般地,10的n次幂等于10…0(在1的后面 有n个0),所以就可以用10的乘方表示一些 大数。 例如:721000 = 7.21×100000 = 7.21× 105
读作:7.21乘以10的5次方(幂) 567000 000 = 5.67×100000000 = 5.76× 108
2、第五次人口普查知云南省人口总数约为 4596万人,用科学记数法表示是多少人?
解:4596万人=4.596×107人
学以致用
1、用科学记数法表示下列各数 10 000; 800 000; 5600 000;-7400 000;
2、下列用科学记数法写出的数,原数分别是什么 数?
110 7 ;4 10 3; 8.5 10 6 ;7.04105
1.23109 1230000000
合作探究
1、用科学记数法表示下列各数: 1000 000;57 000 000;-123 000 000 000
30900000
解:1000 000=107 57 000 000=5.7 107 -123 000 000 000= 1.231011 -30900 000= 3.09107

科学计数法课件(人教版)(共10张PPT)

科学计数法课件(人教版)(共10张PPT)
本节课你有什么(shén me)收获? ⑵ 100000=___; ⑷ -32500=___;
地表示一个数的整数部分的位数 1.什么叫做(jiàozuò)科学计数法?
(1)北京故宫的占地面积约为7. 1、A本 课本P47 习题1.
如.:6·74×105的原数有____位整数
(zhěngshù);-3·251×107原数有____位
科学(kēxué) 计数法
第一页,共10页。
第二页,共10页。
太阳(tàiyáng)半径约 696000千米
第三页,共10页。
世界(shìjiè)人口 约6100000000人
生产生活以及(yǐjí)科学研究 中,我们经常会遇到象这样的较 大的数,在读、写时都很不方便
第四页,共10页。
观察的乘方有如下的特点:
10 2 100, 10 3 1000 10 4 10000 , ...
一般的,10的n次幂等于 10(0在 1的后面有n个0),所以可以 (kěyǐ)利用10的乘方表示一些大数 5 ,例6如70 5 0 .60 7 1000000 5 0 .60 7 10 8000
把一个数写成a×10n(其中1≤︱a︱< 10,n为正整数),这种形式的记数方 法(fāngfǎ)叫做科学计数法。
14300=____; ⑷ -32500=___; ⑸ - 804·05=___ ⑹ 200·001=___ . 100=102 1000= 103 = 106
(3)全球每年大约有5. 5 ×1013个红细胞;
用科学计数法表示(biǎoshì)一个 77 ×1014米3的水从海 洋和陆地转化为大气中的水汽.
1.什么叫做(jiàozuò)科学计数法?
2.灵活运用科学计数法,注意解题技巧,总 结解题规律,用科学记数法

科学计数法课件(人教版)

科学计数法课件(人教版)
科学计数法课件(人教版)
科学计数法课件(人教版)简介,介绍了科学计数法的概述、表示方法、四 则运算以及应用领域。本课件将帮助您深入了解科学计数法的作用和优点。
科学计数法概述
什么是科学计数法?
科学计数法是一种表示极大数值或极小数值的简便方法。
作用和优点
科学计数法使得处理大量数据更加方便,并且减少了数字过长造成的误读。
基本原则
科学计数法的基本原则是将数字表示为一个定点数(1至10之间)与10的幂的乘积。
科学计数法的表示方法
科学记数法表示法
使用标准形式表示科学计数 法的数字,如1.23 x 10^4。
底数为10的科学计 数法
底数为10的科学计数法使用 10作为定点数,如1.23e+4。
底数不为10的科学 计数法
底数不为10的科学计数法将 定点数设为1至10之间的数, 如2.34 x 10^6。
科学计数法的四则运算
1
加减法
进行科学计数法的加减法时,对准点后的数字相加或相减,指数不变。
2
乘法
进行科学计数法的乘法时,将定点数相乘,指数相加。
3
除法
进行科学计数法的除法时,将定点数相除,指数相减。
科学计数法的应用
在工程实践中的应用
科学计数法在工程实践中帮助 准确表示物理量,如长度、重 量和电流。
在科学研究中的应用
科学计数法在科学研究领域中 使用广泛,方便表示极大和极 小的测量值。
在经济金融领域的应用
科学计数法帮助表示和计算巨 额的金融数据,如国民经济总 量和公司市值。
结语
本课件的总结和回 顾
科学计数法是处理大量数据 时非常有用的工具,它意义 和价值
科学计数法提供了一种精确 表示极大和极小数值的方式, 使得科学与工程领域的计算 更加便捷。

2023-2024学年人教版数学七年级上册 -科学计数法 课件

2023-2024学年人教版数学七年级上册 -科学计数法 课件

解:1.804 ≈1.80;
课堂小结:
几点注意: 1、两个近似数1.6与1.60表示的精确程度不一样 2、两个近似数6.3万与6.3精确到的数位不同。
10 000, 800 000, 56 000 000, 7 400 000. =104 =8×105 =5.6×107 =7.4×106 2 下列用科学记数法写出的数,原来分别是 什么数?
1×107 =10 000 000 4×103 =4 000
8.5×106 =8 500 000 7.04×105 =704 000
2 400 000 0.24107 不是 2 400 000 2.4106
3 100 000 31105 不是
3 100 000 3.1106
练习2.下列用科学记数法表示的数,原数是什么?
3.2104 =32 000
6103 =6 000
3.25107 =32 500 000
练一练,你一定行 1 用科学记数法写出下列各数:
10n的意义和规律是什么?
10的乘方有如下的特点:
102 100
103 1 000 104 10 000 …
一般地,10的n次幂等于10···0(在1的后 面有n个0),所以就可以用10的乘方表示一 些大数.
例如:567 000 000 = 5.67×100 000 000 =5.67× 108
⑵.检查一双没洗过的手,发现带有各种细菌800000万个;
( 近似数 )
⑷.1990年人口普查,我国人口总数约为11.6亿; (近似数)
(5).月球与地球相距38万千米;( (近似数) (6).圆周率∏ 取3.14159. (近似数 )
二.精确度(近似数与准确数的接近程度)

2.3.2 科学记数法 人教版数学七年级上册课件

2.3.2 科学记数法 人教版数学七年级上册课件

讲授新课
解:(1)1.41×109=1410000000, (2)3.5×106=3500000, (3)3.6×109= 3600000000.
• 导与练
归纳:反过来,如果用科学记数法表示的数10的指数是n, 那么原数有n+1位整数位.
讲授新课
填一填
6.74×105的原数有__6__位整数; -3.251×107原数有__8__位整数; 9.6104×1012原数有__1_3_位整数.
新壹 课 导 入
目录
讲贰 授 新 知
当叁 堂 训 练
课肆 堂 小 结
壹 新课导入
生活中,我们还常会遇到一些比较大的数. 例如:
在悉尼举行的国际天文学联合会大会上,天文学家指出整个
• 新课导可入见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有
沙漠和海滩上的沙砾总和数量还要多. 如果想在字面上表示出这一数字,需要在“7”后面加上22个 “0”.即约为“70000000000000000000000”颗.
6.据统计,我国平均每人每天大约产生1.5千克垃圾,也许你
像这些较大的数据,书写和阅读都有一定的难度,那么有没 有这样一种表示方法,使得这些大数易写、易读、易于计算呢?
贰 讲授新知
ห้องสมุดไป่ตู้ 阅读教材P44~45内容,完成下列问题.
• 讲授新知 知识点1 用科学记数法表示数
合作探究 回顾有理数的乘方,计算: 101=_1_0_, 102=_1_0_0_,103=_1_0_0_0___,104=_1_0_0_0_0__, 106=__1_0_0_0_0_0_0_,1010=_1_0_0_0_0_0_0_0_0_0_0__,…. 讨论: (1)指数与运算结果中的0的个数有什么关系?

科学计数法课件.ppt

科学计数法课件.ppt
惯上叫科学记数法。
科学记数法的形式为a×10n ,其中 n 为正整数。
例题讲解
例:用科学记数法表示下列各数: 1000 000, 57 000 000, 123 000 000 000。 解: 1 000 000=106, 57 000 000= 5.7 ×10 000 000 =5.7×107, 123 000 000 000= 1.23 ×100 000 000 000
数法表示出来 ①水星的半径为2.44 ×106米,木星的赤道半径约为 71 400 000米. ②我国的陆地面积约为9 597 000平方千米,俄罗斯的陆
地面积约为9.976 ×106平方千米.
课堂小结
1.学了这节课你有哪些收获? 2.今后我们还会知道,用科学记数法还 可以表示绝对值较小的数,并且易读、 易写、易算。
=1.23×1011.
观察与思考
下面的式子中,等号左边整数的位数与右边10 的指数有什么关系?
1 000 000=106, 57 000 000=5.7×107, 123 000 000 000=1.23×1011. 用科学记数法表示一个数时, 10的指数 比原数的整数位数少1。
如果一个数是6位整数,用科学记数法表示它 时,10的指数是多少?如果一个数有9位整数呢?
你知道吗?
月球离地球的距离约为380000000米
整个可见宇宙空间恒星大约有 70000000000000000000000颗
太阳的半径约为696000千米, 光的速度约为300000000米/秒, 目前世界人口约为6100000000人。
这些大数的读、写都有一定困难。那么 可以用怎样的方法来表示这些大数,使它易读、 易记、易判断大小还便于计算呢?
作业
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6100000000 =6· 1×109
指数等于原数的整数位数减1
⑴-1000=____; ⑵ 100000=___; ⑶ 14300=____; ⑷ -32500=___; ⑸ -804· 05=___ ⑹ 200· 001=___ . 用科学计数法表示一个数有n位 数时,10的指数是______ n- 1 . 用科学计数法可以直观地表示 一个数的整数部分的位数. 如:6· 74×105的原数有____位整数; -3· 251×107原数有____位整数; 9· 6104×1012原数有____位整数;
2、基训 P34、P35小结:本节课你 Nhomakorabea什么收获?
1.什么叫做科学计数法? 2.灵活运用科学计数法,注意解题技巧 ,总结解题规律,用科学记数法 表示大数应注意以下几点: (1) 1≤︱a︱<10 (2)当大数是大于10的整数时,n为整 数位数减去1.
作业:
1、A本 课本P47 习题1.5复习巩固 第4、5题 课本P46 练习
567000000 5.67100000000 5.67108
把一个数写成a×10n(其中1≤︱a︱<10 ,n为正整数),这种形式的记数方法叫 做科学计数法。
100=102 1000= 103 1000000= 106
指数2、3、6与什么有关?
指数与原数0的个数有关
696000=6· 96×105
例题演示:
1.请用科学计数法表示下列各数: (1)水星的半径约为240 000米; (2)木星的赤道半径约为71 400 000米; (3)地球上的陆地面积约为149 000 000千米2 (4)地球上的海洋面积约为361 000 000千米2
2.下列用科学计数法表示的数,原来各是什么数? (1)北京故宫的占地面积约为7.2×105米2; (2)人体中约有2.5 ×1013个红细胞; (3)全球每年大约有5.77 ×1014米3的水从海 洋和陆地转化为大气中的水汽.
科学计数法
太阳半径约696000千米
世界人口约 6100000000人
生产生活以及科学研究中,我 们经常会遇到象这样的较大的数 ,在读、写时都很不方便。
观察10的乘方有如下的特点:
102 100, 103 1000 104 10000 , ...
0 一般的,10的n次幂等于10 (在 1的后面有n个0),所以可以利 用10的乘方表示一些大数,例如
相关文档
最新文档