随机过程2016期末考试及答案
随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
概率统计随机过程-期末试卷-参考答案

7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4
即
152
2 15 S 2 (15) 知 D 2 2 15
D S 2 2 15
2
得 D S
2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}
随机过程期末试题及答案(2)

课程所在学院: 理学院 姓名
成绩
1. 本次考试为闭卷考试。本试卷共计 4 页,共 四 大部分,请勿漏答; 2. 考试时间为 120 分钟,请掌握好答题时间; 3. 答题之前,请将试卷和答题纸上的考试班级、学号、姓名填写清楚; 4. 本试卷全部答案写在试卷上; 5. 答题完毕,请将试卷和答题纸正面向外对叠交回,不得带出考场; 6. 考试中心提示:请你遵守考场纪律,诚信考试、公平竞争! 一.填空题(每空 2 分,共 20 分) 1.设随机变量 X 服从参数为
4
1 (sin(ω t+1)-sinω t) 。 2 1
λ
的同一指数分布。
4.设 {Wn ,n ≥ 1}是与泊松过程 {X(t),t ≥ 0} 对应的一个等待时间序列,则 Wn 服从 Γ 分布。 5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的 t
⎧ t ⎪ , 对 应 随 机 变 量 X (t ) = ⎨ 3 t ⎪ ⎩e ,
(2)一维分布函数 F(x;0),F(x;1) 。 求(1) {X(t),t ∈ ( −∞, +∞)} 的样本函数集合; 解: (1)样本函数集合为 {cosπ t,t}, t ∈ (-∞,+∞) ; (2)当 t=0 时, P {X(0)=0} = P {X(0)=1} =
1 , 2
⎧0 ⎧0 x<0 x<-1 ⎪ ⎪ ⎪1 ⎪1 故 F(x;0)= ⎨ 0 ≤ x<1 ;同理 F(x;1)= ⎨ −1 ≤ x<1 ⎪2 x ≥ 1 ⎪2 x ≥ 1 1 ⎪ ⎪1 ⎩ ⎩
(n)
{
}
⎧ ⎩
= ∑ P {X(n)=j,X(l)=k X(0)=i} X(l)=k X(0)=i ⎬ ⎭
随机过程试题与答案

随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。
4、二重积分 R X s,t dsdt ba b a 存在且有限。
二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。
(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。
则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。
随机过程复习题答案

随机过程复习题答案
1. 随机过程的定义是什么?
答:随机过程是一组随机变量的集合,这些随机变量是时间或空间的函数,用来描述系统随时间或空间的演变。
2. 什么是马尔可夫链?
答:马尔可夫链是一种随机过程,其中未来状态的概率分布仅依赖于当前状态,而与之前的状态无关。
3. 描述随机游走的特点。
答:随机游走是一种马尔可夫过程,其中每一步移动到相邻状态的概率是固定的,并且每一步都是独立的。
4. 什么是平稳过程?
答:平稳过程是指其统计特性不随时间变化的过程,即过程的均值、方差和自相关函数不随时间变化。
5. 如何定义一个过程的遍历性质?
答:一个过程的遍历性质是指该过程的样本函数的统计特性与该过程的总体统计特性相一致。
6. 什么是鞅?
答:鞅是一种随机过程,其中给定当前和过去信息,未来某个时间点的期望值等于当前的值。
7. 描述泊松过程的基本性质。
答:泊松过程是一种计数过程,具有独立增量、平稳增量和泊松分布的到达时间间隔等基本性质。
8. 什么是布朗运动?
答:布朗运动是一种连续时间随机过程,其增量服从正态分布,且具有独立性和平稳性。
9. 如何确定一个过程是否是高斯过程?
答:如果一个过程的所有有限维分布都是多元正态分布,则该过程是高斯过程。
10. 什么是随机过程的谱分析?
答:随机过程的谱分析是研究过程功率谱密度的方法,它描述了过程在不同频率上的功率分布。
随机过程试题及答案

随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
随机过程2016quiz及答案3

• Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit. Do not write in the table to the right.
Stochastic Processes
Quizz 3: The Poisson Award - Page 4 of 9
14/12/16
3. (20 points) A coin with probability p of Heads is flipped repeatedly. For (a) and (b), suppose that p is a known constant, with 0 < p < 1. (a) (5 points) What is the expected number of flips until the pattern HT is observed? (b) (5 points) What is the expected number of flips until the pattern HH is observed? (c) (10 points) Now suppose that p is unknown, and that we use a Beta(a, b) prior to reflect our uncertainty about p (where a and b are known constants and are greater than 2). In terms of a and b, find the corresponding answers to (a) and (b) in this setting.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Stochastic Processes
Final Exam: Gauss Award - Page 3 of 9
26/12/16
2. (15 points) When three fair six-sided dice are rolled, what is the probability that the sum of the total numbers will be 12?
Stochastic Processes
Final Exam: Gauss Award - Page 6 of 9
26/12/16
5. (20 points) A Yule process starts at time 0 with one organism. This organism splits into two organisms after a time Y1 with the density fY1 (y ) = λe−λy , y ≥ 0. Each of these two organisms splits into two more organisms after independent exponentially distributed delays, each with the same density λe−λy . In general, each old and new organism continues to split forever after a delay y with the same density λe−λy . (a) (5 points) Let T1 be the time at which the first organism splits, and for each i > 1, let Ti be the interval from (i − 1)st splitting until the ith. Show that Ti is exponential with parameter iλ and explain why the Ti are independent. (b) (5 points) For each n ≥ 1, let the continuous random variable Sn be the time at which the n th splitting occurs, i.e. Sn = T1 + . . . + Tn . Find a simple expression for the distribution function of Sn . (c) (5 points) Let X (t) be the number of organisms at time t > 0. Express the distribution function of X (t) for each t > 0 in terms of Sn for each n. Show that X (t) is a random variable for each t > 0 (i.e., show that X (t) is finite with probability 1). (d) (5 points) Find E [X (t)] for each t > 0.
Problem 1 2 3 4 5 6 7 8 Total:
Points 15 15 20 20 20 20 20 20 150
Score
Stochastic Processes
Final Exam: Gauss Award - Page 2 of 9
26/12/16
1. (15 points) A coin that has probability of heads equal to p is tossed successively and independently until a head comes twice in a row or a tail comes twice in a row. Find the expected value of the number of tosses.
随机过程2016期末考试及答案
Stochastic Processes Fall 2016 Final Exam: Gauss Award 26/12/16 Time Limit: 150 Minutes
Name (Print):
Advisor Name
This quiz contains 9 pages (including this cover page) and 8 problems. Check to see if any pages are missing. Enter all requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated. You are required to show your work on each problem in this exam. The following rules apply:
• Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit. Do not write in the table to the right.
Stochastic Processes
Final Exam: Gauss Award - Page 8 of 9
26/12/16
7. (20 points) Consider a population containing N copies of a gene that can each be one of two types, A or B . We model the number of genes of type A in successive generations, supposing that each generation has the same fixed number N of copies of the gene. Specifically, let Xn be the number of genes of type A in the nth generation, so Xn takes values in {0, 1, . . . , N }. Suppose a model of reproduction in which the population of genes at time n + 1 is obtained by drawing N times with replacement from the population at time n. (a) (5 points) Show that Xn is a Markov chain with transition probabilities given by p(i, j ) = (b) (5 points) Show that Yn = (c) (10 points) Show that N −1≤
Stochastic Processes
Final Exam: Gauss Award - Page 4 of 9
26/12/16
3. (20 points) Show the following inequalities. (a) (10 points) Let X be a Poisson random variable with rate λ. If there exists a constant a > λ, then P(X ≥ a) ≤ e−λ (eλ)a aa
(b) (10 points) Let X be a random variable with finite variance σ 2 . Then for any constant a > 0, 2σ 2 P(|X − E[X ]| ≥ a) ≤ 2 . σ + a2
Stochastic Processes
Stochastic Processes
Final Exam: Gau来自s Award - Page 7 of 9
26/12/16
6. (20 points) Telephone calls arrive at a switching system in accordance with a Poisson process with rate of λ calls per minute. Every call independently lasts X minutes, where X is expo1 nentially distributed with E [X ] = µ minutes. Let N1 (t) and N2 (t) respectively, denote the numbers of completed and ongoing calls by the time t. Let N (t) = N1 (t) + N2 (t). (a) (5 points) What is the distribution of N2 (t)? (b) (5 points) Given that N (t) = n, what is the distribution of N2 (t)? (c) (10 points) Suppose that, upon the completion of each call, the system receives a revenue of X cents, where X is the call duration. Given that N (t) = n, what is the expected revenue of the system by the time t?