28届复赛试题
全国初中化学竞赛复赛试题(含答案)

全国初中化学竞赛复赛试题(含答案)2019年全国初中化学素质和实验能力测试(第28届天原杯)复试试题可能用到的相对原子质量:H-1、C-12、N-14、O-16、Na-23、Mg-24、Al-27、S-32、Cl-35.5、K-39、Ca-40、Fe-56、Cu-64、Zn-65、Ag-108、Ba-137一、选择题(本题包括15个小题,每小题2分,共30分。
每小题有1个或2个选项符合题意。
若有2个答案的错1个不得分,漏选1个扣分。
请将答案填在答题卡相应题号的空格内)1.网络“化学是你,化学是我”揭示了化学与生活的密切关系。
下列有关说法中正确的是()A。
碳酸钠俗名纯碱,也叫XXX,可用于清洗厨房用具的油污B。
84消毒液在日常生活中使用广泛,溶液无色、有漂白作用,它的有效成分为Ca(ClO)2C。
青铜是我国使用最早的合金材料,目前世界上使用量最大的合金材料是铝合金D。
明矾[KAl(SO4)2·12H2O]溶于水会形成胶体,因此可用于自来水的消毒杀菌2.科学家最近在-100℃的低温下合成了一种化合物X,此分子的模型如图所示,其中每个代表一个碳原子,每个代表一个氢原子,下列说法中正确的是:A。
该分子的分子式C5H4B。
该分子中碳元素的质量分数为93.75%C。
该分子中的氢原子与碳原子的原子个数比为5:4D。
等质量的该物质与甲烷相比,燃烧时消耗的氧气更多3.下列做法不会使人中毒的是:A。
用工业酒精配制白酒饮用B。
将燃气热水器安装在浴室内C。
向蔬菜大棚内通入适量的CO2D。
用胆矾对饮用水进行消毒4.海水淡化可采用膜分离技术。
如图所示,对淡化膜右侧的海水加压,水分子可以透过淡化膜进入左侧淡水池,而海水中其他各种离子不能通过淡化膜,从而得到淡水。
对加压后右侧海水成分变化分析正确的是:A。
溶质质量增加B。
溶剂质量减少C。
溶液质量不变D。
溶质质量分数减少5.已知①钠、镁、铝等活泼金属能与乙醇反应,生成乙醇的金属化合物和氢气;②二氧化碳不支持燃烧是相对的,有些金属如镁能在二氧化碳中燃烧生成金属氧化物和单质碳。
第28届全国中学生物理竞赛复赛试题参考解答及评分标准

一、参考解答:解法一:取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b += (1) a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4) 由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为 s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) 得图1P=v(12)代入有关数据得414.3910m sP-⨯⋅v=(13)设P点速度方向与SP的夹角为ϕ(见图2),根据开普勒第二定律[]sin2P P Prϕθσ-=v(14)其中σ为面积速度,并有πabTσ=(15)由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ=(16)解法二:取极坐标,极点位于太阳S所在的焦点处,由S引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r、θ表示彗星的椭圆轨道方程为1cospreθ=+(1)其中,e为椭圆偏心率,p是过焦点的半正焦弦,若椭圆的半长轴为a,根据解析几何可知()21p a e=-(2)将(2)式代入(1)式可得()θcos112eear+-=(3)以eT表示地球绕太阳运动的周期,则e1.00T=年;以ea表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e1.00AUa=,根据开普勒第三定律,有3232a Ta T=e e(4)在近日点0=θ,由(3)式可得1rea=-0(5)将Pθ、a、e的数据代入(3)式即得0.895AUPr=(6) 可以证明,彗星绕太阳作椭圆运动的机械能s2GmmE=a-(7)式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (8) 可得P =v (9) 代入有关数据得414.3910m s P -⨯⋅v = (10) 设P 点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v ,再根据角动量守恒定律,有()sin P P P r r ϕθ-=v v 00 (11)根据(8)式,同理可得=0v (12) 由(6)、(10)、(11)、(12)式并代入其它有关数据127ϕ= (13) 评分标准:本题20分解法一:(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分. 解法二:(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分. 二、参考解答:1.建立如图所示坐标系Oxy .两杆的受力情况如图:1f 为地面作用于杆AB 的摩擦力,1N 为地面对杆AB的支持力,2f 、2N 为杆AB 作用于杆CD 的摩擦力和支持力,3N 、4N 分别为墙对杆AB 和CD 的作用力,mg 为重力.取杆AB 和CD 构成的系统为研究对象,系统平衡时, 由平衡条件有4310N N f +-=(1) 120N mg -= (2)以及对A 点的力矩()3411sin sin sin cos cos cos 022mgl mg l l N l N l l CF θθαθθα⎛⎫+---+-= ⎪⎝⎭即()3431sin sin cos cos cos 022mgl mgl N l N l l CF θαθθα---+-= (3) 式中CF 待求.F 是过C 的竖直线与过B 的水平线的交点,E 为BF 与CD 的交点.由几何关系有sin cot CF l αθ= (4) 取杆CD 为研究对象,由平衡条件有422c o s s i n 0N N f θθ+-= (5)22sin cos 0N f mg θθ+-= (6) 以及对C 点的力矩41cos sin 02N l mgl αα-= (7) 解以上各式可得41t a n 2N m g α=(8) 331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+⎪⎝⎭(9) 13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+⎪⎝⎭(10) 12N mg = (11)21sin tan cos 2N mg θαθ⎛⎫=-⎪⎝⎭ (12) 21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13) CD 杆平衡的必要条件为22c f N μ≤ (14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+ (15)AB 杆平衡的必要条件为11A f N μ≤ (16)由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤- (17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得a r c t a n 0.38521α︒≤= (18) 将题给的数据代入(17)式,经数值计算可得19.5α≥︒ (19)因此,α的取值范围为19.521.1α≤≤ (20) 评分标准:本题20分第1问15分:(1)、(2)、(3)式共3分,(4)式1分,(5)、(6)、(7)式共3分,(9) 、(10) 式各1分,(12)到(17)式各1分.第2问5分:(18)式1分,(19)式3分,(20)式1分. 三、参考解答:解法一: 1. 设在时刻t ,小球和圆筒的运动状态如图1所示,小球位于P 点,绳与圆筒的切点为T ,P 到T 的距离即绳的拉直部分的长度为l ,圆筒的角速度为ω,小球的速度为v .小球的速度可以分解成沿着绳子方向的速度1v 和垂直于绳子方向的速度2v 两个分量.根据机械能守恒定律和角动量守恒定律有()()()()22222001211112222M R m R M R m ωωω+=++v v (1) 2220012+=++MR mR MR mR ml ωωωv v (2)因为绳子不可伸长,1v 与切点T 的速度相等,即ωR =1v (3) 解(1)、(2)、(3)式得()()02222ωωmlR m M ml R m M ++-+= (4) ()()022222ωmlR m M lR m M +++=v (5) 由(4)式可得l = (6)2'2.由(6)式,当0=ω得=L (7)这便是绳的总长度L .3.如图2所示,从时刻t 到t t +∆,切点T 跟随圆筒转过一角度1t ωθ∆=∆,由于绳子的拉直部分的长度增加了l ∆,切点相对圆筒又转过一角度2l Rθ∆=∆,到达T '处,所以在t ∆时间内,切点转过的角度12lt Rθθωθ∆∆=∆=+∆+∆ (8) 切点从T 变到T '也使切线方向改变了一个同样的角度θ∆,而切线方向的改变是小球具有垂直于绳子方向的速度2v 引起的,故有2tlθ∆∆=v (9) 由(1)、(2)、(3)式可得()20l ωω=+v (10) 由(8)、(9)、(10)三式得0l R t ω∆=∆ (11) (11)式表示l 随t 均匀增加,故l 由0增加到L 所需的时间为 0s L t R ω== (12) 解法二:1.撤去插销后两个小球的运动情况相同,故可取一个小球作为对象进行研究,先研究任何时刻小球的速度.在t 时刻,相对卫星系统质心参考系小球运动状态如图1所示,绳子的拉直部分与圆筒面的切点为T ,小球到切点T 的距离即绳的拉直部分的长度为l ,小球到转轴O 的距离为r ,圆筒的角速度为ω.由于圆筒的转动和小球相对圆筒的运动,绳将展开,切点位置和绳的拉直部分的长度都要改变.首先考察小球相对于圆筒的运动.在t 时刻,OT 与固定在圆筒上的半径0OP 的夹角为φ,如图2所示.由于小球相对圆筒的运动,经过时间t ∆,切点从圆筒上的T 点移到T '点,OT '与2m1()2t0OP 的夹角变为φφ+∆,绳的拉直部分的长度由l 变为l ',小球由P 运动到P ',PP '便是小球相对圆筒的位移.当t ∆很小时l l '≈,故PP l l φφ''=∆≈∆于是小球相对圆筒的速度大小为ll tφφφω∆==∆v (1) 方向垂直于TP .φω是切点相对圆筒转动的角速度.再考察圆筒相对质心参考系的转动,即与圆筒固连在一起的转动参考系相对质心参考系的运动.当圆筒的角速度为ω时,位于转动参考系中的P 点(小球所在处)相对质心系的速度r ωω=v (2)方向垂直于OP .可以把ωv 分解成沿着TP 方向的分量1ωv 和垂直TP 方向的分量2ωv ,如图3所示,即1R ωω=v (3)2l ωω=v (4) 小球相对质心系的速度v 是小球相对圆筒的速度和圆筒参考系中的P 点相对质心系速度的合成,由图3可得v 的大小=v (5)因l R φ= (6) 故有=v (7)因为系统不受外力作用,故系统的动能和角动量守恒,故有()()222220011112222M R mR M R m ωωω+=+v (8) ()2220012MR mR MR mR ml ωωφωωω+=+++v v v (9)由(7)、(8)两式有()22220mM mφωωωωφ=+++ (10)Pφvωv 1ωvωvv2φω+v由(1)、(3)、(4)、(6)、(9)各式得()20mM mφωωφωω=+++ (11)由(10)、(11)两式得φωωωω+=+0故有0ωωφ= (12)上式说明绳子与圆筒的切点相对圆筒转动的角速度等于卫星的初始角速度,是一个恒量,将(12)式代入(11)式得φ=(13) 由(6)、(13)两式得l = (14) 这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(14)式,当0=ω得绳总长度, 即L = (15) 3.因φω是一个恒量,φ随时间的t 的变化规律为t 0ωφ= (16)当0=ω时,由(13)式可得卫星停旋时的φs φ=(17) 设卫星停转所用的时间为s t ,由(16)、(17)式得0s s t φω== (18) 评分标准:本题25分.解法一:第1问12分.(1)、(2)式各3分,(3)式2分,(6)式4分; 第2问3分.(7)式3分;第3问10分.(8)、(9)式各3分,(10)式2分,(11)、(12)式各1分.解法二:第1问18分.(1)式3分,(2)式2分,(7)式2分,(8)式3分,(9)式3分,(12)式2分,(14)式3分;第2问3分.(15)式3分;第3问4分.(16)式2分,(17)式1分,(18)式1分. 四、参考解答:1.根据题意,粒子的初速度只有y 方向和z 方向的分量,设它们为0y v 和0z v .因为粒子在z 方向不受电场力和磁场力作用,故粒子在z 方向以初速度0z v 作匀速运动.粒子在Oxy 面内的运动可以看作由以下两部分运动的合成:可把粒子在y 方向的初速度表示为 001001y y y y =-++v v v v (1) 其中010y E B =-v (2) 沿y 负方向.与01y v 相关的磁场力010Bx y f q B =-v (3) 沿x 负方向.粒子受到的电场力0E Ex f f qE == (4) 沿x 正方向.由(2)、(3)、(4)式可知,粒子在x 方向受到的电场力和磁场力正好抵消,故粒子以大小为00E B 的速度沿y 负方向运动.除此之外,由(1)式可知,粒子还具有初速度 00200y y E B =+v v (5) 沿y 正方向,与02y v 相关的磁场力使粒子以速率02y v 在Oxy 面内作匀速圆周运动,以r 表示圆周运动的半径,有202020y y q B mr=v v (6)可得020y m r qB =v (7)由周期的定义和(7)式可得圆周运动的周期2mT =qB π (8) (8)式表明,粒子运动的周期与粒子在y 方向的初速度无关.经过时间T 或T 的整数倍所考察的粒子就能同时回到Oyz 平面.2.增加的电场2E对粒子在Oxy 平面内的运动无影响,但粒子在z 方向要受到此电场力作用.以z a 表示在此电场力作用下的加速度,有0cos z ma qE t ω= (9) 或c o s z qE a =t mω (10) 这是简谐运动的加速度,因而有2z a =z ω- (11)由(10)、(11)可得t mqE z ωωcos 102-= (12) 因未增加电场时,粒子在z 方向作初速度为0z v 的匀速运动,增加电场后,粒子在z 方向的运动是匀速运动与简谐运动的叠加,即有021cos z qE z t t mωω=-v (13) 粒子在Oxy 平面内的运动不受电场2E 的影响.设0ω为粒子在Oxy 平面内作圆周运动的角速度,则有 002πqB T mω==(14) 由图示可得与圆周运动相联系的粒子坐标随时间t 的变化关系()01cos x r t ω'=- (15)0sin y r t ω'= (16) 考虑到粒子在y 方向还具有速度为01y v 的匀速运动,并利用(2)、(5)、(7)、(14)以及己知条件,可得带电粒子的运动规律:000001cos y E qB m x t qB B m ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭v (17) 0000000siny E E qB m y t t B qB B m⎛⎫=-++ ⎪⎝⎭v (18) 00020cos z mE qB z t t qB m=-v (19) 评分标准:本题20分.第1问12分.(2)、(3)、(4)式共5分,(5)、(6)、(7)式共4分,(8)式及相关说明共3分.第2问8分.(12)式2分,(14)式到(19)式各1分. 五、答案与评分标准 本题15分.1.01TV V L I I e ⎛⎫-- ⎪ ⎪⎝⎭ (2分),L I (2分),0ln 1L T I V I ⎛⎫+ ⎪⎝⎭ (2分), 01TVV L VI VI e ⎛⎫-- ⎪ ⎪⎝⎭(1分).22.0.62V (2分);0.54V (2分);49mW (2分);6.0Ω (2分). 六、参考解答:在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.1. 设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积02B V V = (1)根据题意,活塞M 向右移动过程中,B 中气体压强不变,用B T 表示B 室中气体末态的温度,有00BBV V T T = (2) 由(1)、(2)式得02B T T = (3)由于隔板N 是导热的,故A 室中气体末态的温度02A T T = (4) 下面计算此过程中的热量m Q .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即05()2A A Q R T T =- (5) 由(4)、(5)两式得052A Q RT =(6) B 室中气体经历的是等压过程,在过程中B 室气体对外做功为00()B B W p V V =- (7)由(1)、(7)式及理想气体状态方程得0B W RT = (8) 内能改变为05()2B B U R T T ∆=- (9) 由(4)、(9)两式得052∆=B U RT (10) 根据热力学第一定律和(8)、(10)两式,B 室气体吸收的热量为072=∆+=B B B Q U W RT (11) 由(6)、(11) 两式可知电加热器提供的热量为06m A B Q Q Q RT =+= (12)若0m Q Q =,B 室中气体末态体积为02V ,A 室中气体的末态温度02T .2.若0m Q Q >,则当加热器供应的热量达到m Q 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量0m Q Q -是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为AT ',有 00055(2)(2)22m AA Q Q R T T R T T ''-=-+- (13) 由(12)、(13)两式可求得00455AQ T T R '=+ (14) B 中气体的末态的体积02BV =V ' (15) 3. 若0m Q Q <,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积BV ''小于02V ,即02B V V ''<.设A 、B 两室中气体末态的温度为AT '',根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量05()2A AQ R T T ''=- (16) B 室中气体经历的是等压过程,吸收热量005()()2B A B Q R T T p V V ''''=-+- (17) 利用理想气体状态方程,上式变为 ()072B AQ R T T ''=- (18) 由上可知006()A B AQ Q Q R T T ''=+=- (19) 所以A 室中气体的末态温度06AQ T T R''=+ (20) B 室中气体的末态体积00000(1)6BAV QV T V T RT ''''==+ (21)评分标准:本题20分.得到0m Q Q =的条件下(1)、(4)式各1分;(12)式6分,得到0m Q Q >的条件下的(14)式4分,(15)式2分;得到0m Q Q <的条件下的(20)式4分,(21)式2分.七、答案与评分标准:本题20分.1. 3R (3分) 2. 6R (3分)1. 反应能()()332pn H He Q m m m m c ⎡⎤=+-+⎣⎦ (1) 式中c 为光速.代入数据得0.764MeV Q =- (2) 上式表明这是一吸能核反应.2.为了求入射质子阈能,反应前后各粒子都应沿同一直线运动.设质子的入射速度大小为p v ,反应后32He 的速度大小为3He v ,中子的速度大小为n v ,根据动量守恒和能量守恒有33p p n n He He m m m =+v v v (3) 33222p p n n He He 111222m m m Q =++v v v (4) 由(3)、(4)式可得3333322n n p p p n22He He n p n p He He He 220m m m m m m m m Q m m m ⎛⎫⎛⎫+--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v v v v (5) 令333332n nHe He p n pHe 2p p 2Hep He22m m m a m m m b m m m m c Qm ⎫+⎪=⎪⎪⎪=-⎬⎪⎪-⎪=+⎪⎭v v (6) 把(6)式代入(5)式得2n n 0a b c ++=v v (7)(7)式有解的条件是240b ac -≥ (8)由(6)式可知,c 可能大于零,亦可能小于零.若0c <,则(8)总成立,中子速度一定有解,反应一定能发生;若0c >,则由 (6)、(8)两式得33n 2He p p n pHe 12m m m Q m m m +≥+-v (9) 即只有当入射质子的动能满足(9)式时,中子速度才有解,反应才能发生,所以入射质子的阈能为3pn p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭(10) 利用(1)式,在忽略2Q 项的情况下,(10)式可简化为3pH1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(11) 代入有关数据得1.02MeV th T = (12) 3.由动量守恒和能量守恒有33p p n n He He =+m m m v v v (13)33222p p n n He He 111222m m m Q =++v v v (14) 以θ表示反应中产生的中子速度方向与入射质子速度方向的夹角,如图所示,根据余弦定律有 ()()()33222n n p p n p n p He He 2cos m m m m m θ=+-v v v v v (15)令2p p p12T m =v (16) 2n n n 12T m =v (17)3332He He He 12=T m v (18)θp p m vn n v把(15)、(16)、(17)式代入(13)、(14)两式得3He Q T T T =--p n (19)33n n p p He He 222m T m T m T θ=+- (20)由(18)、(19)式,消去3He T 后,得()3333p p HeHe n nnHe He 0m m T Q m T m m θ---=+ (20)令3nHe S θ=,()333p p HeHe nHe m m T Q m R m m --=+ (22)得n 20T R -= (23)根据题给的入射质子的动能和第1问求得的反应能Q 的值,由(21)式可知0R >,故(22)式的符合物理意义的解为S = (24)将具体数据代入(21)、(23)式中,有n 0.132M e V T = (25) (如果得到 131.0=n T MeV ,也是对的.)第2问的其他解法解法一:为了研究阈能,只考虑碰撞前后各粒子都沿同一直线运动的情况.若碰撞后32He 和中子的速度相同,即粘在一起运动(完全非弹性碰撞),则在碰撞过程中损失的机械能最多,若所损失的机械能正好等于反应能,则入射质子的动能最小,这最小动能便是阈能. 设质子的入射速度大小为p v ,反应后32He 和中子的速度大小为v ,根据动量守恒和能量守恒有3p p n He ()m m m =+v v (1) 322p p n He 11()22m m m Q =++v v (2) 由(1)、(2)式可得33n 2He p p n pHe 12m m m Q m m m +=+-v (3)所以阈能为3p n pHe 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭(4) 利用第1问中的(1)式,并注意到32H 1<<Q m c有333332n pHe H H 2H H 11111⎛⎫==- ⎪ ⎪+-⎛⎫⎝⎭+ ⎪ ⎪⎝⎭Q m m m m m c Q m m c 在忽略2Q 项的情况下,(4)式可简化为 3p H 1th m T Q m ⎛⎫=+ ⎪ ⎪⎝⎭(5) 代入有关数据得1.02MeV th T = (6)第2问8分:(1)、(2)式各3分,(4)式或(5)式1分,(6)式1分.解法二:在牛顿力学中可以证明,质点系的总动能可以表示为质点系的总质量以质心速度运动的动能即所谓质心动能与各质点相对质心运动的动能之和.若质点系不受外力作用,则质点系的动量守恒,质心速度不变,故质心动能亦恒定不变;如果质点系内部的相互作用导致质点系机械能的变化,则可变化的机械能只能是各质点相对质心运动的动能. 在本题中,如果质子p 与氚31H 发生反应后,生成的中子n 和氦32He 相对质心都静止,则质子p 与氚31H 相对质心运动的动能之和全部转化成反应能,反应后系统的动能只有质心的动能,在这请况下,转化成其他形式能量的机械能最多,入射质子的动能最小,这最小动能便是阈能.所以入射质子的阈能等于系统质心的动能与反应能之和.以p 'v 和3H 'v 分别表示质子p 和氚31H 相对质心的速度,有3322p p H H1122Q =m m ''+v v (1) 因系统质心的速度3p p c p H=+m m m v v (2)而33p H p p c p Hm m '=-=+v v v v m (3)33p pc H p H0m m '=-=-+v v v m (4)由(1)、(3)、(4)式得332H p pp H12m Q m m m =+v (5) 在牛顿力学中,系统的总质量是恒定不变的,这就导致系统质心的动能在反应前后恒定不变的结论,但在本题中,损失掉的机械能导致系统总质量的变化,使反应前系统的总质量与反应后系统的总质量不相等,即33p n H He +≠+m m m m .如果仍沿用牛顿力学的结论,对一个孤立系统,其质心速度是不会改变的,故反应后质心的动能应为 ()()33222c n c p c c 2He H 111222=+=++Q E m m m m cv v v 而()33322p p p 2c 2222p H Hp HQ 1122m m Q QQ c c c m m m m m =⋅=⋅⋅++v v 由此可见,在忽略2Q 的条件下 ()()3322n p He H 1122c cm m m m +=+v v 而入射质子的阀能()32p H 12th c T m m Q =++v (6) 由(2)、(5)、(6)式得3p H 1th m T Q m ⎛⎫=+ ⎪ ⎪⎝⎭(7) 代入有关数据得1.02MeV th T = (8)第2问8分:(1)、(5) 、(6)式各2分, (7)式1分,(8)式1分.解法三:考虑反应前后各粒子都沿同一直线运动的情况,若入射质子与与静止的31H 发生完全非弹性碰撞,即反应后产生的中子和32He 以相同的速度运动,则入射质子的动能就是阈能.以10m 表示质子的静止质量,20m 表示31H 的静止质量,30m 表示中子的静止质量,40m 表示31He 的静止质量,设质子的入射速度大小为p v ,反应后32He 和中子的速度大小都为v ,根据动量守恒和能量守恒有1p m m m +=v (1)222120m m c m c m c++=(2)式中1m 是质子的动质量.由(1)、(2)两式得 1p 120+m m m v v = (3)把(3)式代入(1)式,经整理得()()2222221201p 3040+-=+m m c m m m c v (4)由1m =(5)可得221p221102-=m m m cv (6)若入射质子的阈能为th E ,有22110th m c m c E =+ (7)由(4)、(6)、(7)式可得()()2230401020202th m m m m E m +-+= (8)利用题给条件并引入反应能,得 333p n H HeH2th m m m m E Q m +++= (9)或有()3333p 2H p HH H22th Q+m m m m c E Q Q m m ++=≈ (10)代入有关数据得1.02MeV th T = (11)第2问8分:(1)、(2) 、(8)式各2分, (9)或(10)式1分, (11)式1分.。
上海市第28、29、30届(2014-2016)初中物理竞赛(大同杯)复赛试题与详解

喜欢观察昆虫的小华发现了类似的奇特现象,傍晚看到蜜蜂的翅膀在频闪灯的照射下,似乎在缓慢的震 动,自上而下一次约为 2 秒,已知频闪灯的频率为 50 赫兹,则蜜蜂的翅膀振动的频率为 兹(已知这种蜜蜂的振动频率的范围是 450~480 赫兹) . 450.25 赫
解: (1)当 f0=30Hz 时,与转盘的频率相同,每次频闪时,白条都恰好转到同一个位置, 当 f=150Hz 时,相当于转盘转一周,频闪 5 次,白条有 5 次机会被照亮.所以,用频率 f=150 赫兹的频 闪光去照射,在盘上能看到 5 根稳定的白色窄条; (2)昆虫的翅膀振动过程中,频闪灯一亮一灭,灭的瞬间看不见,亮的瞬间又看见了,那么要出现这 种现象,只能是昆虫的翅膀振动时从上到下的过程中又经过了频率的整数倍,即 50Hz 的整数倍,900 倍 在这个范围内,现自上而下一次是 2 秒,那么频率最小是 0.25Hz,即为 450Hz 再加一次就是 450.25Hz. 故答案为:5;450.25.
解:由题意知,要测量钢丝的伸长量,还需测定出小轮 C 的半径 R; 设伸长量为△L,则平面镜转动角度为 ,根据光的反射定律,反射光线与入射光线的夹角变化为轮转
动角度的 2 倍,则:
=
解得:△L= .
.
故答案为:小轮 C 的半径 R;
11、 由于眼睛有视觉暂留, 因此会造成一些奇特现象. 例如, 在如图所示的黑色圆盘中有一白色窄条 OA, 圆盘绕垂直于盘面的中心轴以频率 f0=30 赫兹顺时针旋转,用频率 f=150 赫兹的频闪光去照射,在盘上 能看到 5 根稳定的白色窄条.
2、冬天雨雪过后,停在户外的汽车的前窗玻璃上常会结有一层冰。要想除去这些冰,下列做法中不可 采用的是 ( D A.喷洒盐溶液 C.启动车子,打开热风,吹车前窗玻璃 ) B.用硬的纸质物体直接清除 D.将少量沸水洒在车前窗玻璃上
第28届全国中学生物理竞赛复赛试题参考解答及评分标准

σ=
πab T
b
rP
S
由(9) 、 (13) 、 (14) 、 (15)式并代入有关数据可 得
θP
P0
ϕ
x
a
O
ϕ = 127D
(16) 图2
解法二 取极坐标,极点位于太阳 S 所在的焦点处,由 S 引向近日点的射线为极轴,极角为 θ ,取逆 时针为正向,用 r、 θ 表示彗星的椭圆轨道方程为
r=
p 1 + e cos θ
第 28 届全国中学生物理竞赛复赛试题参考解答及评分标准
一、参考解答: 解法一 取直角坐标系 Oxy,原点 O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为
x2 y 2 + =1 a 2 b2
a、b 分别为椭圆的半长轴和半短轴,太阳 S 位于椭圆的一个焦点处,如图 1 所示.
(1)
以 Te 表示地球绕太阳运动的周期,则 Te = 1.00年 ;以 ae 表示地球到太阳的距离(认为地球 绕太阳作圆周运动) ,则 ae = 1.00AU ,根据开普勒第三定律,有
取杆 CD 为研究对象,由平衡条件有
(4)
N 4 + N 2 cos θ − f 2 sin θ = 0 N 2 sin θ + f 2 cos θ − mg = 0
以及对 C 点的力矩
(5) (6)
1 N 4l cos α − mgl sin α = 0 2
解以上各式可得
(7)
N4 =
1 mg tan α 2
T
v
v1
P
v2
1 1 1 1 2 2 2 2 M ( Rω0 ) + m ( Rω0 ) = M ( Rω ) + m ( v12 + v 2 ) 2 2 2 2
上海市第二十八届初中物理竞赛(大同杯)复赛试题及答案

上海市第二十八届初中物理竞赛(大同中学杯)复赛试卷(2014年)说明:1.本试卷共有五大题,答题时问为l20分钟,试题满分为l50分.Word—小小虫2.本试卷中常数g取10N/kg,水的比热4.2×103J/kg·℃,水的密度1.0×103kg/m3一、选择题(以下每小题只有一个选项符合题意,每小题4分.共32分)1.当坐在野外的篝火旁时,我们看到篝火后面的物体是晃动的.原因是( )A.视觉错误,因为火焰在跳动B.火焰加热空气,使空气密度不均匀且不稳定C.火焰作为光源在抖动.所以经后面物体反射的光也在晃动D.火焰加热了另一边的物体,使它热胀冷缩.所以看到它在晃动2.如图所示,将l44根长钉固定在木板上,尖端朝上,将一只气球置于上方,手轻轻放在气球上。
若手轻轻下按,则( ) ’A.气球会立即破掉,因为气球受到手的压力B.气球会立即破掉,因为气球受到钉子的压强过大C.气球不会破,因为气球受力平衡D.气球不会破,因为气球受到的压力被分散,压强不足以刺破气球3.如果不慎在照相机镜头上粘上一个灰尘颗粒(如图),那么拍摄的相片( )A.其上部将出现一个黑点·B.其下部将山现一个黑点C.其上部和下部皆无黑点D.其上部和下部各出现一个黑点4.太阳表面的温度约为6000℃,所辐射的电磁波中辐射强度最大的在可见光波段;人体的温度约为37℃,所辐射的电磁波中辐射强度最大的在红外波段。
宇宙空间内的电磁辐射相当于零下270℃的物体发出的,这种辐射称为“3K背景辐射”。
“3K背景辐射”的波段为( ) A.γ射线B.x射线C.紫外线D.无线电波5.往热水瓶里灌水,热水瓶在被灌满的过程中,从热水瓶口发出声音的音调()A.越来越高B.越来越低C.始终不变D.忽高忽低6.神州十号上天后,宇航员王亚萍在太空授课,做了一个水膜实验。
将细圆环从水中取出形成水膜。
有关水膜厚度的描叙正确的是()A.中央薄,四周厚B.中央厚,四周薄C.四周和中央一样厚D.以上三种情况都会出现7.如图所示,两个通电螺线管与电源构成图示电路,在其内部和两个螺线管之间中部上方分别放置一个小磁针,静止时小磁针的位置正确的是()8.如图所示,一个半径为R的半圆形凹槽固定在地面上,一个半径为kR(k<1)的圆柱体从凹槽的右端静止释放。
第28届全国中学生物理竞赛复赛试题(清晰扫描版)及参考解答

第28届全国中学生物理竞赛复赛试题参考解答及评分标准一、参考解答:解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b += (1) a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4) 由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为 s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) 得图1P=v(12)代入有关数据得414.3910m sP-⨯⋅v=(13)设P点速度方向与SP的夹角为ϕ(见图2),根据开普勒第二定律[]sin2P P Prϕθσ-=v(14)其中σ为面积速度,并有πabTσ=(15)由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ= (16)解法二取极坐标,极点位于太阳S所在的焦点处,由S引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r、θ表示彗星的椭圆轨道方程为1cospreθ=+(1)其中,e为椭圆偏心率,p是过焦点的半正焦弦,若椭圆的半长轴为a,根据解析几何可知()21p a e=-(2)将(2)式代入(1)式可得()θcos112eear+-=(3)以eT表示地球绕太阳运动的周期,则e1.00T=年;以ea表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e1.00AUa=,根据开普勒第三定律,有3232a Ta T=e e(4)在近日点0=θ,由(3)式可得1rea=-0(5)将Pθ、a、e的数据代入(3)式即得0.895AUPr=(6)可以证明,彗星绕太阳作椭圆运动的机械能s2GmmE=a-(7)式中m为彗星的质量.以Pv表示彗星在P点时速度的大小,根据机械能守恒定律有2s s122PPGmm Gmmmr a⎛⎫+-=-⎪⎝⎭v(8)可得P=v(9)代入有关数据得414.3910m sP-⨯⋅v=(10)设P点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v,再根据角动量守恒定律,有()sinP P Pr rϕθ-=v v00(11)根据(8)式,同理可得=v(12)由(6)、(10)、(11)、(12)式并代入其它有关数据127ϕ= (13)评分标准:本题20分解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分.二、参考解答:1.建立如图所示坐标系Oxy.两杆的受力情况如图:1f为地面作用于杆AB的摩擦力,1N为地面对杆AB的支持力,2f、2N为杆AB作用于杆CD的摩擦力和支持力,3N、4N分别为墙对杆AB和CD的作用力,mg为重力.取杆AB和CD构成的系统为研究对象,系统平衡时, 由平衡条件有431N N f+-=(1)120N mg-=(2)以及对A点的力矩()3411sin sin sin cos cos cos022mgl mg l l N l N l l CFθθαθθα⎛⎫+---+-=⎪⎝⎭即()3431sin sin cos cos cos022mgl mgl N l N l l CFθαθθα---+-=(3)式中CF待求.F是过C的竖直线与过B的水平线的交点,E为BF与CD的交点.由几何关系有sin cot CF l αθ= (4) 取杆CD 为研究对象,由平衡条件有422cos sin 0N N f θθ+-= (5) 22sin cos 0N f mg θθ+-= (6) 以及对C 点的力矩41cos sin 02N l mgl αα-= (7) 解以上各式可得41tan 2N mg α=(8) 331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+ ⎪⎝⎭ (9)13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+ ⎪⎝⎭ (10)12N mg = (11)21sin tan cos 2N mg θαθ⎛⎫=-⎪⎝⎭ (12) 21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13) CD 杆平衡的必要条件为22c f N μ≤ (14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+ (15)AB 杆平衡的必要条件为11A f N μ≤ (16)由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤- (17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得 arctan 0.38521.1α︒≤= (18) 将题给的数据代入(17)式,经数值计算可得19.5α≥︒ (19) 因此,α的取值范围为 19.521.1α≤≤(20)评分标准:本题20分第1问15分(1)、(2)、(3)式共3分,(4)式1分,(5)、(6)、(7)式共3分,(9) 、(10) 式各1分,(12)到(17)式各1分.第2问5分(18)式1分,(19)式3分,(20)式1分. 三、参考解答:'解法一1. 设在时刻t ,小球和圆筒的运动状态如图1所示,小球位于P 点,绳与圆筒的切点为T ,P 到T 的距离即绳的拉直部分的长度为l圆筒的角速度为ω,小球的速度为v .小球的速度可以分解成沿着绳子方向的速度1v 和垂直于绳子方向的速度2v 两个分量.根据机械能守恒定律和角动量守恒定律有()()()()22222001211112222M R m R M R m ωωω+=++v v (1) 2220012+=++MR mR MR mR ml ωωωv v (2)因为绳子不可伸长,1v 与切点T 的速度相等,即ωR =1v (3) 解(1)、(2)、(3)式得()()02222ωωml R m M ml R m M ++-+= (4) ()()022222ωmlR m M l R m M +++=v (5) 由(4)式可得l = (6)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(6)式,当0=ω得=L (7) 这便是绳的总长度L .3.如图2所示,从时刻t 到t t +∆,切点T 跟随圆筒转过一角度1t ωθ∆=∆,由于绳子的拉直部分的长度增加了l ∆,切点相对圆筒又转过一角度2lRθ∆=∆,到达T '处,所以在t ∆时间内,切点转过的角度12lt Rθθωθ∆∆=∆=+∆+∆ (8)切点从T 变到T '也使切线方向改变了一个同样的角度θ∆,而切线方向的改变是小球具有垂直于绳子方向的速度2v 引起的,故有2tlθ∆∆=v (9) 由(1)、(2)、(3)式可得 ()20l ωω=+v (10)2()2t由(8)、(9)、(10)三式得0l R t ω∆=∆ (11) (11)式表示l 随t 均匀增加,故l 由0增加到L所需的时间为0s L t R ω== (12)解法二1.撤去插销后两个小球的运动情况相同,故可取一个小球作为对象进行研究,先研究任何时刻小球的速度.在t 时刻,相对卫星系统质心参考系小球运动状态如图1所示,绳子的拉直部分与圆筒面的切点为T ,小球到切点T 的距离即绳的拉直部分的长度为l ,小球到转轴O 的距离为r ,圆筒的角速度为ω.由于圆筒的转动和小球相对圆筒的运动,绳将展开,切点位置和绳的拉直部分的长度都要改变.首先考察小球相对于圆筒的运动.在t 时刻,OT 与固定在圆筒上的半径0OP 的夹角为φ,如图2所示.由于小球相对圆筒的运动,经过时间t ∆,切点从圆筒上的T 点移到T '点,OT '与0OP 的夹角变为φφ+∆,绳的拉直部分的长度由l 变为l ',小球由P 运动到P ',PP '便是小球相对圆筒的位移.当t ∆很小时l l '≈,故PP l l φφ''=∆≈∆于是小球相对圆筒的速度大小为ll tφφφω∆==∆v (1) 方向垂直于TP .φω是切点相对圆筒转动的角速度. 再考察圆筒相对质心参考系的转动,即与圆筒固连在一起的转动参考系相对质心参考系的运动.当圆筒的角速度为ω时,位于转动参考系中的P 点(小球所在处)相对质心系的速度r ωω=v (2)方向垂直于OP .可以把ωv 分解成沿着TP 方向的分量1ωv 和垂直TP 方向的分量2ωv ,如图3所示,即1R ωω=v(3)2l ωω=v (4)小球相对质心系的速度 v 是小球相对圆筒的速度和圆筒参考系中的P 点相对质心系速度的合成,由图3可得v 的2m12φω+ v大小=v (5)因 l R φ= (6) 故有=v (7)因为系统不受外力作用,故系统的动能和角动量守恒,故有()()222220011112222M R mR M R m ωωω+=+v (8) ()2220012MR mR MR mR ml ωωφωωω+=+++v v v (9)由(7)、(8)两式有()22220mM mφωωωωφ=+++ (10)由(1)、(3)、(4)、(6)、(9)各式得()20mM mφωωφωω=+++ (11) 由(10)、(11)两式得φωωωω+=+0 故有0ωωφ= (12)上式说明绳子与圆筒的切点相对圆筒转动的角速度等于卫星的初始角速度,是一个恒量,将(12)式代入(11)式得φ=(13) 由(6)、(13)两式得l = (14)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(14)式,当0=ω得绳总长度, 即L = (15) 3.因φω是一个恒量,φ随时间的t 的变化规律为t 0ωφ= (16) 当0=ω时,由(13)式可得卫星停旋时的φs φ=(17) 设卫星停转所用的时间为s t ,由(16)、(17)式得0s s t φω==(18) 评分标准:本题25分.解法一第1问12分.(1)、(2)式各3分,(3)式2分,(6)式4分.第2问3分.(7)式3分.第3问10分.(8)、(9)式各3分,(10)式2分,(11)、(12)式各1分.解法二第1问18分.(1)式3分,(2)式2分,(7)式2分,(8)式3分,(9)式3分,(12)式2分,(14)式3分,第2问3分.(15)式3分.第3问4分.(16)式2分,(17)式1分,(18)式1分.四、参考解答:1.根据题意,粒子的初速度只有y 方向和z 方向的分量,设它们为0y v 和0z v .因为粒子在z 方向不受电场力和磁场力作用,故粒子在z 方向以初速度0z v 作匀速运动.粒子在Oxy 面内的运动可以看作由以下两部分运动的合成:可把粒子在y 方向的初速度表示为 001001y y y y =-++v v v v (1) 其中0010y E B =-v (2) 沿y 负方向.与01y v 相关的磁场力 010Bx y f q B =-v (3) 沿x 负方向.粒子受到的电场力0E Ex f f qE == (4)沿x 正方向.由(2)、(3)、(4)式可知,粒子在x 方向受到的电场力和磁场力正好抵消,故粒子以大小为E B 的速度沿y 负方向运动.除此之外,由(1)式可知,粒子还具有初速度00200y y E B =+v v (5) 沿y 正方向,与02y v 相关的磁场力使粒子以速率02y v 在Oxy 面内作匀速圆周运动,以r 表示圆周运动的半径,有202020y y q B mr=v v (6) 可得020y m r qB =v (7)由周期的定义和(7)式可得圆周运动的周期02mT =qB π (8) (8)式表明,粒子运动的周期与粒子在y 方向的初速度无关.经过时间T 或T 的整数倍所考察的粒子就能同时回到Oyz 平面.2.增加的电场2E对粒子在Oxy 平面内的运动无影响,但粒子在z 方向要受到此电场力作用.以z a 表示在此电场力作用下的加速度,有 0c o s z m a q E t ω= (9) 或0cos z qE a =t mω (10) 这是简谐运动的加速度,因而有 2z a =z ω- (11) 由(10)、(11)可得t mqE z ωωcos 102-= (12) 因未增加电场时,粒子在z 方向作初速度为0z v 的匀速运动,增加电场后,粒子在z 方向的运动是匀速运动与简谐运动的叠加,即有0021cos z qE z t t mωω=-v (13)粒子在Oxy 平面内的运动不受电场2E的影响.设0ω为粒子在Oxy 平面内作圆周运动的角速度,则有202πqB T mω== (14) 由图示可得与圆周运动相联系的粒子坐标随时间t 的变化关系()01cos x r t ω'=- (15) 0sin y r t ω'= (16)考虑到粒子在y 方向还具有速度为01y v 的匀速运动,并利用(2)、(5)、(7)、(14)以及己知条件,可得带电粒子的运动规律:000001cos y E qB m x t qB B m ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭v (17) 0000000siny E E qB m y t t B qB B m⎛⎫=-++ ⎪⎝⎭v (18) 00020cos z mE qB z t t qB m=-v (19)评分标准:本题20分.第1问12分.(2)、(3)、(4)式共5分,(5)、(6)、(7)式共4分,(8)式及相关说明共3分.第2问8分.(12)式2分,(14)式到(19)式各1分. 五、答案与评分标准本题15分.1.01TV V L I I e ⎛⎫-- ⎪ ⎪⎝⎭ (2分),L I (2分),0ln 1L T I V I ⎛⎫+ ⎪⎝⎭ (2分),01TVV L VI VI e ⎛⎫-- ⎪ ⎪⎝⎭(1分).2.0.62V (2分);0.54V (2分);49mW (2分);6.0Ω (2分).六、参考解答:在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.1. 设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积02B V V = (1) 根据题意,活塞M 向右移动过程中,B 中气体压强不变,用B T 表示B 室中气体末态的温度,有00BBV V T T =(2)由(1)、(2)式得02B T T = (3)由于隔板N 是导热的,故A 室中气体末态的温度02A T T = (4) 下面计算此过程中的热量m Q .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即 05()2A A Q R T T =- (5) 由(4)、(5)两式得052A Q RT = (6)B 室中气体经历的是等压过程,在过程中B 室气体对外做功为00()B B W p V V =- (7) 由(1)、(7)式及理想气体状态方程得 0B W R T = (8)内能改变为05()2B B U R T T ∆=- (9) 由(4)、(9)两式得052∆=B U RT (10)根据热力学第一定律和(8)、(10)两式,B 室气体吸收的热量为 072=∆+=B B B Q U W RT (11) 由(6)、(11) 两式可知电加热器提供的热量为06m A B Q Q Q RT =+= (12) 若0m Q Q =,B 室中气体末态体积为02V ,A 室中气体的末态温度02T .2.若0m Q Q >,则当加热器供应的热量达到m Q 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量0m Q Q -是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为AT ',有 00055(2)(2)22m AA Q Q R T T R T T ''-=-+- (13) 由(12)、(13)两式可求得00455AQ T T R '=+ (14) B 中气体的末态的体积02BV =V ' (15) 3. 若0m Q Q <,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积BV ''小于02V ,即02BV V ''<.设A 、B 两室中气体末态的温度为A T '',根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量05()2A AQ R T T ''=- (16) B 室中气体经历的是等压过程,吸收热量0005()()2B AB Q R T T p V V ''''=-+- (17)利用理想气体状态方程,上式变为()072B AQ R T T ''=- (18) 由上可知006()A B AQ Q Q R T T ''=+=- (19) 所以A 室中气体的末态温度 006AQ T T R''=+ (20) B 室中气体的末态体积 00000(1)6BA V QV T V T RT ''''==+ (21) 评分标准:本题20分.得到0m Q Q =的条件下(1)、(4)式各1分;(12)式6分,得到0m Q Q >的条件下的(14)式4分,(15)式2分;得到0m Q Q <的条件下的(20)式4分,(21)式2分.七、答案与评分标准:本题20分.1. 3R (3分) 2. 6R (3分)第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分. 八、参考解答:1. 反应能()()332p n H He Q m m m m c ⎡⎤=+-+⎣⎦(1)式中c 为光速.代入数据得0.764MeV Q =- (2) 上式表明这是一吸能核反应.2.为了求入射质子阈能,反应前后各粒子都应沿同一直线运动.设质子的入射速度大小为p v ,反应后32He 的速度大小为3He v ,中子的速度大小为n v ,根据动量守恒和能量守恒有33p p n n He He m m m =+v v v (3)33222p p n n He He 111222m m m Q =++v v v (4)由(3)、(4)式可得3333322n n p p p n22He He n p n p He He He220m m m m m m m m Q m m m ⎛⎫⎛⎫+--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v v v v (5) 令333332n nHe He p n pHe 2p p 2Hep He22m m m a m m m b m m m m c Qm ⎫+⎪=⎪⎪⎪=-⎬⎪⎪-⎪=+⎪⎭v v (6) 把(6)式代入(5)式得2n n 0a b c ++=v v (7)(7)式有解的条件是240b ac -≥ (8)由(6)式可知,c 可能大于零,亦可能小于零.若0c <,则(8)总成立,中子速度一定有解,反应一定能发生;若0c >,则由 (6)、(8)两式得33n 2He p p n pHe 12m m m Q m m m +≥+-v (9) 即只有当入射质子的动能满足(9)式时,中子速度才有解,反应才能发生,所以入射质子的阈能为3pn p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭ (10) 利用(1)式,在忽略2Q 项的情况下,(10)式可简化为 3p H1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(11) 代入有关数据得 1.02MeV th T = (12)3.由动量守恒和能量守恒有33p p n n He He =+m m m v v v (12)33222p p n n He He 111222m m m Q =++v v v (13) 以θ表示反应中产生的中子速度方向与入射质子速度方向的夹角,如图所示,根据余弦定律有 ()()()33222n n p p n p n p He He 2cos m m m m m θ=+-v v v v v (14)令2p p p 12T m =v (15) 2n n n 12T m =v (16) 3332He He He 12=T m v (17) 把(15)、(16)、(17)式代入(13)、(14)两式得3He Q T T T =--p n (18)p p m v33n n p p He He 222m T m T m T θ=+- (19)由(18)、(19)式,消去3He T 后,得()3333p p HeHe n nnHe He 0m m T Q m T m m θ---=+ (20)令3nHe S θ=,()333p p HeHe nHe m m T Q m R m m --=+ (21)得n 20T R -= (22)根据题给的入射质子的动能和第1问求得的反应能Q 的值,由(21)式可知0R >,故(22)式的符合物理意义的S = (23)将具体数据代入(21)、(23)式中,有n 0.132MeV T = (24) (如果得到 131.0=n T MeV ,也是对的.)第2问的其他解法解法一为了研究阈能,只考虑碰撞前后各粒子都沿同一直线运动的情况.若碰撞后32He 和中子的速度相同,即粘在一起运动(完全非弹性碰撞),则在碰撞过程中损失的机械能最多,若所损失的机械能正好等于反应能,则入射质子的动能最小,这最小动能便是阈能. 设质子的入射速度大小为p v ,反应后32He 和中子的速度大小为v ,根据动量守恒和能量守恒有3p p n He ()m m m =+v v (1)322p p n He 11()22m m m Q =++v v (2) 由(1)、(2)式可得 33n 2He p p n pHe 12m m m Q m m m +=+-v (3) 所以阈能为3p n p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭(4) 利用第1问中的(1)式,并注意到32H 1<<Q m c有333332n pHe H H 2H H 11111⎛⎫==- ⎪ ⎪+-⎛⎫⎝⎭+⎪ ⎪⎝⎭Q m m m m m c Q m m c 在忽略2Q 项的情况下,(4)式可简化为 3p H 1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(5) 代入有关数据得 1.02M e Vth T = (6)第2问8分(1)、(2)式各3分,(4)式或(5)式1分,(6)式1分. 解法二在牛顿力学中可以证明,质点系的总动能可以表示为质点系的总质量以质心速度运动的动能即所谓质心动能与各质点相对质心运动的动能之和.若质点系不受外力作用,则质点系的动量守恒,质心速度不变,故质心动能亦恒定不变;如果质点系内部的相互作用导致质点系机械能的变化,则可变化的机械能只能是各质点相对质心运动的动能. 在本题中,如果质子p 与氚31H 发生反应后,生成的中子n 和氦32He 相对质心都静止,则质子p 与氚31H相对质心运动的动能之和全部转化成反应能,反应后系统的动能只有质心的动能,在这请况下,转化成其他形式能量的机械能最多,入射质子的动能最小,这最小动能便是阈能.所以入射质子的阈能等于系统质心的动能与反应能之和.以p 'v 和3H 'v 分别表示质子p 和氚31H 相对质心的速度,有3322p p H H 1122Q =m m ''+v v (1) 因系统质心的速度 3p p c p H=+m m m v v (2)而33p H p p c p Hm m '=-=+v v v v m (3) 33p p c Hp H0m m '=-=-+v v v m (4)由(1)、(3)、(4)式得 332H p pp H12m Q m m m =+v (5) 在牛顿力学中,系统的总质量是恒定不变的,这就导致系统质心的动能在反应前后恒定不变的结论,但在本题中,损失掉的机械能导致系统总质量的变化,使反应前系统的总质量与反应后系统的总质量不相等,即33p n H He +≠+m m m m .如果仍沿用牛顿力学的结论,对一个孤立系统,其质心速度是不会改变的,故反应后质心的动能应为 ()()33222c n c p c c 2He H 111222=+=++Q E m m m m cv v v 而 ()33322p p p 2c 2222p H Hp HQ 1122m m Q QQ c c c m m m m m =⋅=⋅⋅++v v 由此可见,在忽略2Q 的条件下 ()()3322n p He H 1122c c m m m m +=+v v 而入射质子的阀能 ()32p H 12th c T m m Q =++v (6) 由(2)、(5)、(6)式得 3p H 1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(7) 代入有关数据得 1.02MeV th T = (8)第2问8分(1)、(5) 、(6)式各2分, (7)式1分,、(8)式1分. 解法三考虑反应前后各粒子都沿同一直线运动的情况,若入射质子与与静止的31H 发生完全非弹性碰撞,即反应后产生的中子和32He 以相同的速度运动,则入射质子的动能就是阈能.以10m 表示质子的静止质量,20m 表示31H 的静止质量,30m 表示中子的静止质量,40m 表示31He 的静止质量,设质子的入射速度大小为p v ,反应后32He 和中子的速度大小都为v ,根据动量守恒和能量守恒有1pm m m +=v(1)222120m m c m c m c++=(2)式中1m 是质子的动质量.由(1)、(2)两式得 1p 120+m m m v v =(3)把(3)式代入(1)式,经整理得 ()()2222221201p 3040+-=+m m c m m m c v (4)由 1m =(5)可得221p221102-=m m m cv (6)若入射质子的阈能为th E ,有22110th m c m c E =+ (7) 由(4)、(6)、(7)式可得 ()()2230401020202thm m m m E m +-+= (8)利用题给条件并引入反应能,得 333p n H HeH2th m m m m E Q m +++=(9)或有 ()3333p 2H p H H H22th Q+m m m m c E Q Q m m ++=≈ (10)代入有关数据得 1.02M e Vth T = (11) 第2问8分(1)、(2) 、(8)式各2分, (9)或(10)式1分, (11)式1分。
第28届全国中学生物理竞赛决赛试题及答案.
第28届全国中学生物理竞赛决赛试题一、(15分)在竖直面内将一半圆形光滑导轨固定在A 、B 两点,导轨直径AB =2R ,AB 与竖直方向间的夹角为60°,在导轨上套一质量为m 的光滑小圆环,一劲度系数为k 的轻而细的光滑弹性绳穿过圆环,其两端系与A 、B 两点,如图28决—1所示。
当圆环位于A 点正下方C 点时,弹性绳刚好为原长。
现将圆环从C 点无初速度释放,圆环在时刻t 运动到C'点,C'O 与半径OB 的夹角为θ,重力加速度为g .试求分别对下述两种情形,求导轨对圆环的作用力的大小:(1)θ=90°(2)θ=30°二、(15分)如图28决—2所示,在水平地面上有一质量为M 、长度为L 的小车,车内两端靠近底部处分别固定两个弹簧,两弹簧位于同一直线上,其原长分别为l 1和l 2,劲度系数分别为k 1和k 2;两弹簧的另一端分别放着一质量为m 1、m 2的小球,弹簧与小球都不相连。
开始时,小球1压缩弹簧1并保持整个系统处于静止状态,小球2被锁定在车底板上,小球2与小车右端的距离等于弹簧2的原长。
现无初速释放小球1,当弹簧1的长度等于其原长时,立即解除对小球2的锁定;小球1与小球2碰撞后合为一体,碰撞时间极短。
已知所有解除都是光滑的;从释放小球1到弹簧2达到最大压缩量时,小车移动力距离l 3.试求开始时弹簧1的长度l 和后来弹簧2所达到的最大压缩量Δl 2.三、(20分)某空间站A 绕地球作圆周运动,轨道半径为r A =6.73×106m.一人造地球卫星B 在同一轨道平面内作圆周运动,轨道半径为r B =3r A /2,A 和B 均沿逆时针方向运行。
现从空间站上发射一飞船(对空间站无反冲)前去回收该卫星,为了节省燃料,除了短暂的加速或减速变轨过程外,飞船在往返过程中均采用同样形状的逆时针椭圆转移轨道,作无动力飞行。
往返两过程的椭圆轨道均位于空间站和卫星的圆轨道平面内,且近地点和远地点都分别位于空间站和卫星的轨道上,如图28决—3所示。
2011年第28届CPhO复赛试题+答案
第28届全国中学生物理竞赛复赛试题2011 一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。
1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。
经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3•kg-1•s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA,B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l.(1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。
(2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。
但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。
减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图。
设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。
图中O是圆筒的对称轴。
两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。
正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。
卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。
2011年第28届全国中学生物理竞赛复赛试题及答案
一、参考解答:解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b+= (1) a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4)由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为 s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) SPP θPr ab O0P xy 图1得s 21P P Gm r a=⋅-v (12) 代入有关数据得414.3910m s P -⨯⋅v = (13) 设P 点速度方向与0SP 的夹角为ϕ(见图2),根据开普勒第二定律[]sin 2P P P r ϕθσ-=v (14)其中σ为面积速度,并有πab Tσ= (15)由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ= (16)解法二取极坐标,极点位于太阳S 所在的焦点处,由S 引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r 、θ表示彗星的椭圆轨道方程为1cos pr e θ=+ (1)其中,e 为椭圆偏心率,p 是过焦点的半正焦弦,若椭圆的半长轴为a ,根据解析几何可知()21p a e =- (2)将(2)式代入(1)式可得()θcos 112e e a r +-= (3)以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(4) 在近日点0=θ,由(3)式可得图2SPP θPr abOP xyϕ1r e a=-(5)将P θ、a 、e 的数据代入(3)式即得0.895AU P r = (6)可以证明,彗星绕太阳作椭圆运动的机械能 s2Gmm E =a-(7) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (8) 可得21P s P Gm r a=⋅-v (9) 代入有关数据得414.3910m s P -⨯⋅v = (10) 设P 点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v ,再根据角动量守恒定律,有()sin P P P r r ϕθ-=v v 00 (11)根据(8)式,同理可得21s Gm r a=⋅-00v (12) 由(6)、(10)、(11)、(12)式并代入其它有关数据 127ϕ= (13)评分标准:本题20分 解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分.二、参考解答:1.建立如图所示坐标系Oxy .两杆的受力情况如图:1f 为地面作用于杆AB 的摩擦力,1N 为地面对杆AB 的支持力,2f 、2N 为杆AB 作用于杆CD 的摩擦力和支持力,3N 、4N 分别为墙对杆AB 和CD 的作用力,mg 为重力.取杆AB 和CD 构成的系统为研究对象,系统平衡时, 由平衡条件有4310N N f +-= (1) 120N mg -= (2)以及对A 点的力矩()3411sin sin sin cos cos cos 022mgl mg l l N l N l l CF θθαθθα⎛⎫+---+-= ⎪⎝⎭即()3431sin sin cos cos cos 022mgl mgl N l N l l CF θαθθα---+-= (3) 式中CF 待求.F 是过C 的竖直线与过B 的水平线的交点,E 为BF 与CD 的交点.由几何关系有 sin cot CF l αθ= (4) 取杆CD 为研究对象,由平衡条件有422cos sin 0N N f θθ+-= (5)22sin cos 0N f mg θθ+-= (6) 以及对C 点的力矩41cos sin 02N l mgl αα-= (7) 解以上各式可得θαB D CAN 1 N 2E mgmgf 2F Oyf 1N 4N 3x41tan 2N mg α=(8) 331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+⎪⎝⎭(9) 13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+⎪⎝⎭(10) 12N mg = (11)21sin tan cos 2N mg θαθ⎛⎫=-⎪⎝⎭ (12) 21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13) CD 杆平衡的必要条件为22c f N μ≤ (14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+ (15)AB 杆平衡的必要条件为11A f N μ≤ (16)由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤- (17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得arctan 0.38521.1α︒≤= (18) 将题给的数据代入(17)式,经数值计算可得19.5α≥︒ (19)因此,α的取值范围为19.521.1α≤≤ (20)评分标准:本题20分 第1问15分(1)、(2)、(3)式共3分,(4)式1分,(5)、(6)、(7)式共3分,(9) 、(10) 式各1分,(12)到(17)式各1分.第2问5分(18)式1分,(19)式3分,(20)式1分.三、参考解答: 解法一1. 设在时刻t ,小球和圆筒的运动状态如图1所示,小球位于P 点,绳与圆筒的切点为T ,P 到T 的距离即绳的拉直部分的长度为l ,圆筒的角速度为ω,小球的速度为v .小球的速度可以分解成沿着绳子方向的速度1v 和垂直于绳子方向的速度2v 两个分量.根据机械能守恒定律和角动量守恒定律有()()()()22222001211112222M R m R M R m ωωω+=++v v (1) 2220012+=++MR mR MR mR ml ωωωv v (2)因为绳子不可伸长,1v 与切点T 的速度相等,即ωR =1v (3) 解(1)、(2)、(3)式得()()02222ωωml R m M ml R m M ++-+= (4)()()022222ωmlR m M lR m M +++=v (5) 由(4)式可得00M m l Rm ωωωω-+=+ (6)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(6)式,当0=ω得+=M mL Rm (7)这便是绳的总长度L .3.如图2所示,从时刻t 到t t +∆,切点T 跟随2vv图1TOP1v T ' T1θ∆ ()2t v ll l +∆ O2θ∆OPφφ∆ T T 'l 'P 'Pl圆筒转过一角度1t ωθ∆=∆,由于绳子的拉直部分的长度增加了l ∆,切点相对圆筒又转过一角度2lRθ∆=∆,到达T '处,所以在t ∆时间内,切点转过的角度 12lt Rθθωθ∆∆=∆=+∆+∆ (8) 切点从T 变到T '也使切线方向改变了一个同样的角度θ∆,而切线方向的改变是小球具有垂直于绳子方向的速度2v 引起的,故有2tlθ∆∆=v (9) 由(1)、(2)、(3)式可得()20l ωω=+v (10) 由(8)、(9)、(10)三式得0l R t ω∆=∆ (11) (11)式表示l 随t 均匀增加,故l 由0增加到L 所需的时间为 001s L M mt R mωω+== (12)解法二1.撤去插销后两个小球的运动情况相同,故可取一个小球作为对象进行研究,先研究任何时刻小球的速度.在t 时刻,相对卫星系统质心参考系小球运动状态如图1所示,绳子的拉直部分与圆筒面的切点为T ,小球到切点T 的距离即绳的拉直部分的长度为l ,小球到转轴O 的距离为r ,圆筒的角速度为ω.由于圆筒的转动和小球相对圆筒的运动,绳将展开,切点位置和绳的拉直部分的长度都要改变.首先考察小球相对于圆筒的运动.在t 时刻,OT 与固定在圆筒上的半径0OP 的夹角为φ,如图2所示.由于小球相对圆筒的运动,经过时间t ∆,切点从圆筒上的T 点移到T '点,2m2mOQ 'QωT Rl r0P图10P 'OT '与0OP 的夹角变为φφ+∆,绳的拉直部分的长度由l 变为l ',小球由P 运动到P ',PP '便是小球相对圆筒的位移.当t ∆很小时l l '≈,故PP l l φφ''=∆≈∆于是小球相对圆筒的速度大小为l l tφφφω∆==∆v (1) 方向垂直于TP .φω是切点相对圆筒转动的角速度.再考察圆筒相对质心参考系的转动,即与圆筒固连在一起的转动参考系相对质心参考系的运动.当圆筒的角速度为ω时,位于转动参考系中的P 点(小球所在处)相对质心系的速度r ωω=v (2) 方向垂直于OP .可以把ωv 分解成沿着TP 方向的分量1ωv 和垂直TP 方向的分量2ωv ,如图3所示,即1R ωω=v (3)2l ωω=v (4) 小球相对质心系的速度v 是小球相对圆筒的速度和圆筒参考系中的P 点相对质心系速度的合成,由图3可得v 的大小()2212ωωφ=++v v v v (5)因l R φ= (6) 故有()222R φωωωφ=++v (7)因为系统不受外力作用,故系统的动能和角动量守恒,故有()()222220011112222M R mR M R m ωωω+=+v (8) ()2220012MR mR MR mR ml ωωφωωω+=+++v v v (9)由(7)、(8)两式有φT P rl φv2ωv1ωvωv v图32φω+v vOR0P()22220mM mφωωωωφ=+++ (10)由(1)、(3)、(4)、(6)、(9)各式得()20mM mφωωφωω=+++ (11)由(10)、(11)两式得φωωωω+=+0故有0ωωφ= (12)上式说明绳子与圆筒的切点相对圆筒转动的角速度等于卫星的初始角速度,是一个恒量,将(12)式代入(11)式得00M m m ωωφωω⎛⎫+-=⎪+⎝⎭(13) 由(6)、(13)两式得00M m l Rm ωωωω⎛⎫+-= ⎪+⎝⎭(14) 这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(14)式,当0=ω得绳总长度, 即M mL Rm+= (15) 3.因φω是一个恒量,φ随时间的t 的变化规律为t 0ωφ= (16)当0=ω时,由(13)式可得卫星停旋时的φs M mmφ+=(17) 设卫星停转所用的时间为s t ,由(16)、(17)式得001s s t M mmφωω==+ (18) 评分标准:本题25分. 解法一第1问12分.(1)、(2)式各3分,(3)式2分,(6)式4分; 第2问3分.(7)式3分;第3问10分.(8)、(9)式各3分,(10)式2分,(11)、(12)式各1分. 解法二第1问18分.(1)式3分,(2)式2分,(7)式2分,(8)式3分,(9)式3分,(12)式2分,(14)式3分;第2问3分.(15)式3分.第3问4分.(16)式2分,(17)式1分,(18)式1分.四、参考解答:1.根据题意,粒子的初速度只有y 方向和z 方向的分量,设它们为0y v 和0z v .因为粒子在z 方向不受电场力和磁场力作用,故粒子在z 方向以初速度0z v 作匀速运动.粒子在Oxy 面内的运动可以看作由以下两部分运动的合成:可把粒子在y 方向的初速度表示为 001001y y y y =-++v v v v (1) 其中010y E B =-v (2) 沿y 负方向.与01y v 相关的磁场力010Bx y f q B =-v (3) 沿x 负方向.粒子受到的电场力0E Ex f f qE == (4) 沿x 正方向.由(2)、(3)、(4)式可知,粒子在x 方向受到的电场力和磁场力正好抵消,故粒子以大小为E B 的速度沿y 负方向运动.除此之外,由(1)式可知,粒子还具有初速度 00200y y E B =+v v (5) 沿y 正方向,与02y v 相关的磁场力使粒子以速率02y v 在Oxy 面内作匀速圆周运动,以r 表示圆周运动的半径,有202020y y q B mr=v v (6)可得020y m r qB =v (7)由周期的定义和(7)式可得圆周运动的周期2mT =qB π (8) (8)式表明,粒子运动的周期与粒子在y 方向的初速度无关.经过时间T 或T 的整数倍所考察的粒子就能同时回到Oyz 平面.2.增加的电场2E对粒子在Oxy 平面内的运动无影响,但粒子在z 方向要受到此电场力作用.以z a 表示在此电场力作用下的加速度,有0cos z ma qE t ω= (9) 或cos z qE a =t mω (10) 这是简谐运动的加速度,因而有2z a =z ω- (11)由(10)、(11)可得t mqE z ωωcos 102-= (12)因未增加电场时,粒子在z 方向作初速度为0z v 的匀速运动,增加电场后,粒子在z 方向的运动是匀速运动与简谐运动的叠加,即有021cos z qE z t t mωω=-v (13)粒子在Oxy 平面内的运动不受电场2E 的影响.设0ω为粒子在Oxy 平面内作圆周运动的角速度,则有02πqB T mω== (14) 由图示可得与圆周运动相联系的粒子坐标随时间t 的变化关系()01cos x r t ω'=- (15)0sin y r t ω'= (16)考虑到粒子在y 方向还具有速度为01y v 的匀速运动,并利用(2)、(5)、(7)、(14)以及己知条件,可得带电粒子的运动规律:yOr0tω02y vx000001cos y E qB m x t qB B m ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭v (17) 0000000sin y E E qB m y t t B qB B m⎛⎫=-++ ⎪⎝⎭v (18) 00020cos z mE qB z t t qB m=-v (19) 评分标准:本题20分.第1问12分.(2)、(3)、(4)式共5分,(5)、(6)、(7)式共4分,(8)式及相关说明共3分;第2问8分.(12)式2分,(14)式到(19)式各1分. 五、答案与评分标准本题15分.1.01TV V L I I e ⎛⎫-- ⎪ ⎪⎝⎭ (2分),L I (2分),0ln 1L T I V I ⎛⎫+ ⎪⎝⎭ (2分),01TVV L VI VI e ⎛⎫-- ⎪ ⎪⎝⎭(1分).2.0.62V (2分);0.54V (2分);49mW (2分);6.0Ω (2分).六、参考解答:在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.1. 设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积02B V V = (1)根据题意,活塞M 向右移动过程中,B 中气体压强不变,用B T 表示B 室中气体末态的温度,有00BBV V T T = (2) 由(1)、(2)式得02B T T = (3)由于隔板N 是导热的,故A 室中气体末态的温度02A T T = (4) 下面计算此过程中的热量m Q .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即05()2A A Q R T T =- (5) 由(4)、(5)两式得052A Q RT =(6) B 室中气体经历的是等压过程,在过程中B 室气体对外做功为00()B B W p V V =- (7)由(1)、(7)式及理想气体状态方程得0B W RT = (8) 内能改变为05()2B B U R T T ∆=- (9) 由(4)、(9)两式得052∆=B U RT (10) 根据热力学第一定律和(8)、(10)两式,B 室气体吸收的热量为072=∆+=B B B Q U W RT (11) 由(6)、(11) 两式可知电加热器提供的热量为06m A B Q Q Q RT =+= (12)若0m Q Q =,B 室中气体末态体积为02V ,A 室中气体的末态温度02T .2.若0m Q Q >,则当加热器供应的热量达到m Q 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量0m Q Q -是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为AT ',有00055(2)(2)22m AA Q Q R T T R T T ''-=-+- (13) 由(12)、(13)两式可求得00455AQ T T R '=+ (14) B 中气体的末态的体积02BV =V ' (15) 3. 若0m Q Q <,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积B V ''小于02V ,即02BV V ''<.设A 、B 两室中气体末态的温度为A T '',根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量05()2A AQ R T T ''=- (16) B 室中气体经历的是等压过程,吸收热量 0005()()2B AB Q R T T p V V ''''=-+- (17) 利用理想气体状态方程,上式变为()072B AQ R T T ''=- (18) 由上可知006()A B AQ Q Q R T T ''=+=- (19) 所以A 室中气体的末态温度06AQ T T R''=+ (20) B 室中气体的末态体积00000(1)6BAV QV T V T RT ''''==+ (21) 评分标准:本题20分.得到0m Q Q =的条件下(1)、(4)式各1分;(12)式6分,得到0m Q Q >的条件下的(14)式4分,(15)式2分;得到0m Q Q <的条件下的(20)式4分,(21)式2分.七、答案与评分标准:本题20分.1. 3R (3分) 2. 6R (3分) 3.2I 与L 的距离2I 在L 左方还是右方 2I 的大小2I 是正立还是倒立 2I 是实像还是虚像6R右方2h倒立虚像第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分. 4.3I 与L 的距离3I 在L 左方还是右方3I 的大小3I 是正立还是倒立3I 是实像还是虚像18R左方2h倒立实像第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分.八、参考解答:1. 反应能()()332p n H He Q m m m m c ⎡⎤=+-+⎣⎦(1) 式中c 为光速.代入数据得0.764MeV Q =- (2) 上式表明这是一吸能核反应.2.为了求入射质子阈能,反应前后各粒子都应沿同一直线运动.设质子的入射速度大小为p v ,反应后32He 的速度大小为3He v ,中子的速度大小为n v ,根据动量守恒和能量守恒有33p p n n He He m m m =+v v v (3)33222p p n n He He 111222m m m Q =++v v v (4)由(3)、(4)式可得3333322n n p p p n22He He n p n p He He He220m m m m m m m m Q m m m ⎛⎫⎛⎫+--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v v v v (5) 令333332n nHe He p n pHe 2p p 2Hep He22m m m a m m m b m m m m c Qm ⎫+⎪=⎪⎪⎪=-⎬⎪⎪-⎪=+⎪⎭v v (6) 把(6)式代入(5)式得2n n 0a b c ++=v v (7)(7)式有解的条件是240b ac -≥ (8) 由(6)式可知,c 可能大于零,亦可能小于零.若0c <,则(8)总成立,中子速度一定有解,反应一定能发生;若0c >,则由 (6)、(8)两式得33n 2He p p n pHe 12m m m Q m m m +≥+-v (9)即只有当入射质子的动能满足(9)式时,中子速度才有解,反应才能发生,所以入射质子的阈能为3pn p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭(10) 利用(1)式,在忽略2Q 项的情况下,(10)式可简化为3pH1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(11) 代入有关数据得1.02MeV th T = (12)3.由动量守恒和能量守恒有33p p n n He He =+m m m v v v (12)33222p p n n He He111222m m m Q =++v v v (13) 以θ表示反应中产生的中子速度方向与入射质子速度方向的夹θp p m vn n m v 33He He m v角,如图所示,根据余弦定律有 ()()()33222n n p p n p n p He He 2cos m m m m m θ=+-v v v v v (14)令2p p p 12T m =v (15) 2n n n 12T m =v (16) 3332He He He12=T m v (17) 把(15)、(16)、(17)式代入(13)、(14)两式得3He Q T T T =--p n (18)33n n p p n n p p He He 222222cos m T m T m T m T m T θ=+-⋅ (19)由(18)、(19)式,消去3He T 后,得()3333p p n p p HeHe n nnnHe He 2cos 0m m T Q m m m T T T m m m m θ---⋅-=++ (20)令 3n p p nHe cos m m T S m m θ=+,()333p p HeHe nHe m m T Q m R m m --=+ (21)得n n 20T S T R --= (22)根据题给的入射质子的动能和第1问求得的反应能Q 的值,由(21)式可知0R >,故(22)式的符合物理意义的解为2n T S S R =++ (23)将具体数据代入(21)、(23)式中,有n 0.132MeV T = (24) (如果得到 131.0=n T MeV,也是对的.)第2问的其他解法解法一为了研究阈能,只考虑碰撞前后各粒子都沿同一直线运动的情况.若碰撞后32He 和中子的速度相同,即粘在一起运动(完全非弹性碰撞),则在碰撞过程中损失的机械能最多,若所损失的机械能正好等于反应能,则入射质子的动能最小,这最小动能便是阈能. 设质子的入射速度大小为p v ,反应后32He 和中子的速度大小为v ,根据动量守恒和能量守恒有3p p n He ()m m m =+v v (1) 322p p n He 11()22m m m Q =++v v (2) 由(1)、(2)式可得33n 2He p p n pHe 12m m m Q m m m +=+-v (3)所以阈能为3pn p He 1th m T Q m m m ⎛⎫=+ ⎪ ⎪+-⎝⎭(4) 利用第1问中的(1)式,并注意到 32H 1<<Q m c有333332n pHe H H 2H H 11111⎛⎫==- ⎪ ⎪+-⎛⎫⎝⎭+ ⎪ ⎪⎝⎭Q m m m m m c Q m m c 在忽略2Q 项的情况下,(4)式可简化为3pH1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(5) 代入有关数据得1.02MeV th T = (6)第2问8分(1)、(2)式各3分,(4)式或(5)式1分,(6)式1分. 解法二在牛顿力学中可以证明,质点系的总动能可以表示为质点系的总质量以质心速度运动的动能即所谓质心动能与各质点相对质心运动的动能之和.若质点系不受外力作用,则质点系的动量守恒,质心速度不变,故质心动能亦恒定不变;如果质点系内部的相互作用导致质点系机械能的变化,则可变化的机械能只能是各质点相对质心运动的动能. 在本题中,如果质子p 与氚31H 发生反应后,生成的中子n 和氦32He 相对质心都静止,则质子p 与氚31H 相对质心运动的动能之和全部转化成反应能,反应后系统的动能只有质心的动能,在这请况下,转化成其他形式能量的机械能最多,入射质子的动能最小,这最小动能便是阈能.所以入射质子的阈能等于系统质心的动能与反应能之和.以p 'v 和3H 'v 分别表示质子p 和氚31H 相对质心的速度,有3322p p H H 1122Q =m m ''+v v (1) 因系统质心的速度3p p c p H=+m m m v v (2)而33p H p p c p Hm m '=-=+v v v v m (3)33p pc H p H0m m '=-=-+v v v m (4)由(1)、(3)、(4)式得332H p pp H12m Q m m m =+v (5) 在牛顿力学中,系统的总质量是恒定不变的,这就导致系统质心的动能在反应前后恒定不变的结论,但在本题中,损失掉的机械能导致系统总质量的变化,使反应前系统的总质量与反应后系统的总质量不相等,即33p n H He +≠+m m m m .如果仍沿用牛顿力学的结论,对一个孤立系统,其质心速度是不会改变的,故反应后质心的动能应为 ()()33222c n c p c c 2He H 111222=+=++Q E m m m m c v v v 而()33322p p p 2c 2222p H Hp HQ 1122m m Q QQ c c c m m m m m =⋅=⋅⋅++v v 由此可见,在忽略2Q 的条件下()()3322n p He H 1122c c m m m m +=+v v 而入射质子的阀能()32p H 12th c T m m Q =++v (6) 由(2)、(5)、(6)式得3pH1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(7) 代入有关数据得1.02MeV th T = (8)第2问8分(1)、(5) 、(6)式各2分, (7)式1分,、(8)式1分. 解法三考虑反应前后各粒子都沿同一直线运动的情况,若入射质子与与静止的31H 发生完全非弹性碰撞,即反应后产生的中子和32He 以相同的速度运动,则入射质子的动能就是阈能.以10m 表示质子的静止质量,20m 表示31H 的静止质量,30m 表示中子的静止质量,40m 表示31He 的静止质量,设质子的入射速度大小为p v ,反应后32He 和中子的速度大小都为v ,根据动量守恒和能量守恒有()30401p221m m m c+=-v v v (1) ()2304022120221m m c m c m cc ++=-v(2)式中1m 是质子的动质量.由(1)、(2)两式得 1p 120+m m m v v = (3)把(3)式代入(1)式,经整理得()()2222221201p 3040+-=+m m c m m m c v (4)由1012p 21m m c=-v (5)可得221p221102-=m m m c v (6)若入射质子的阈能为th E ,有22110th m c m c E =+ (7)由(4)、(6)、(7)式可得()()2230401020202th m m m m E m +-+=(8)利用题给条件并引入反应能,得 333p n H HeH2th m m m m E Q m +++= (9)或有()3333p 2H p H H H22th Q+m m m m c E Q Q m m ++=≈ (10)代入有关数据得1.02MeV th T = (11)第2问8分(1)、(2) 、(8)式各2分, (9)或(10)式1分, (11)式1分.。
21---30届全国物理竞赛力学部分复赛试题
(第20届全国中学生物理竞赛复赛题)有人提出了一种不用火箭发射人造地球卫星的设想.其设想如下:沿地球的一条弦挖一通道,如图所示.在通道的两个出口处A和B,分别将质量为M的物体和质量为m的待发射卫星同时自由释放,只要M比m足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小.这样待发卫星便有可能绕地心运动,成为一个人造卫星.若人造卫星正好沿地球表面绕地心做圆周运动,则地心到该通道的距离为多少?己知M=20m,地球半径0R =6400 km.假定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的.(第20届全国中学生物理竞赛复赛题)有一半径为R的圆柱A,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A相同,半径为r的较细圆柱B,用手扶着圆柱A,将B 放在A的上面,并使之与墙面相接触,如图所示,然后放手.己知圆柱A与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B与墙面间的静摩擦系数和圆柱B的半径r的值各应满足什么条件?(第20届全国中学生物理竞赛复赛题)如图所示,将一铁饼状小物块在离地面高为h 处沿水平方向以初速v 抛出.己知物块碰地弹起时沿竖直方向的分速度的大小与碰前沿竖直方向的分速度的大小之比为e (<1).又知沿水平方向物块与地面之间的滑动摩擦系数为μ(≠0):每次碰撞过程的时间都非常短,而且都是“饼面”着地.求物块沿水平方向运动的最远距离.(第21届全国中学生物理竞赛复赛题)二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.已知轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测定太空中某星体与地心在某时刻的距离.(最后结果要求用测得量和地球半径R 表示)(第21届全国中学生物理竞赛复赛题)如图所示,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上(图中纸面),A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式”的(不能对小球产生垂直于杆方向的作用力).已知杆AB 与BC 的夹角为 ,< /2.DE 为固定在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,已知在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.(第22届全国中学生物理竞赛复赛题)图中的AOB 是游乐场中的滑道模型,它位于竖直平面内,由两个半径都是R 的1/4圆周连接而成,它们的圆心1O 、2O 与两圆弧的连接点O 在同一竖直线上.B O 2沿水池的水面.一小滑块可由弧AO 的任意点从静止开始下滑. 1.若小滑块从开始下滑到脱离滑道过程中,在两个圆弧上滑过的弧长相等,则小滑块开始下滑时应在圆弧AO 上的何处?(用该处到1O 的连线与竖直线的夹角表示).2.凡能在O 点脱离滑道的小滑块,其落水点到2O 的距离如何?O 1O 2O ABABCπ-αDE(第22届全国中学生物理竞赛复赛题) 如图所示,在一个劲度系数为 k 的轻质弹簧两端分别拴着一个质量为 m 的小球A 和质量为 2m 的小球B .A 用细线拴住悬挂起来,系统处于静止状态,此时弹簧长度为l .现将细线烧断,并以此时为计时零点,取一相对地面静止的、竖直向下为正方向的坐标轴Ox ,原点O 与此时A 球的位置重合如图.试求任意时刻两球的坐标.(第23届全国中学生物理竞赛复赛题)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28届全国中学生物理竞赛复赛试题
2011
一、(20分)如图28复—1所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年。
1986年它过近日点P 0时,与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离。
经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°.已知:1AU=1.50×1011m ,引力常量G =6.67×10-11m 3•kg -1•s -2,太阳质量m S =1.99×1030kg.试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB 、CD 如图28复—2放置,A 点与水平地面接触,与地面间的静摩擦因数为μA ,B 、D 两点与光滑竖直墙面接触,杆A B 和CD 接触处的静摩擦因数为μC ,两杆的质量均为m ,长度均为l .
(1)已知系统平衡时AB 杆与墙面夹角θ,求CD 杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。
(2)若μA =1.00,μC =0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。
图28复—
1
图28复—2
三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。
但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。
减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图8复—3所示。
设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。
图中O是圆筒的对称轴。
两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。
正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。
卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。
当卫星转速逐渐减小到零时,立即使绳与卫星脱离,接触小球与卫星的联系,于是卫星停止转动。
已知此时绳与圆筒的相切点刚好在Q、Q'处。
试求:
(1)当卫星角速度减至ω时绳拉直部分的长度l;
(2)绳的总长度L;
(3)卫星从ω0到停转所经历的时间t.
m
/2
图28复—3
四、(20分)空间某区域存在匀强电场和匀强磁场,在此区域建立直角坐标系O -xyz ,如图8复—4所示。
匀强电场沿x 方向,电场强度10E E i =,匀强磁场沿z 方向,磁感应强度0B B k =,E 0、B 0为已知常量,i 、k 分别为x 方向和z 方向的单位矢量。
(1)有一束带电量都为正q 、质量都为m 的粒子,同时从Oyz 平面内的某点射出,它们的初速度均在Oyz 平面内,速度的大小和方向各不相同。
问经过多少时间这些粒子又能同时回到Oyz 平面内。
(2)现在该区域内再增加一个沿z 方向随时间变化的匀强电场,电场强度20(cos )E E t k ω=,式中ω=qB 0
m .若有
一电荷量为正q 、质量为m 的粒子,在t =0时刻从坐标原点O 射出,初速度0v 在Oyz 平面内,试求以后此粒子的坐标随时间变化的规律。
(不计粒子所受重力以及各带电粒子之间的相互作用,也不考虑变化的电场产生的磁场)
五、(15分)半导体PN 结太阳能电池是根据光生伏打效应工作的。
当有光照射PN 结时,PN 结两端会产生电势差,这就是光生伏打效应。
当PN 结两端接有负载时,光照使PN 结内部产生由负极指向正极的电流即光电流,照射光的强度恒定时,光电流也是恒定的,已知该光电流为I L ;同时,PN 结又是一个二极管,当有电流通过负载时,负载两端的电压V 使二极管正向导通,其电流为0(1)T V V D I I e =-式中V T 和I 0在一定条件下均为已知常数。
(1)在照射光的强度不变时,通过负载的电流I 与负载两端的电压V 的关系式I = .
太阳能电池的z
短路电流I S = ,开路电压V OC = .负载功率P = . (2)已知一硅PN 结太阳能电池的I L =95mA ,I 0=4.1×10-9mA ,V T =0.026V .则此太阳能电池的开路电压V OC = V .若太阳能电池输出功率最大时,伏在两端的电压可近似表示为0
1ln
1L mP T OC T
I I V V V V +=+,则V mP = V .太阳能电池输出的最大功率
P max = mW.若负载为欧姆电阻,则输出最大功率时,负载电阻R = Ω.
六、(20分)如图28复—6所示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔与大气相通,大气的压强为P 0.用一热容量可忽略的导热隔板N 和一绝热活塞M 将气缸分为A 、B 、C 三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气。
气缸的左端A 室中有一电加热器Ω.已知在A 、B 室中均盛有一摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A 、B 两室中气体的温度均为T 0,A 、B 、C 三室的体积均为V 0.现通过电加热器对A 室中气体缓慢加热,若提供的总热量为Q 0,试求B 室中气体的末态体积和A 室中气体的末态温度。
(设A 、B 两室中气体1摩尔的内能为U =52
RT ,式中R 为普适气体常量,T 为绝对温度)
图28复—
6
图28复—5
七、(20分)如图28复—7所示,L是一焦距为2R的薄凸透镜,MN为其主光轴。
在L的右侧与它共轴地放置两个半径皆为R的很薄的球面镜A和B.每个球面镜的凹面和凸面都是能反光的镜面。
A、B顶点间的距离3R/2.在B的顶点C处开一个透光的小圆孔(圆心为C),圆孔的直径为h.现于凸透镜L左方距L为6R处放一与主轴垂直的高度也为h(h<<R)的细短杆PQ(P点在主轴上).PQ发出的光经L后,其中一部分穿过B上的小圆孔正好成像在球面镜A的顶点D处,形成物PQ的像I.则:
(1)像I与透镜L的距离等于;
(2)形成像I的光线经A反射,直接通过小孔后经L所成的像I1与透镜L的距离等于;(3)形成像I的光线经A反射,再经B反射,再经A反射,最后通过L成像为I2,将I2的有关信息填在下表中:
(4)物PQ发出的光经L后未进入B上小圆孔C的那部分光最后通过L成像为I3,将I3的有关信息填在下表中:
N
图28复—7
八、(20分)有一核反应其反应式为1331
1120p H He n +→+,反应中所有粒子的速度均远小于光速。
试问:
(1)它是吸能反应还是放能反应,反应能Q 为多少?
(2)在该核反应中,若31H 静止,入射质子的阈能T th 为多少?阈能是使该反应能够发生的入射粒子的最小动
能(相对实验室参考系)。
(3)已知在该反应中入射质子的动能为1.21MeV ,若所产生中子的出射方向与质子的入射方向成60.0°角,则该中子的动能T n 为多少?
(已知11p 、10n 、31H 核、32He 核的静止质量分别为:m p =1.007276u ,m n =1.008665u ,31
H m =3.015501u ,
32
He m =3.014932u .u 是原子质量单位,1u 对应的能量为931.5MeV .结果取三位有效数字)。