10.3《平行线的性质》典型例题精析
平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
七年级数学下册平行线的性质【十大题型】(举一反三)(人教版)

专题5.2 平行线的性质【十大题型】【人教版】【题型1 平行线的判定与性质的运用(计算与证明)】 (1)【题型2 平行线的判定与性质(书写过程)】 (5)【题型3 平行线与三角尺(直角顶点在平行线上)】 (9)【题型4 平行线与三角尺(直角顶点不在平行线上)】 (11)【题型5 平行线的判定与性质综合(角度之间的数量关系)】 (16)【题型6 平行线的判定与性质综合(求定值)】 (21)【题型7 平行线的判定与性质综合(规律问题)】 (31)【题型8 平行线的性质(折叠问题)】 (36)【题型9 平行线的应用(转角问题)】 (41)【题型10 平行线的判定与性质综合(旋转)】 (46)【知识点平行线的性质】【例1】(2022·西藏·林芝市广东实验中学七年级期中)如图,点D,E在AC上,点F,G分别在BC,AB上,且DG∥BC,∠1=∠2.(1)求证:DB∥EF;(2)若EF∠AC,∠1=50°,求∠ADG的度数.【答案】(1)见解析(2)∠ADG=40°【分析】(1)利用两直线平行,内错角相等,再根据同位角相等,两直线平行即可得证;(2)先求出∠C,再根据两直线平行,同位角相等,即可得解.(1)证明:∠DG∥BC,∠∠1=∠DBC.又∠∠1=∠2,∠∠2=∠DBC,∠DB∥EF.(2)∠EF∠AC,∠∠CEF=90°.∠∠2=∠1=50°,∠∠C=90°-50°=40°.∠DG∥BC,∠∠ADG=∠C=40°.【点睛】本题考查平行线的判定和性质.熟练掌握平行线的性质和判定是解题的关键.【变式1-1】(2022·湖北·五峰土家族自治县中小学教研培训中心七年级期末)已知:如图,AE⊥BC,FG⊥BC,∠CEA=∠FGB,∠D=∠ABC+50°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)证明见解析(2)∠C=30°【分析】(1)先证明AE∥GF,可得∠EAB=∠FGB,再证明∠CEA=∠EAB,从而可得答案;(2)由AB∥CD,可得∠D+∠CBD+∠ABC=180°,再把∠D=∠ABC+50°,∠CBD=70°代入进行计算即可.(1)证明:∵AE⊥BC,FG⊥BC,∠AE∥GF,∴∠EAB=∠FGB,∵∠CEA=∠FGB,∴∠CEA=∠EAB,∠AB∥CD;(2)解:由(1)得,AB∥CD,∴∠D+∠CBD+∠ABC=180°,∵∠D=∠ABC+50°,∠CBD=70°,∠∠ABC+70°+∠ABC+50°=180°∴∠ABC=30°,∴∠C=∠ABC=30°.【点睛】本题考查的是平行线的判定与性质,方程思想的应用,掌握“平行线的判定与性质”是解本题的关键.【变式1-2】(2022·重庆·巴川初级中学校七年级期中)如图,∠ABC中,∠BAC的角平分线交BC于D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,且∠BDA+∠CEG=180°.(1)求证:AD∥EF;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗?请说明理由.【答案】(1)见详解(2)∠F=∠H,说明见详解【分析】(1)根据∠BDA+∠CEG=180°,∠DEF+∠CEG=180°,可得∠BDA=∠DEF,根据同位角相等,两直线平行可判定AD∥EF;(2)根据∠EDH=∠C,可得DH∥AC,继而得到∠H=∠EGC,由对顶角∠AGF=∠EGC,可得∠H=∠AGF,由(1)AD∥EF可得∠DAG=∠AGF,∠BAD=∠F,再因为AD是∠BAC的角平分线,有∠DAG=∠BAD,即可证明∠F=∠H.(1)证明:∠∠BDA+∠CEG=180°,∠DEF+∠CEG=180°,∠∠BDA=∠DEF,∠AD∥EF.(2)解:∠F=∠H,理由如下:∠∠EDH=∠C,∠DH∥AC,∠∠H=∠EGC,∠∠AGF=∠EGC,∠∠H=∠AGF,∠AD∥EF,∠∠DAG=∠AGF,∠BAD=∠F,又∠AD是∠BAC的角平分线,∠∠DAG=∠BAD,∠∠F=∠H.【点睛】本题考查了平行线的判定与性质,角平分线的定义,熟练掌握并应用平行线的判定与性质是解答本题的关键.【变式1-3】(2022·湖北·武汉市新洲区阳逻街第一初级中学三模)如图,已知AD⊥BC,EF⊥BC,∠1=∠2.(1)求证:EF∥AD;(2)求证:∠BAC+∠AGD=180°.【答案】(1)见解析(2)见解析【分析】(1)根据垂直得出∠EFB=∠ADB=90°,根据平行线的判定得出EF∥AD;(2)根据平行线的性质得出∠1=∠BAD,由∠1=∠2得出∠2=∠BAD,根据平行线的判定得出DG∥BA,再根据平行线的性质即可得解.【详解】(1)证明:∠AD⊥BC,EF⊥BC,∠∠EFB=90°,∠ADB=90°(垂直的定义),∠∠EFB=∠ADB(等量代换),∠EF∥AD(同位角相等,两直线平行);(2)证明:∠EF∥AD,∠∠1=∠BAD(两直线平行,同位角相等),又∵∠1=∠2(已知),∠∠2=∠BAD(等量代换),∠DG∥BA(内错角相等,两直线平行),∠∠BAC+∠AGD=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.【题型2 平行线的判定与性质(书写过程)】【例2】(2022·黑龙江·哈尔滨市风华中学校七年级期中)如图,∠1=∠2,∠A=∠D.求证:∠B=∠C.(请把下面证明过程补充完整)证明:∵1=∠2(已知)又∵∠1=∠3(____________)∴∠2=∠3(____________)∴AE∥FD(_____________)∴∠A=∠_____(______________)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∠_____∥CD(__________________)∴∠B=∠C(____________)【答案】对顶角相等;等量代换;内错角相等,两直线平行;BFD;两直线平行,内错角相等;AB;内错角相等,两直线平行;两直线平行,内错角相等.【分析】先利用对顶角的性质证明∠2=∠3,再证明AE∥FD,可证明∠A=∠BFD,可得∠D=∠BFD,再证明AB∥CD,从而可得答案.【详解】证明:∵1=∠2(已知)又∵∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴AE∥FD(内错角相等,两直线平行)∴∠A=∠BFD(两直线平行,内错角相等)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∠AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等)【点睛】本题考查的是对顶角的性质,平行线的判定与性质,熟练的利用平行线的判定与性质进行证明是解本题的关键.【变式2-1】(2022·黑龙江·哈尔滨市萧红中学校七年级阶段练习)阅读并完成下面的证明过程:已知:如图,AB∥EF,∠1=∠2,BE、CE分别平分∠ABC和∠BCD,求证:BE⊥CE.证明:∠BE、CE分别平分∠ABC和∠BCD.∠ABC∠∠ABE=∠EBC=12∠2=________=1∠BCD(角平分线定义)2又∠∠1=∠2,∠∠1=∠ECD()∠EF∥CD()又∠AB∥EF(已知)∠________________()∠∠ABC+∠BCD=180°()(∠ABC+∠BCD)=90°,∠∠ABE+∠2=12又∠AB∥EF,∠∠ABE=∠BEF()∠∠BEF+∠1=90°,∠∠BEC=90°,∠BE⊥CE()【答案】∠ECD;等量代换;内错角相等,两直线平行;AB∥CD;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同旁内角互补;两直线平行,内错角相等;垂直定义.【分析】根据平行线的性质、平行线的判定以及垂直的定义进行分析即可解答.【详解】证明:∠BE、CE分别平分∠ABC和∠BCD.∠ABC∠∠ABE=∠EBC=12∠BCD(角平分线定义)∠2=∠ECD=12又∠∠1=∠2,∠∠1=∠ECD(等量代换)∠EF∥CD(内错角相等,两直线平行)又∠AB∥EF(已知)∠AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)∠∠ABC+∠BCD=180°(两直线平行,同旁内角互补)(∠ABC+∠BCD)=90°,∠∠ABE+∠2=12又∠AB∥EF,∠∠ABE=∠BEF(两直线平行,内错角相等)∠∠BEF+∠1=90°,∠∠BEC=90°,∠BE⊥CE(垂直定义).故答案为:∠ECD;等量代换;内错角相等,两直线平行;AB∥CD;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同旁内角互补;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定与性质、垂直的定义等知识点,灵活运用平行线的判定与性质是解答本题的关键.【变式2-2】(2022·湖南·株洲景炎学校七年级期中)完成下面证明过程并写出推理根据:已知:如图所示,∠BAP与∠APD互补,∠1=∠2.求证:∠E=∠F.证明:∠∠BAP与∠APD互补(已知),即∠BAP+∠APD=180°,∠____________∥_____________(_____________________),∠∠BAP=∠APC(_____________________).又∠∠1=∠2,∠∠BAP-∠1=∠APC-∠2(等式的性质),即∠3=∠4,∠____________∥_____________(_____________________),∠∠E=∠F(_____________________).【答案】AB;CD;同旁内角互补,两直线平行;两直线平行,内错角相等;AE;FP;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定与性质,结合图形完成填空即可求解.【详解】∠∠BAP与∠APD互补(已知),即∠BAP+∠APD=180°,∠AB∥CD(同旁内角互补,两直线平行),∠∠BAP=∠APC(两直线平行,内错角相等).又∠∠1=∠2,∠∠BAP-∠1=∠APC-∠2(等式的性质),即∠3=∠4,∠AE∥FP(内错角相等,两直线平行),∠∠E=∠F(两直线平行,内错角相等)故答案为:AB;CD;同旁内角互补,两直线平行;两直线平行,内错角相等;AE;FP;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质与判定进行证明,掌握平行线的性质与判定是解题的关键.【变式2-3】(2022·重庆·巴川初级中学校七年级期中)推理填空:完成下面的证明过程.如图,已知∠1+∠2=180°,∠B=∠DEF,求证:.DE∠BC证明:∠∠1+∠2=180°()∠2=∠3(_______________________________)∠∠1+∠3=180°∠______∥______(_____________________________)∠∠B=______(________________________________)∠∠B=∠DEF(已知)∠∠DEF=_______ (_______________________)∠DE∠BC()【答案】已知;对顶角相等;AB;EF;同旁内角互补,两直线平行;∠EFC;两直线平行,同位角相等;∠EFC;等量代换;内错角相等,两直线平行【分析】由于∠1+∠2=180°,∠2=∠3,则∠1+∠3=180°,根据同旁内角互补,两直线平行得到AB∥EF,则利用平行线的性质得∠B=∠CFE,由于∠B=∠DEF,所以∠DEF=∠CFE,于是根据平行线的判定得到DE∥BC.【详解】证明:∠∠1+∠2=180°(已知)∠2=∠3(对顶角相等)∠∠1+∠3=180°∠AB∥EF(同旁内角互补,两直线平行)∠∠B=∠EFC(两直线平行,同位角相等)∠∠B=∠DEF(已知)∠∠DEF=∠EFC(等量代换)∠DE∥BC(内错角相等,两直线平行)【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.掌握平行线的判定与性质是解题的关键.【题型3 平行线与三角尺(直角顶点在平行线上)】【例3】(2022·辽宁·阜新实验中学七年级期末)如图,含有30°角的直角三角板的两个顶点E、F放在一个长方形的对边上,点E为直角顶点,∠EFG=30°,延长EG交CD于点P,如果∠3=65°,那么∠2的度数是()A.100°B.105°C.115°D.120°【答案】C【分析】根据直角三角形两锐角互余得到∠1=25°,根据平角的定义得到∠AEF=90°-∠1=65°,根据平行线的性质即可得到结论.【详解】解:∠∠D=90°,∠3=65°,∠∠1=25°,∠∠FEG=90°,∠∠AEF=90°-∠1=65°,∠AD∥BC,∠∠2=180°-∠AEF=115°,故选:C.【点睛】本题考查了直角三角形两锐角互余和平行线的性质,关键是得出∠AEF与∠2互补.【变式3-1】(2022·浙江·金华市第四中学九年级阶段练习)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠2;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.4【答案】D【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【详解】解:∠纸条的两边平行,∠(1)∠1=∠2(两直线平行,同位角相等);(2)∠3=∠4(两直线平行,内错角相等);(4)∠4+∠5=180°(两直线平行,同旁内角互补)均正确;又∠直角三角板与纸条下线相交的角为90°,∠(3)∠2+∠4=90°,正确.故选:D.【点睛】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.【变式3-2】(2022·山东青岛·七年级期中)将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A,B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n ()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°【答案】D【分析】根据平行线的判定定理求解即可.【详解】解:由平行线的判定可知,当∠2=∠ABC+∠1时,m∥n,即∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式3-3】(2022·河南南阳·二模)小明把一副三角板按如图所示方式摆放,直角边CD与直角边AB相交于点F,斜边DE∥BC,∠B=30°,∠E=45°,则∠CFB的度数是()A.95°B.115°C.105°D.125°【例4】(2022·全国·八年级专题练习)如图,a∥b,一块含45°的直角三角板的一个顶点落在直线b上,若∠1=58°54′,则∠2的度数为()A.103°6′B.104°6′C.103°54′D.104°54′【答案】C【分析】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,根据等腰三角板的特点可求出∠4,根据三角形内角和即可求出∠5,再根据平角的性质即可求出∠3,进而根据两直线平行同位角相等即可求出∠2.【详解】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,如图,∠直角三角板含一个45°的锐角,∠该三角板为等腰三角形,∠∠4=45°,∠∠1=58°54′,又∠在三角形中有∠1+∠4+∠5=180°,∠∠5=180°-(∠1+∠4)=180°-(58°54′+45°)=180°-103°54′=76°6′,∠∠3+∠5=180°,∠∠3=180°-∠5=180°-76°6′=103°54′,∠a∥b,∠∠2=∠3,∠∠2=103°54′,故选:C.【点睛】本题主要考查了平行线的性质以及三角形的内角和等知识,掌握两直线平行同位角相等是解答本题的关键.【变式4-1】(2022·山西晋中·七年级期末)用一块含60°角的直角三角板和一把直尺按图中所示的方式放置,其中直尺的直角顶点与三角板的60°角顶点重合,直尺两边分别与三角板的两条直角边相交,若∠1=50°,则∠2的度数为()A.25°B.22.5°C.20°D.15°【答案】C【分析】如图,根据题意得到∠C=90°,AB∠DE,∠CDF=60°.先根据三角形内角和求出∠ABC=40°,再根据平行的性质求出∠CDE=40°,即可求出∠2=20°.【详解】解:如图,由题意得∠C=90°,AB∠DE,∠CDF=60°.∠∠C=90°,∠1=50°,∠∠ABC=180°-∠C-∠1=40°,∠AB∠DE,∠∠CDE=∠CBA=40°,∠∠CDF=60°∠∠2=∠CDF-∠CDE=20°.故选:C【点睛】本题考查了三角形的内角和定理,平行线的性质,熟知两个定理并理解题意得到已知条件是解题的关键.【变式4-2】(2022·福建·莆田市城厢区南门学校七年级阶段练习)如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=75°;④∠AEG=∠PMN.其中正确的是_______.【答案】①②③④【分析】①由题意得∠G=∠MPN=∠MPG=90°,利用内错角相等,两直线平行即可判定GE∥MP;②由题意得∠EFG=30°,利用邻补角即可求出∠EFN的度数;③过点F作FH⊥AB,可得FH∥CD,从而得到∠HFN=∠MNP=45°,可求得∠EFN=105°,再利用平行线的性质即可求出∠BEF;④利用角的计算可求出∠AEG=45°,从而可判断.【详解】解:①∵∠G=∠MPN=∠MPG=90°,∴GE∥MP,故①正确;②∵∠EFG=30°,∴∠EFN=180°−30°=150°,故②正确;③过点F作EH∥AB,如图,∵AB∥CD,∴FH∥CD,∴∠HFN=∠MNP=45°,∴∠EFN=150°−45°=105°,∵FH∥AB,∴∠BEF=180°−105°=75°;故③正确;④∵∠GEF=60°,∠BEF=75°,∴∠AEG=180°−60°−75°=45°,∴∠AEG=∠PMN=45°,故④正确.故答案为:①②③④.【点睛】本题考查平行线的性质与判定,解题的关键是熟记平行线的判定条件与性质并灵活运用.【变式4-3】(2022·山东淄博·期末)如图所示,将一直角三角板放在AB,CD两条平行线之间:(1)图甲中,容易求得∠1+∠2=90°,请直接写出图乙中∠1,∠2的数量关系;(2)请问图丙中∠1,∠2的数量关系是什么?并加以说明;(3)请直接写出图丁中∠1,∠2的数量关系.【答案】(1)∠1+∠2=270°(2)∠2-∠1=90°;见解析(3)∠1=∠2+90°【分析】(1)过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD.根据两直线平行,同旁内角互补,即可得∠1,∠2的关系.(2)过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD.根据两直线平行,内错角相等,平角互补,即可得∠1,∠2的关系.(3)过点O作AB的平行线MN,得AB∥MN∥CD,据两直线平行,内错角相等,即可得∠1,∠2的关系.(1)如图,过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD∠∠1+∠3=180°,∠2+∠4=180°又∠∠3+∠4=90°∠∠1+∠3+∠2+∠4=180°+180°∠∠1+∠2=360°−90°=270°∠∠1+∠2=270°.(2)如图,过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD∠∠1=∠3,∠2+∠4=180°又∠∠3+∠4=90°∠∠1+180°−∠2=90°∠∠2−∠1=90°.(3)如图,过点O作AB的平行线MN,得AB∥MN∥CD∠∠MOC=∠2∠∠1=90°+∠MOC∠∠1=90°+∠2.【点睛】本题考查平行线的性质,解题的关键是掌握两直线平行,内错角相等,同旁内角互补;平角互补.【题型5 平行线的判定与性质综合(角度之间的数量关系)】【例5】(2022·黑龙江鹤岗·七年级期末)如图①,AB∥CD,M为平面内一点,若BM∠MC,则易证∠ABM与∠DCM互余.(1)如图②,AB∥CD.点M在射线EA上运动,猜想点M在点A和D之间时,∠BMC与∠ABM、∠DCM之间的数量关系,并证明.(2)在(1)的条件下,当点M在射线EA的其它位置上时(不与点E,A,D重合)请直接写出∠BMC与∠ABM、∠DCM之间的数量关系.又∠AB∥CD,∠MF∥CD,∠∠DCM=∠FMC,∠∠ABM+∠DCM=∠BMF+∠CMF=∠BMC;(2)解:当点M在E、A两点之间时,如图3,∠BMC=∠DCM-∠ABM;过M作MF∥AB,交EC于F,则∠ABM=∠BMF,又∠AB∥CD,∠MF∥CD,∠∠DCM=∠FMC,∠∠BMC=∠CMF-∠BMF=∠DCM-∠ABM;当点M在AD的延长线上时,如图4,∠BMC=∠ABM-∠DCM.过M作MF∥AB,交EC于F,则∠ABM=∠BMF,又∠AB∥CD,∠MF∥CD,∠∠DCM=∠FMC,∠∠BMC=∠BMF-∠CMF=∠ABM-∠DCM.【点睛】本题考查了平行线的判定和性质,关键是构建平行线,利用平行线的性质进行解答.解题时注意分类思想的运用.【变式5-1】(2022·辽宁·兴城市第二初级中学七年级阶段练习)已知,点A,点B分别在线段MN,PQ上,且∠ACB-∠MAC=∠CBP.(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI的两边分别与直线CH,AG交于点F和点E,如图2,试判断∠CFB、∠BEG之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=80°,求∠CFB 的度数.(直接写出答案)【答案】(1)见解析(2)∠CFB−∠BEG=90°,证明见解析(3)∠CFB=130°【分析】(1)过C作CE∥MN,根据平行线的判定和性质即可得到结论;(2)过B作BR∥AG,根据平行线的性质得到∠BEG=∠EBR,∠RBF+∠CFB=180°,等量代换即可得到结论;(3)过E作ES∥MN,根据平行线的性质得到∠NAE=∠AES,∠QBE=∠BES,根据角平分线的定义得到∠NAE=∠EAC,∠CBD=∠DBP,根据四边形的内角和即可得到结论.(1)解:如图,过C作CE∥MN,∠∠1=∠MAC,∠∠2=∠ACB-∠1,∠∠2=∠ACB-∠MAC,∠∠ACB-∠MAC=∠CBP,∠∠2=∠CBP,∠CE∥PQ,∠MN∥PQ;(2)如图,过B作BR∥AG,∠AG∥CH,∠BR∥HF,∠∠BEG=∠EBR,∠RBF+∠CFB=180°,∠∠EBF=90°,∠∠BEG=∠EBR=90°-∠RBF,∠∠BEG=90°-∠RBF=90°-(180°-∠CFB),∠∠CFB-∠BEG=90°;(3)如图,过E作ES∥MN,∠MN∥PQ,∠ES∥PQ,∠∠NAE=∠AES,∠QBE=∠BES,∠BD和AE分别平分∠CBP和∠CAN,∠∠NAE=∠EAC,∠CBD=∠DBP,∠∠CAE=∠AES,∠∠EBD=90°,∠∠EBQ+∠PBD=∠EBC+∠CBD=90°,∠∠QBE=∠EBC,∠∠EBC=∠BES,(360°−∠ACB),∠∠AEB=∠AES+∠BES=∠CAE+∠EBC=12∠∠ACB=80°,∠∠AEB=140°,∠∠BEG=40°,∠∠CFB-∠BEG=90°,∠∠CFB=130°.【点睛】本题考查了平行线的判定和性质,余角的性质,四边形的内角和,正确的作出辅助线是解题的关键.【变式5-2】(2022·湖北·宜昌市第九中学七年级期中)如图,∠1=∠2,∠D=∠CMG.(1)求证:AD∥NG;(2)若∠A+∠DHG=180°,试探索:∠ANB,∠NBG,∠1的数量关系;(3)在(2)的条件下,若∠ANB:∠BNG=2:1,∠1=100°,∠NBG=130°,求∠A的度数.【答案】(1)见解析(2)∠NBG+∠1−∠ANB=180°(3)∠A=105°【分析】(1)由∠1=∠2,∠1=∠GFC,得到∠2=∠CFG,于是得到CM∥DE,根据平行线的性质得到∠D=∠ACM,等量代换得到∠CMG=∠ACM,于是得到结论.(2)过B作BP∥AN交NG于P,由于AD∥NG,于是得到∠D=∠DHG,等量代换得到∠A+∠D=180°,得到AN∥DH,根据平行线的判定得到BP∥CM,由平行线的性质得到∠PBG+∠1=180°,等量代换即可得到结论;(3)由∠1+∠PBG=180°,∠1=100°,得到∠PBG=80°,由于∠NBG=130°,于是得到∠ANB=∠NBP=50°,根据已知条件得到∠ANB:∠BNG=2:1,即可得到结论.(1)证明:∠∠1=∠2,∠1=∠GFC,∠∠2=∠CFG,∠CM∥DE,∠∠D=∠ACM,∠∠D=∠CMG,∠∠CMG=∠ACM,∠AD∥NG;(2)解:∠NBG−∠ANB+∠1=180°;理由如下:过B作BP∥AN交NG于P,∠∠ANB=∠NBP,∠AD∥NG,∠∠D=∠DHG,∠∠A+∠DHG=180°,∠∠A+∠D=180°,∠AN∥DH,又∠CM∠DH,∠BP∥CM,∠∠PBG+∠1=180°,∠∠PBG=∠NBG−∠NBP=∠NBG−∠ANB,∠∠NBG−∠ANB+∠1=180°;(3)解:∠∠1+∠PBG=180°,∠1=100°,∠∠PBG=80°,∠∠NBG=130°,∠∠ANB=∠NBP=50°,∠∠ANB:∠BNG=2:1,∠∠BNP=25°,∠∠ANG=75°,∠∠A=105°.【点睛】本题考查了平行线的判定和性质,对顶角的性质,正确的作出辅助线是解题的关键.【变式5-3】(2022·湖北·潜江市高石碑镇第一初级中学七年级期中)如图1,AB∥CD,直线AE分别交AB、CD于点A、E.点F是直线AE上一点,连结BF,BP平分∠ABF,EP平分∠AEC,BP与EP交于点P.(1)若点F是线段AE上一点,且BF∠AE,求∠P的度数;(2)若点F 是直线AE 上一动点(点F 与点A 不重合),请写出∠P 与∠AFB 之间的数量关系并证明. 【答案】(1)45°(2)当F 点在A 点上方时,∠BPE =12∠AFB ,当F 点在A 点下方时,∠BPE =90°﹣12∠AFB【分析】(1)过点P 作PQ ∥AB ,过点F 作FH ∥AB ,由平行线的性质得∠ABP +∠CEP =∠BPE ,∠ABF +∠CEF =∠BFE ,再由垂直定义和角平分线定义求得结果;(2)分三种情况:点F 在EA 的延长线上时,点F 在线段AE 上时,点F 在AE 的延长线上时,分别进行探究便可.(1)解:过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∠AB ∥CD ,∠AB ∥CD ∥PQ ∥FH ,∠∠ABP =∠BPQ ,∠CEP =∠EPQ ,∠ABF =∠BFH ,∠CEF =∠EFH ,∠∠ABP +∠CEP =∠BPQ +∠EPQ =∠BPE ,∠ABF +∠CEF =∠BFH +∠EFH =∠BFE ,∠BF ∠AE ,∠∠ABF +∠CEF =∠BFE =90°,∠BP 平分∠ABF ,EP 平分∠AEC ,∠∠ABP +∠CEP =12(∠ABF +∠CEF )=45°, ∠∠BPE =45°;(2)①当点F 在EA 的延长线上时,∠BPE =12∠AFB ,理由如下:如备用图1,过点P作PQ∥AB,过点F作FH∥AB,过点P作PQ∥AB,过点F作FH∥AB,过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∠AB ∥CD ,∠AB ∥CD ∥PQ ∥FH ,∠∠ABP =∠BPQ ,∠CEP =∠EPQ ,180°﹣∠ABF =∠BFH ,∠AEC =∠EFH ,∠∠CEP +∠ABP =∠EPQ +∠BPQ =∠BPE ,∠BFH ﹣∠EFH =180°﹣∠ABF ﹣∠AEC =∠AFB , ∠BP 平分∠ABF ,EP 平分∠AEC ,∠∠CEP +∠ABP =12(∠AEC +∠ABF )=12(180°﹣∠AFB ), ∠∠BPE =90°﹣12∠AFB ;综上,当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB . 【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同位角相等,两直线平行同旁内角互补,以及角平分线的性质,在相交线问题中通常作平行线利用平行线的性质解答,将角度转化由此求出答案.解题中运用分类思想解答问题.【题型6 平行线的判定与性质综合(求定值)】【例6】(2022·湖南·株洲二中七年级期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m 射到平面镜a 上,被a 反射后的光线为n ,则入射光线m 、反射光线n 与平面镜a 所夹的锐角∠1=∠2.(1)如图2,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.(2)请你猜想:当射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行时,两平面镜a 、b 间的夹角∠3的大小是否为定值?若是定值,请求出∠3,若不是定值,请说明理由.(3)如图3,两面镜子的夹角为α°(0<α<90),进入光线与离开光线的夹角为β°(0<β<90).试探索α与β的数量关系,并说明理由.【答案】(1)100;90;(2)90°(3)2α+β=180°【分析】(1)根据平面镜反射光线的规律得∠1=∠4=50°,再利用平角的定义得∠5=80°,然后利用平行线的性质计算出∠2=100°,则∠6=40°,再利用三角形内角和定理计算∠3;(2)当∠3=90°时,根据三角形内角和定理得∠4+∠6=90°,则2∠4+2∠6=180°,利用平角的定义得到∠2+∠5=180°,然后根据平行线的判定得到m∥n;(3)由(1)可得,∠5=180°-2∠2,∠6=180°-2∠3,再根据∠2+∠3=180°-∠α,即可得出∠β=180°-∠5-∠6=2(∠2+∠3)-180°=2(180°-∠α)-180°=180°-2∠α.(1)解:如图:∠∠1=∠4=50°,∠∠5=180°-2×50°=80°,∠m∥n∠∠2+∠5=180°,∠∠2=100°,(180°-∠2)=40°,∠∠6=12∠∠3=180°-∠4-∠6=90°;故答案为:100,90;(2)当∠3=90°时,m∥n理由如下:∠∠3=90°,∠∠4+∠6=90°,∠2∠4+2∠6=180°,∠∠2+∠5=180°,∠m∥n;(3)解:如图3,由(1)可得,∠5=180°-2∠2,∠6=180°-2∠3,∠∠2+∠3=180°-∠α,∠∠β=180°-∠5-∠6=2(∠2+∠3)-180°=2(180°-∠α)-180°=180°-2∠α,∠α与β的数量关系为:2α+β=180°,故答案为:2α+β=180°.【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,解题时注意:同旁内角互补,两直线平行;两直线平行,同旁内角互补.【变式6-1】(2022·河北保定·七年级阶段练习)如图,直线AB∠CD,点M,N分别在直线AB,CD 上,H为直线CD下方一点.(1)如图1,MH和NH相交于点H,求证:∠MHN=∠AMH−∠CNH.(温馨提示:可过点H 作AB的平行线)(2)延长HN至点G,∠BMH的平分线ME和∠GND的平分线NE相交于点E,HM与CD相交于点F.①如图2,若∠BME=50°,∠END=30°,求∠MHN的度数;②如图2,当点F在点N左侧时,若∠BME的度数为x°,∠END的度数为y°,且x+y的值是一个定值,请问∠MHN的度数是否会随x的变化而发生改变?若不变,求出∠MHN的度数;若变化,请说明理由.③如图3,当点N在点F左侧时,②中其他条件不变,请问∠MHN的度数是否会随x的变化而发生改变?若不变,直接写出....∠MHN的度数;若变化,请说明理由.【答案】(1)见解析(2)①20°;②不变,180°−2(x°+y°);③不变,2(x°+y°)−180°【分析】(1)过点H作HQ∥AB.可得HQ∥CD,从而得到∠AMH=∠MHQ,∠CNH=∠NHQ,即可求证;(2)①根据∠BME=50°,∠END=30°,可得∠BMH=100°,∠GND=60°,从而得到∠AMH=180°−∠BMH=80°,∠CNH=60°.再由∠MHN=∠AMH−∠CNH,即可求解;②根据题意可得∠AMH=180°−2x°,∠CNH=2y°,再由∠MHN=∠AMH−∠CNH,即可求解;③过点H作OH∠AB,根据平行线的性质,可证得∠MHN=∠OHM−∠OHN=∠BMH−∠DNH.从而得到∠MHN=2x°+2y°−180°=2(x°+y°)−180°,即可求解.(1)证明:如图,过点H作HQ∥AB.∠HQ∥AB且AB∥CD,∠HQ∥CD,∠∠AMH=∠MHQ,∠CNH=∠NHQ,∠∠MHN=∠MHQ−∠NHQ=∠AMH−∠CNH;(2)解:①ME平分∠BMH,∠BME=50°,∠∠BMH=100°,∠NE平分∠DNG,∠DNE=30°,∠∠GND=60°,∠∠AMH=180°−∠BMH=80°,∠CNH=60°.由(1)可知:∠MHN=∠AMH−∠CNH=80°−60°=20°.∠∠MHN=20°;②∠ME平分∠BMH,∠BME=x°,∠∠BMH=2x°,∠NE平分∠DNG,∠DNE=y°,∠∠GND=2y°,∠∠AMH=180°−2x°,∠CNH=2y°,∠∠MHN=180°−2x°−2y°=180°−2(x°+y°).∠x+y为一个定值,∠∠MHN不会随x的变化而发生改变,度数为180°−2(x°+y°);③不变,∠MHN的度数为2(x°+y°)−180°.理由如下:如图,过点H作OH∥AB,∠∠BMH=∠OHM,∠AB∥CD,∠OH∥CD,∠∠DNH=∠OHN,∠∠MHN=∠OHM−∠OHN=∠BMH−∠DNH.∠ME平分∠BMH,∠BME=x°,∠∠BMH=2x°∠NE平分∠DNG,∠DNE=y°,∠∠GND=2y°,∠∠DNH=180°−2y°,∠∠MHN=2x°−(180°−2y°),∠∠MHN=2x°+2y°−180°=2(x°+y°)−180°.∠x+y为一个定值,∠∠MHN不会随x的变化而改变.【点睛】本题主要考查了平行线的性质和判定,有关角平分线的计算,熟练掌握平行线的性质和判定,利用类比思想解答是解题的关键.【变式6-2】(2022·福建龙岩·七年级期末)如图1,点A、D分别在射线BM、CN线上,BM∥CN,BM∠BC于点B,AE平分∠BAD交BC于点E,连接DE,∠1+∠2=90°.(1)求证:AE∠ED;(2)求证:DE平分∠ADC;(3)如图2,∠EAM和∠EDN的平分线交于点F,试猜想∠F的值是否为定值,若是,请予以证明;若不是,请说明理由.【答案】(1)见解析(1)证明:如图1,过点E作EG∥BM,则∠1=∠3,∠BM∥CN,∠EG∥CN,∠∠4=∠2,∠∠3+∠4=∠1+∠2=90°,∠∠AED=90°,∠AE∠ED.(2)证明:∠ AE平分∠BAD,∠∠BAD=2∠1,∠BM∥CN,∠∠BAD+∠CDA=180°,∠2∠1+∠CDA,(3)∠F为定值.证明:如图2,过点F作FH∥BM,设∠AFH=α,∠DFH=β,∠BM∥CN,∠FH∥CN,∠∠α+∠β=∠6+∠7,∠∠EAM和∠EDN的平分线交于点F,∠∠α+∠β=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)=180°−45°=135°,∠∠F=∠α+∠β=135°,∠∠F为定值,∠F=135°,故答案为:∠F=135°.【点睛】本题主要考查垂线、角平分线的性质,解题的关键是掌握垂垂线的概念和角平分线与∠CFM互补(1)如图1,试判断直线AB与直线CD的位置关系,并说明理由.(2)如图2,∠BEF与∠EFD的平分线交于点P,EP的延长线与CD交于点G,H是MN上一点,且GH⊥EG,求证:PF∥GH.(3)如图3,在(2)的条件下,连接PH,K是GH上一点,使∠PHK=∠HPK,作PQ平分∠EPK,求证:∠HPQ的大小是定值.【答案】(1)平行;理由见解析(2)见解析(3)见解析【分析】(1)根据同旁内角互补,两条直线平行,即可判断直线AB与直线CD平行;(2)先根据两条直线平行,同旁内角互补,再根据∠BEF与∠EFD的角平分线交于点P,可得∠EPF=90°,进而证明PF∥GH;(3)根据角平分线定义,及角的和差计算即可求得∠HPQ的度数.(1)解:结论:AB∥CD;理由如下:∠∠MEB与∠CFM互补,∠MEB=∠AEF,∠∠AEF与∠CFM互补,∠AB∥CD.(2)∠EG平分∠BEF,∠∠PEF=1∠BEF,2又∠FP平分∠EFD,∠∠EFP=1∠EFD,2由(1)知AB∥CD,∠∠BEF+∠EFD=180°,∠∠PEF+∠EFP=90°,∠∠EPF=90°,【例7】(2022·辽宁·鞍山市第十四中学七年级阶段练习)如图,已知AB//CD,若按图中规律继续划分下去,则∠1+∠2+⋯+∠n等于()A.n•1800B.2n•1800C.(n−1)•1800D.(n−1)2•1800【答案】C【分析】根据第1个图形∠1+∠2=180°,第2个图形∠1+∠2+∠3=2×180°,第,3个图形∠1+∠2+∠3+∠4=3×180°…,进而得出答案.【详解】(1)∠AB∠CD,∠∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∠AB∠CD,∠AB∠EF,CD∠EF,∠∠1+∠AEF=180°,∠FEC+∠3=180°,∠∠1+∠2+∠3=360°;(3)过点E、F作EM、FN平行于AB,∠AB∠CD,∠AB∠EM∠FN∠CD,∠∠1+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠4=180°;∠∠1+∠2+3+∠4=540°;(4)中,根据上述规律,显然作(n-1)条辅助线,运用(n-1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n-1).故选:C.【点睛】此题主要考查了平行线的性质,正确得出图中变化规律是解题关键.【变式7-1】(2022·湖南·邵阳市第六中学八年级阶段练习)如图,已知直线AE,BF被直线AB所截,且AE//BF,AC1,BC1分别平分∠EAB,∠FBA;AC2,BC2分别平分∠BAC1和∠ABC1;AC3,BC3分别平分∠BAC2,∠ABC2…依次规律,得点C n,则∠C n的度数为()A.90−902n B.180−902n−1C.902n−1D.1802nAB∠CD.试求:(1)图(1)中∠A+∠C的度数,并说明理由.(2)图(2)中∠A+∠APC+∠C的度数,并说明理由.(3)图(3)中∠A+∠AEF+∠EFC+∠C的度数,并简要说明理由.(4)按上述规律,∠A+……+∠C(共有n个角相加)的和为【答案】(1)180°,理由见解析;(2)360°,理由见解析;(3)540°,理由见解析;(4)180°(n-1)【分析】(1)据两直线平行,同旁内角互补可得∠A+∠C=180°;(2)沿P作一条平行A B、CD的平行线PM,由两直线平行,同旁内角互补可得∠A+∠APM=180°,∠MPC+∠C=180°,故∠A+∠APC+∠C=360°;(3)根据第二题,同理可得∠A+∠AEF+∠EFC+∠C=540°;(4)由以上规律,有两个角时,和为180°;有三个角时和为360°;有四个角时和为540°…故可得有n个角时,和为180°(n-1).【详解】解:(1)∠AB∠CD,∠∠A+∠C=180°(两直线平行,同旁内角互补);(2)过点P作一条直线PM平行于AB,∠AB∠CD,∠AB∠PM,∠CD∠PM∠AB,∠∠A+∠APM=180°,∠MPC+∠C=180°,∠∠A+∠APC+∠C=360°;(3)分别过点E、F作EM、FN平行于AB,∠AB∠CD,∠AB∠EM∠FN∠CD,∠∠A+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠C=180°;∠∠A+∠AEF+∠EFC+∠C=540°;(4)由以上规律,有两个角时,和为180°;有三个角时和为360°;有四个角时和为540°…故可得有n个角时,和为180°(n-1).【点睛】本题主要考查两直线平行,同旁内角互补的性质,并考查学生通过计算总结规律的能力,是一道好题.【变式7-3】(2022·浙江·七年级阶段练习)阅读并探究下列问题.(1)如图①,将长方形纸片剪两刀,其中AB∥CD,则∠2与∠1、∠3有何关系?请进行证明.(2)如图②,将长方形纸片剪四刀,其中AB∥CD,则∠1、∠2、∠3、∠4、∠5的关系为.(3)如图③,将长方形纸片剪2016刀,其中AB∥CD,则共剪出个角.若将剪出的角(∠A、∠C除外)分别用∠E1、∠E2、∠E3…表示,则被剪出的这些角的关系为.(4)如图④,直线AB∥CD,∠EF A=∠HMN=x°,∠FGH=3x°,∠CNP=y°|2x+y−102|+√x+y−72=0由上述结论求∠GHM的度数.【答案】(1)∠1+∠3=∠2,证明见解析;(2)∠1+∠3+∠5=∠2+∠4;(3)2017,∠A+∠C+∠E2+∠E4+…+∠E2014=∠E1+∠E3+…+∠E2015.(4)48°.【分析】(1)过E点作EF∠AB,则EF∠CD,根据两直线平行,内错角相等得到∠AEF=∠1,∠CEF=∠3,即有∠2=∠1+∠3;(2)分别过E、G、F分别作EM∠AB,GN∠AB,FP∠AB,根据两直线平行,内错角相等,同(1)一样易得到∠2+∠4=∠1+∠3+∠5;(3)综合(1)(2)易得开口向左的角的度数的和等于开口向右的角的度数的和.(4)利用(3)的结论得到∠BFG+∠GHM+∠MND=∠FGH+∠HMN,易计算出∠GHM.。
平行线的性质与判定经典题型

平行线的性质与判定经典题型1.在三角形ABC中,角B等于角ACB,CD平分角ACB 并交AB于点D,AE与DC平行并交BC延长线于点E。
已知角E等于36度,求角B的度数。
2.在图中,如果AB平行于CD,则角α、β、γ之间的关系是什么?3.在图中,AB平行于CD且CD平行于PN,角ABC等于50度,角CPN等于150度。
求角BCP的度数。
4.在图中,直线AB和CD被直线EF所截。
如果角BMN 等于角DNF且角1等于角2,那么MQ平行于NP。
为什么?5.在图中,将一个长方形纸片沿EF折叠后,点D和C分别落在D'和C'的位置。
如果角EFB等于65度,则角AED'等于多少度?6.在图中,如果角1等于角2且角C等于角D,则角A等于角F。
为什么?7.在图中,已知角1加角2等于180度,角3等于角B。
试判断角AED和角ACB的大小关系,并说明理由。
8.已知AB平行于CD,分别探讨下列四个图形中角APC和角PAB、角PCD的关系。
从所得四个关系中任选一个并说明理由。
9.在图中,已知角1等于角2,角3等于角4,角5等于角6.证明AD平行于BC。
10.在图中,已知CD垂直于AB于点D,EF垂直于AB于点F,角DGC等于105度,角BCG等于75度。
求角1加角2的度数。
11.在图中,AD垂直于BC于点D,EF垂直于BC于点F,EF交AB于点G,交CA的延长线于点E,且角1等于角2.AD是否平分角BAC?说明理由。
12.在图中,如果AB平行于CD且角1等于角2,则角E等于角F。
为什么?13.在图中,DB平行于FG平行于EC,角ABD等于60度,角ACE等于36度,AP平分角BAC。
求角PAG的度数。
14.在图中,AB平行于CD,角1等于115度,角2等于140度。
求角3的度数。
15.已知:AC平行于DE,DC平行于EF,CD平分角BCD。
证明:EF平分角BED。
16.已知:AB平行于CD,角1等于角B,角2等于角D。
初三平行线知识点以及经典例题

初三平行线知识点以及经典例题平行线是初中数学中的重要概念之一。
本文将介绍初三学生需要掌握的平行线的知识点,并提供几个经典例题供大家练。
知识点1. 平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。
平行线可以用符号"// "表示。
平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。
平行线可以用符号"// "表示。
2. 平行线的判定方法:以下是几种判定平行线的方法:平行线的判定方法:以下是几种判定平行线的方法:- (a) 两条直线的斜率相等,且不重合。
- (b) 两条直线之间的对应角相等。
- (c) 一条直线与另一平行线的任意直线交角为180°。
3. 平行线的性质:平行线具有以下性质:平行线的性质:平行线具有以下性质:- (a) 平行线之间的距离在每个交点处相等。
- (b) 平行线之间的夹角为0°,即平行线之间没有夹角。
- (c) 平行线与同一直线相交的角被称为"同位角",同位角的对应角相等。
经典例题例题1已知AB//CD,AB=6cm,BC=4cm,EF=5cm,求EF的长度。
例题2已知直线l与平行线m及n相交,交角1为120°,求交角2的度数。
例题3已知直线k与平行线p及q相交,交角a为40°,求交角b的度数。
例题4已知平行四边形ABCD中,AB=10cm,BC=6cm,求AD的长度。
以上是初三平行线知识点以及经典例题的介绍。
希望能对初三学生理解和掌握平行线有所帮助。
平行线的性质知识点及练习题

平行线的性质知识点及练习题(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除平行线的性质知识点及练习题1、平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补。
几何符号语言:∵AB ∥CD∴∠1=∠2(两直线平行,内错角相等)∵AB ∥CD∴∠3=∠2(两直线平行,同位角相等)∵AB ∥CD∴∠4+∠2=180°(两直线平行,同旁内角互补)2、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。
注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离。
3、命题:⑴命题的概念:判断一件事情的语句,叫做命题。
⑵命题的组成每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,那么……”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。
对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。
注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。
4、平行线的性质与判定①平行线的性质与判定是互逆的关系同位角相等;内错角相等;同旁内角互补。
其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由典型例题:已知∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B (已知)∴DE ∥BC (同位角相等,两直线平行) ∴∠2=∠C (两直线平行,同位角相等)注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC 典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65° 求∠2、∠3的度数A B C D EF 1 2 3 4 A EG B C FH D A D F B E C1 2 3解答:∵DE ∥BC (已知)∴∠2=∠1=65°(两直线平行,内错角相等)∵AB ∥DF (已知)∴AB ∥DF (已知)∴∠3+∠2=180°(两直线平行,同旁内角互补)∴∠3=180°-∠2=180°-65°=115°平行线的性质练习题一、选择题:(每小题3分,共12分)1、如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )个 个 个 个 D C B A 1ED C BA O F E D C BA (1) (2) (3) (4)2、如图2所示,已知DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,•那么∠BDC 等于( )° ° ° °3、下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )A.①B.②和③C.④D.①和④4、如图3所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( )° ° ° °二、填空题:(每小题3分,共12分)5、如图4所示,n m //,∠2=50°,那么∠1= °,∠3= °,∠4= °6、把命题“邻补角的平分线互相垂直”改写成“如果……,那么……。
七年级数学下册《平行线的性质》练习题及答案解析

七年级数学下册《平行线的性质》练习题及答案解析一、选择题(共20小题)1. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有( )A. 1个B. 2个C. 3个D. 4个2. 如图,AB∥CD,∠B=75∘,∠E=27∘,则∠D的度数为( )A. 45∘B. 48∘C. 50∘D. 58∘3. 如图,直线DE经过点A,DE∥BC,∠B=60∘,下列结论一定成立的是( )A. ∠C=60∘B. ∠DAB=60∘C. ∠EAC=60∘D. ∠BAC=60∘4. 如图,已知AD∥BC,下列结论不一定正确的是( )A. ∠A+∠ABC=180∘B. ∠1=∠2C. ∠A=∠3D. ∠C=∠35. 如图,直线a∥b,直线c分别与a,b相交,∠1=50∘,则∠2的度数为( )A. 130∘B. 150∘C. 50∘D. 100∘6. 如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是( )A. 相等B. 互余或互补C. 互补D. 相等或互补7. 如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60∘,则下列结论错误的是( )A. ∠2=60∘B. ∠3=60∘C. ∠4=120∘D. ∠5=40∘8. 如图,直线a,b被直线c所截,a∥b,∠1=50∘,则∠2的度数为( )A. 40∘B. 50∘C. 130∘D. 150∘9. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘10. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30∘,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘11. 如图,将三角板的直角顶点放在直尺的一边上,如果∠1=25∘,那么∠2的度数为( )A. 25∘B. 30∘C. 45∘D. 65∘12. 如图,两直线a,b被直线c所截,已知a∥b,∠1=65∘,则∠2的度数为( )A. 65∘B. 105∘C. 115∘D. 125∘13. 如图,直线AD∥BC,若∠1=74∘,∠BAC=56∘,则∠2的度数为( )A. 70∘B. 60∘C. 50∘D. 40∘14. 如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知∠1=55∘,则∠2的度数为( )A. 45∘B. 125∘C. 55∘D. 35∘15. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘16. 如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40∘,则∠BAE的度数是( )A. 40∘B. 70∘C. 80∘D. 140∘17. 如图,直线a∥b,直线c分别与直线a,b相交于点A,B,且AC垂直直线c于点A,若∠1=40∘,则∠2的度数为( )A. 140∘B. 90∘C. 50∘D. 40∘18. 一个多边形的内角和比它的外角和的3倍少180∘,这个多边形的边数是( )A. 5B. 6C. 7D. 819. 经过点P(−4,3)垂直于x轴的直线可以表示为( )A. 直线x=3B. 直线y=−4C. 直线x=−4D. 直线y=320. 如图,AB∥EF,CD⊥EF于点D,若∠ABC=40∘,则∠BCD的度数是( )A. 140∘B. 130∘C. 120∘D. 110∘二、填空题(共8小题)21. 如图,已知直线AB∥CD,∠1=50∘,则∠2=.22. 如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、后的两条路平行,若第—次拐角是150∘,则第二次拐角大小为度.23. 如图,l1∥l2,∠1=120∘,∠2=100∘,则∠3=.24. 将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=.25. 如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a∘.则下列结论:(180−a)∘;①∠BOE=12②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论(填编号).26. 小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠A=40∘,∠1=70∘,小明马上运用已学的数学知识得出了∠C 的度数,聪明的你一定知道∠C=.27. 如图,AD∥CE,∠ABC=100∘,则∠2−∠1的度数是.28. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45∘角的直角三角尺按如图所示的方式摆放,若∠EMB=75∘,则∠PNM等于度.三、解答题(共6小题)29. 如图,已知:点P在直线CD上,∠BAP+∠APD=180∘,∠1=∠2.求证:∠E=∠F.30. 已知AB∥CD,E为AB,CD同侧上一点.(1)如图1,过点E作EF∥AB.求证:∠CEA=∠EAB−∠ECD.(2)如图2,E,B,D三点在一条直线上,EA平分∠CED,若∠C=50∘,∠EAB=80∘,求∠CED的度数;(3)如图3,CH,AH交于点H,∠BAH=2∠EAH,∠DCH=40∘,∠DCE=60∘,求∠H的值.∠E31. 如图,∠AOB=120∘,射线OC在∠AOB内,且∠AOC=30∘,OD平分∠BOC,OE平分∠AOD.(1)依题意补全图形;(2)求∠EOC的度数.32. 复杂的数学问题我们常会把它分解为基本问题来研究,化繁为简,化整为零,这是一种常见的数学解题思想.(1)如图①,直线l1,l2被直线l3所截,在这个基本图形中,形成了对同旁内角;(2)如图②,平面内三条直线l1,l2,l3两两相交,交点分别为A,B,C,图中一共有对同旁内角;(3)平面内四条直线两两相交,最多可以形成对同旁内角;(4)平面内n条直线两两相交,最多可以形成对同旁内角.33. 如图,直线AB,CD被m,n所截,已知:∠1=110∘,∠2=70∘.(1)试判断AB,CD的位置关系,并说明理由.(2)已知AD平分∠BAC,若∠3=120∘,求∠BAD的度数.34. 如图,直线AB∥CD,DE∥BC.(1)判断∠B与∠D的数量关系,并说明理由.(2)设∠B=(2x+15)∘,∠D=(65−3x)∘,求∠1的度数.参考答案与解析1. D2. B【解析】∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B−∠E=75∘−27∘=48∘.3. B4. D5. A6. D7. D8. B 【解析】∵a∥b,∴∠2=∠1=50∘.9. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘,∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.故选:B.10. B【解析】因为AB∥CD,所以∠1=∠ADC=30∘,又因为等腰直角三角形ADE中,∠ADE=45∘,所以∠1=45∘−30∘=15∘.11. D12. C 【解析】∵a∥b,∴∠1=∠3,∵∠1=65∘,∴∠3=65∘,∵∠2+∠3=180∘,∴∠2=115∘.13. C14. D15. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘.∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.16. B【解析】因为AB∥CD,所以∠ACD+∠BAC=180∘,因为∠ACD=40∘,所以∠BAC=180∘−40∘=140∘,因为AE平分∠CAB,×140∘=70∘.所以∠BAE=∠BAC=1217. C【解析】如图所示:∵直线a∥b,∠1=40∘,∴∠3=∠1=40∘.∵AC⊥AB,∴∠BAC=90∘,∴∠2=90∘−∠1=90∘−40∘=50∘.故选C.18. C【解析】设这个多边形的边数为n,则(n−2)⋅180∘=360∘×3−180∘,解得n=7.19. C【解析】经过点P(−4,3)且垂直于x轴的直线可以表示为直线x=−4.故选:C.20. B【解析】如图,过点C作CG∥AB,由题意可得AB∥EF∥CG,故∠B=∠BCG,∠GCD+∠CDF=180∘.∵CD⊥EF,∴∠CDF=90∘.∴∠GCD=90∘.则∠BCD=40∘+90∘=130∘.21. 50∘22. 15023. 40∘24. 90∘25. ①②③【解析】①∵AB∥CD,∴∠BOD=∠ABO=a∘,∴∠COB=180∘−a∘=(180−a)∘,又∵OE平分∠BOC,∴∠BOE=12∠COB=12(180−a)∘.故①正确;②∵OF⊥OE,∴∠EOF=90∘,∴∠BOF=90∘−12(180−a)∘=12a∘,∴∠BOF=12∠BOD,∴OF平分∠BOD,∴②正确;③∵OP⊥CD,∴∠COP=90∘,∴∠POE=90∘−∠EOC=12a∘,∴∠POE=∠BOF;∴③正确;∴∠POB=90∘−a∘,而∠DOF=12a∘,∴④错误.26. 30∘27. 80∘【解析】作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180∘,∵∠ABC=100∘,∴∠3+∠4=100∘,∴∠1+∠4=100∘,∴∠2−∠1=80∘.28. 30【解析】因为AB∥CD,所以∠DNM=∠BME=75∘.因为∠PND=45∘,所以∠PNM=∠DNM−∠DNP=30∘.29. ∵∠BAP+∠APD=180∘,∴AB∥CD,∴∠BAP=∠APC.又∵∠1=∠2,∴∠BAP−∠1=∠APC−∠2,即∠EAP=∠APF,∴AE∥FP,∴∠E=∠F.30. (1)∵AB∥CD,EF∥AB,∴CD∥EF∥AB,∴∠FEA=∠EAB,∠FEC=∠ECD,∴∠CEA=∠FEA−∠FEC=∠EAB−∠ECD;(2)由(1)知∠CEA=∠EAB−∠ECD=30∘,∵EA平分∠CED,∴∠CED=2∠CEA=60∘;(3)设∠EAH=x,∠BAH=2x,由(1)可知∠E=∠EAB−∠ECD=3x−60∘,∠H=∠HAB−∠HCD=2x−40∘,∴∠H∠E =2x−40∘3x−60∘=23.31. (1)补全图形如图所示:(2)∵∠AOB=120∘,∠AOC=30∘,∴∠COB=∠AOB−∠AOC=90∘.∵OD平分∠BOC,∴∠DOC=12∠BOC=45∘.∴∠DOA=∠AOC+∠DOC=75∘.∵OE平分∠AOD,∴∠DOE=12∠AOD=37.5∘.∴∠EOC=∠DOC−∠DOE=45∘−37.5∘=7.5∘.32. (1)2(2)6(3)24(4)n(n−1)(n−2)33. (1)AB∥CD.理由如下:∵∠1=110∘,∵∠2=70∘,∴∠2=∠4,∴AB∥CD.(2)∵∠3=120∘,∴∠5=60∘,∴AB∥CD,∴∠BAC=∠5=60∘,∵AD平分∠BAC,∠BAC=30∘.∴∠BAD=1234. (1)∠B=∠D.∵AB∥CD,∴∠B=∠1 .∵DE∥BC,∴∠1=∠D .∴∠B=∠D .(2)由2x+15=65−3x,解得x=10,所以∠B=35∘ .。
平行线性质的证明题方法

平行线性质的证明题方法关于平行线性质的证明题方法平行线是数学的知识,平行线的证明题是怎么一回事呢?该怎么证明呢?下面就是店铺给大家整理的平行线的性质证明题内容,希望大家喜欢。
平行线的性质知识两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
也可以简单的说成:1.同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。
也可以简单的`说成:2.内错角相等两直线平行3.同旁内角相等两直线平行这个是平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。
也可以简单的说成:1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补平行线的性质证明题解答已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有①②①②(填入序号即可).考点:平行线的性质.分析:此题属于文字证明题,首先画出图,根据图写出已知求证,然后证明,用到的知识由一条直线截两条平行直线所得的同位角相等与对顶角相等,故可求得答案.解答:解:如图:已知:AB∥CD,求证:∠2=∠3.证明:∵AB∥CD,∴∠1=∠2,(一条直线截两条平行直线所得的同位角相等)∵∠1=∠3,(对顶角相等)∴∠2=∠3.故用的基本事实有①②.平行线的性质证明题方法探照灯、锅形天线、汽车灯以及很多灯具都与抛物线形状有关。
如图所示的是探照灯的纵剖面,从位于E点的灯泡发出的两束光线EA、EC经灯碗反射以后平行射出。
试探索∠AEC与∠ EAB、∠ECD之间的关系,并说明理由。
你能把这个实际问题转化为数学问题吗?例题1(一题多证):已知AB∥CD,探索三个拐角∠E与∠A,∠C之间的关系(E在AB与CD之间且向内凹)※ 本题的难点在引导学生添加辅助线构造三线八角及如何利用已知条件AB∥CD。
10.3平行线的性质

10.3平行线的性质一、教与学目标:1.通过实际操作探索“两条平行线被第三条直线所截,同位角相等”的性质,并通过说理,认识“两条平行线条直线所截,内错角相等”和“同旁内角互补”的性质。
2.会运用平行线的性质,解决与“三线八角”有关的计算问题。
3.经历观察、推理、交流等活动,发展空间观念、有条理的思考和语言表达能力。
二、教与学重点难点:会利用平行线的性质解决一些简单的实际问题。
三、教与学方法自主探究、合作交流。
四、教与学过程:(一)情境导入:老师:我在黑板上画两条直线被第三条直线所截,你能找到哪些角,他们具有怎样的关系哪些是同位角、内错角、同旁内角?有没有相等的角呢?学生:通过观察找出对顶角、邻补角、同位角、内错角、同旁内角等,积极发言说出尽可能多的角(设计意图:让学生在已有知识经验的基础上,形成螺旋式上升)老师:如果是两条平行线呢?老师:这一节课我们研究两条平行线被第三条直线所截得的同位角、内错角、同旁内角之间的关系(二)探究新知:1.学生活动学生画图活动:两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八角ab个性化设计:老师:怎样探究这些角的关系?动手试一试(学生动手操作的过程中巡视)。
学生:有的小组通过测量、有的小组剪拼,有的小组叠合的方法(设计意图:让学生用尽可能多的方法进行探究,挖掘学生的潜能,培养学生的动手操作能力和探究能力)2.学生测量这些角的度数,把结果填入表内.2.合作交流学生测量这些角的度数,把结果填入表内. 3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系? 图中哪些角是内错角?它们具有怎样的数量关系? 图中哪些角是同旁内角?它们具有怎样的数量关系? 4.生成新知能否将我们发现的结论给予较为准确的文字表述? 平行线具有性质:性质1 性质2 性质3 用符号语言怎样表示? (设计意图:几何初步教学要注意培养学生的几何语言的能力包括图形语言、文字语言、符号语言三种语言)5. 我们能否使用平行线的性质1说出性质2、3成立的道理呢? 因为a ∥b,所以∠1=∠4( ); 又∠2= (对顶角相等)所以∠2=∠4.( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.3 平行线的性质
1.掌握平行线的三个性质,即“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”.2.熟练地运用平行线的性质解决有关的计算题和说理问题.
3.能熟练地综合运用平行线的判定和性质解决有关的计算和推理问题.
1.平行线的性质
(1)平行线的性质
性质1:两条平行线被第三条直线所截,同位角相等.简单地说:两直线平行,同位角相等;
几何符号语言:因为AB∥CD,所以∠3=∠2(两直线平行,同位角相等).
性质2:两条平行线被第三条直线所截,内错角相等.简单地说:两直线平行,内错角相等;
几何符号语言:因为AB∥CD,所以∠1=∠2(两直线平行,内错角相等).
性质3:两条平行线被第三条直线所截,同旁内角互补.简单地说:两直线平行,同旁内角互补.
几何符号语言:因为AB∥CD,所以∠4+∠2=180°(两直线平行,同旁内角互补).
(2)平行线性质的理解
①“同位角相等,内错角相等,同旁内角互补”都是在两条直线平行的条件下推出来的结论,单独说“同位角相等”“内错角相等”“同旁内角互补”是错误的.
②平行线的三个性质特征的大前提都是“两条平行线被第三条直线所截”,离开这个前提就不存在同位角、内错角相等,同旁内角互补.
③由平行线的性质可以推出同位角、内错角、同旁内角的关系,所以一定要结合图形认清角的类型.
【例1-1】如图,将三角板的直角顶点放在两条平行线a,b中的直线b上,如果∠1=40°,则∠2的度数是( ).
A.30° B.45° C.40° D.50°
解析:∵a∥b,∠1=40°,
∴∠3=∠1=40°.
∵∠2+∠3+∠4=180°,
∠4=90°,∴∠2=50°.
答案:D
【例1-2】如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=( ).
A.30° B.60° C.90° D.120°
解析:∵AD∥BC,∴∠ADB=∠B=30°.再根据角平分线的概念,得∠BDE=∠ADB=30°,再根据两条直线平行,内错角相等,得∠DEC =∠ADE=60°.故选B.
答案:B
【例1-3】如图,AB∥DC,AD∥BC,问∠A与∠C有怎样的大小关系?
分析:因为已知两组直线分别平行,根据平行线的性质,知道角与角之间有一定数量关系.
解:∠A=∠C.理由如下:
因为AD∥BC(已知),
所以∠A+∠B=180°(两直线平行,同旁内角互补).
又因为AB∥DC(已知),
所以∠C+∠B=180°(两直线平行,同旁内角互补).
故∠A=∠C(同角的补角相等).
2.平行线的性质与判定的联系与区别
(1)平行线的判定与性质的联系
都有同位角、内错角、同旁内角与两直线平行.而平行线的特征(性质)与两直线平行的条件(判定)正好把条件与结论对调.
(2)平行线的判定与性质的区别
在解决问题时,要正确区分和使用两条直线平行的判定和性质.
①平行线的判定是以“角的相等或互补”为前提,得到“两条直线平行的关系”,是从“数量关系”得到“位置关系”.
②平行线的性质是以“两直线平行”为前提,得到“角的相等或互补”,是从“位置关系”得到“数量关系”.
直线平行的条件直线平行的特征
同位角相等,两直线平
行两直线平行,同位角相
等
内错角相等,两直线平
行两直线平行,内错角相
等
同旁内角互补,两直线
平行两直线平行,同旁内角
互补
(1)从角的关系得到直线平行,用直线平行的判定;从平行线得到角相等或互补关系,用平行线的性质.
(2)两条直线平行的判定方法是说明两条直线平行的理论依据,两条直线平行的性质是说明角相等或互补的理论依据,二者的因果关系如下:
【例2-1】如图所示,下列推理及依据都正确的是( ).
A.因为DE∥BC,所以∠AED=∠C.依据是:同位角相等,两直线平行
B.因为∠BED=∠CBE,所以DE∥BC.依据是:同位角相等,两直线平行
C.因为DE∥BC,所以∠BED=∠CBE.依据是:两直线平行,内
错角相等
D.因为∠AED=∠C,所以DE∥BC.依据是:两直线平行,同位角相等
解析:A中依据应是:两直线平行,同位角相等;B中依据应是:内错角相等,两直线平行;D中依据应是:同位角相等,两直线平行;故应选C.
答案:C
【例2-2】如图所示,完成下面的说理过程.
因为DE∥BC,
所以∠B+__________=180°().
因为∠B=∠3,所以__________∥__________( ).
因此∠B+__________=180°().
故∠4=∠2(同角的补角相等).
解析:解决此题要弄清各角的位置关系:∠1和∠3是内错角;∠B和∠4、∠2分别是同旁内角;∠B和∠3是同位角.
答案:∠4 两直线平行,同旁内角互补
AB EF同位角相等,两直线平行
∠2 两直线平行,同旁内角互补
3.利用平行线的性质求角的度数
由两条直线平行,可以得到角的相等或互补关系,再结合对顶角、角平分线、垂直、平角等有关知识可以求出角的度数.
若不能根据已知条件直接求出角的度数或找到角的关系,需要先适当地引平行线,然后综合借助平行线的性质求解.
同位角相等、内错角相等、同旁内角互补都是平行线特有的性质,解题时切不可忽略前提条件:“两直线平行”.当两直线不平行时,同位角、内错角就不相等,同旁内角也不互补.
【例3】如图,直线EF 分别与直线AB ,CD 相交于点G ,H ,已知∠1=∠2=50°,GM 平分∠HGB 交直线CD 于点M ,则∠3=( ).
A .60°
B .65°
C .70° D.130°
解析:因为∠1=∠2=50°,所以AB ∥CD .因此∠BGH =180°
-∠2=130°.又GM 平分∠HGB ,所以∠BGM =12
∠HGB =65°.因为AB ∥CD ,所以∠3=∠BGM =65°.
答案:B
4.平行线的性质与判定方法的综合运用
平行线的判定与性质中的因果关系是倒置的.平行线的判定是由角的数量关系来确定线的位置关系,平行线的性质是由线的位置关系来确定角的数量关系.
对判定方法而言,“两直线平行”是结论,而对性质而言,“两
直线平行”则是必不可少的前提条件.若先知道角,结论应是平行;若先知道平行,结论应是角相等或互补.
在应用平行线的性质与判定方法进行推理时,必须搞清推理中的“层次”及因果的转化,从而正确地选择理由,进行推理.这类题目中既要应用性质求得角相等或互补,再对角与角之间进行代换,得到新的角相等或互补,从而说明另外一组平行线;或先有角相等或互补得到两直线平行,再说明新的角相等或互补.【例4-1】如图,已知∠1=110°,∠2=110°,∠3=70°,求∠4的度数.
解:因为∠1=110°(已知),所以∠5=70°(邻补角定义).
因为∠3=70°(已知),所以∠5=∠3(等式的性质).
因此AB∥CD(同位角相等,两直线平行).
于是∠6=180°-∠2=180°-70°=110°(两直线平行,同旁内角互补).故∠4=∠6=70°(对顶角相等).
【例4-2】如图,已知AB∥DE,∠ABC+∠DEF=180°,求证:BC∥EF.
证明:因为AB∥DE(已知),
所以∠ABC+∠1=180°(两直线平行,同旁内角互补).
因为∠ABC+∠DEF=180°(已知),
所以∠1=∠E(同角的补角相等).
故BC∥EF(同位角相等,两直线平行).
5.平行线的性质与判定在生活中的应用
有关平行线的性质与判定在生活中的应用的问题中主要是求角的度数,解答时要观察图形的结构特征,在实际问题中构造平行线或相等、互补的角,利用平行线的性质与判定方法,将已知角向待求角转化.
生活中的实际问题,需要转化为数学问题,如方位中的平行线问题,正北与正北方向是平行的……,这些常识应当掌握.【例5】如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西__________°.
解析:先根据题意画出图形,利用平行线的性质解答即可.如右上图,因为AC∥BD,∠1=48°,所以∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.
答案:48。