高中数学教案——正弦定理、余弦定理 第三课时

合集下载

高三数学总复习 正弦定理和余弦定理教案

高三数学总复习   正弦定理和余弦定理教案

高三数学总复习 正弦定理和余弦定理教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式. ②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形.③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解.②将实际问题转化为解斜三角形.教学过程一、基础回顾1、正余弦定理正弦定理:a sinA =b sinB =c sinC=2R(其中R 为△ABC 外接圆的半径). 余弦定理a 2=b 2+c 2-2bccosA ,b 2=a 2+c 2-2accosB ;c 2=a 2+b 2-2abcosC2、变形式①a =2RsinA ,b =2RsinB ,c =2RsinC ;(其中R 是△ABC 外接圆半径)②a ∶b ∶c =sinA :sinB :sinB③cosA =b 2+c 2-a 22bc ,cosB =a 2+c 2-b 22ac ,cosC =a 2+b 2-c 22ab. 3、三角形中的常见结论(1) A +B +C =π.(2) 在三角形中大边对大角,大角对大边:A>B a>b sinA>sinB.(3) 任意两边之和大于第三边,任意两边之差小于第三边.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高); ② S =12absinC =12acsinB =12bcsinA =abc 4R; ③ S =12r(a +b +c)(r 为内切圆半径); ④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c). 二、基础自测1、在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =________.2、在△ABC 中,a =3,b =1,c =2,则A =________.3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若a =2bcosC ,则此三角形一定是________三角形.4、已知△ABC 的三边长分别为a 、b 、c ,且a 2+b 2-c 2=ab ,则∠C=________.5、在△ABC 中,a =32,b =23,cosC =13,则△ABC 的面积为________.三、典例分析例1 (2013·惠州模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理,得asin B =bsin A ,又asin Asin B +bcos 2A =2a ,∴bsin 2A +bcos 2A =2a ,即b =2a ,因此b a = 2. (2)由c 2=b 2+3a 2及余弦定理,得cos B =a 2+c 2-b 22ac =(1+3)a 2c, (*) 又由(1)知,b =2a ,∴b 2=2a 2,因此c 2=(2+3)a 2,c =2+3a =3+12 a. 代入(*)式,得cos B =22, 又0<B <π,所以B =π4. 规律方法:1.运用正弦定理和余弦定理求解三角形时,要分清条件和目标.若已知两边与夹角,则用余弦定理;若已知两角和一边,则用正弦定理.2.在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.例2、(2013·合肥模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =(cos 2A 2,cos 2A),且m ·n =72. (1)求角A 的大小; (2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =(cos 2A2,cos 2A ), ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72, ∴-2cos 2A +2cos A +3=72,解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc . ① 又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b =3, 于是a =b =c =3,即△ABC 为等边三角形.规律方法:判定三角形的形状,应围绕三角形的边角关系进行转化.无论使用哪种方法,不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.例3、(2012·课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,acos C +3asin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c.解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,则sin B =sin A cos C +cos A sin C . 所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin(A -π6)=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. ① 又a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.② 由①②联立,得b =c =2.四、练习 变式练习1:(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且bsin A =3acos B.(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.变式练习2:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状五、作业布置六、板书设计1、正余弦定理2、变形式3、三角形中常用结论典例分析七、教学反思。

江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案一、教学目标:1. 让学生了解正弦定理和余弦定理的定义及应用。

2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。

3. 通过对正弦定理和余弦定理的学习,提高学生的数学思维能力和创新能力。

二、教学内容:1. 正弦定理的定义及证明。

2. 余弦定理的定义及证明。

3. 正弦定理和余弦定理的应用。

4. 相关例题解析。

5. 实践练习。

三、教学重点与难点:1. 正弦定理和余弦定理的推导过程。

2. 灵活运用正弦定理和余弦定理解决实际问题。

四、教学方法:1. 采用讲授法,讲解正弦定理和余弦定理的定义、证明及应用。

2. 利用多媒体展示相关例题,进行解析。

3. 开展小组讨论,让学生互动交流,巩固所学知识。

4. 布置实践练习题,巩固所学内容。

五、教学过程:1. 引入:通过回顾三角形的基本知识,引导学生思考正弦定理和余弦定理的定义。

2. 讲解:详细讲解正弦定理和余弦定理的定义、证明及应用。

3. 例题解析:利用多媒体展示相关例题,进行解析,让学生掌握解题技巧。

4. 小组讨论:让学生围绕例题展开讨论,互相交流解题思路。

5. 实践练习:布置实践练习题,让学生独立完成,巩固所学知识。

6. 总结:对本节课的内容进行归纳总结,强调重点知识点。

7. 作业布置:布置课后作业,巩固所学内容。

8. 课后反思:教师对本节课的教学效果进行反思,为下一步教学做好准备。

六、教学评价:1. 课后作业:通过课后作业的完成情况,评估学生对正弦定理和余弦定理的理解和应用能力。

2. 课堂练习:通过课堂练习的实时反馈,了解学生在学习过程中的掌握情况,及时调整教学方法。

3. 小组讨论:观察学生在小组讨论中的参与程度和思考深度,评估他们的合作能力和问题解决能力。

4. 期中期末考试:通过期中期末考试的正弦定理和余弦定理部分,全面评估学生的学习成果。

七、教学资源:1. 教材:选用权威的数学教材,提供正弦定理和余弦定理的基础知识。

2. 多媒体课件:制作精美的多媒体课件,通过动画、图像等形式直观展示正弦定理和余弦定理的应用。

第三课时余弦定理、正弦定理的应用举例-高一数学课件(人教A版2019必修第二册)

第三课时余弦定理、正弦定理的应用举例-高一数学课件(人教A版2019必修第二册)

仰角
【定义】在同一铅垂平面内,视线在水
【图示】
平线上方时与水平线的夹角。
仰角
【定义】在同一铅垂平面内,视线在水
平线下方时与水平线的夹角。
【图示】
预备知识
方向角
方位角
【定义】从正北或正南方向到目标
【定义】从某点的指北方向线起依
方向所形成的小于九十度
顺时针方向到目标方向线
的角。
之间的水平夹角。
【图示】
(2)当角边对应,且角的条件较多时,一般用正弦定理;
当角的条件较少,且角边不对应时,一般用余弦定理.
高度问题
例3.如图,是底部不可到达的一座建筑物,为建筑物的最高点.
设计一种测量建筑物高度的方法,并求出建筑物的高度.
【分析】先由锐角三角函数知识可知,只要获得一点
(点到地面的距离可求)到建筑物的顶部
的距离 ,并测出由点 观察的仰角,
就可以计算出建筑物的高度。为此应再选取
一点 ,构造另一个含有的△ ,并
进行相关的长度和角度的测量然后通过解三
角形的方法计算出
高度问题
例3.如图,是底部不可到达的一座建筑物,为建筑物的最高点.
设计一种测量建筑物高度的方法,并求出建筑物的高度.
一艘渔船遇险后抛锚等待营救.甲船立即前往救援,同时把消息告知位
于甲船南偏西°,且与甲船相距 的处的乙船.那么乙船前往
营救遇险渔船时的目标方向线(由观测点看目标的视线)的方向是北偏东
多少度(精确到°)?需要航行的距离是多少海里(精确到 )?
【分析】 首先应根据“正东方向”“南偏西°”“目标方向线”
等信息画出示意图。
角度问题
例3.求乙船前往营救遇险渔船时的目标方向线(由观测点看目标的视线)的方向

高中数学高三第三章正弦定理、余弦定理【教案】

高中数学高三第三章正弦定理、余弦定理【教案】

§3.7正弦定理、余弦定理1.正弦、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容错误!=错误!=错误!=2R a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B; c2=a2+b2-2ab cos C变形(1)a=2R sin A,b=2R sin B,c=2R sinC;(2)sin A=错误!,sin B=错误!,sin C=错误!;(5)cos A=错误!cos B=错误!;cos C=错误!(3)a ∶b ∶c =sinA ∶sinB ∶sinC ;(4)a sin B =b sin A ,b sinC =c sin B ,a sin C =c sin A2.S △ABC =12ab sin C =错误!bc sin A =错误!ac sin B =错误!=错误!(a +b +c )·r (r是三角形内切圆的半径),并可由此计算R 、r 。

3.在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a 〈b a ≥b a 〉b解的个数一解 两解 一解 一解【思考辨析】判断下面结论是否正确(请在括号中打“√"或“×")(1)在△ABC中,A>B必有sin A>sin B.(√)(2)若满足条件C=60°,AB=错误!,BC=a的△ABC有两个,那么a的取值范围是(3,2).( √)(3)若△ABC中,a cos B=b cos A,则△ABC是等腰三角形.( √) (4)在△ABC中,tan A=a2,tan B=b2,那么△ABC是等腰三角形.( ×)(5)当b2+c2-a2〉0时,三角形ABC为锐角三角形;当b2+c2-a2=0时,三角形为直角三角形;当b2+c2-a2<0时,三角形为钝角三角形.(×)(6)在△ABC中,AB=错误!,AC=1,B=30°,则△ABC的面积等于错误!.(×)1.(2013·湖南改编)在锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=3b,则角A=。

5.6正弦定理、余弦定理和解斜三角形(3)教案案

5.6正弦定理、余弦定理和解斜三角形(3)教案案

课题:5.6正弦定理、余弦定理和解斜三角形(3)教案教学目的:1、进一步巩固利用正弦定理及余弦定理解任意三角形的方法 2、掌握正弦定理扩充公式的推导 3、掌握三角形面积公式的推导4、掌握边到角的转化方法,和角到边的转化方法,解决三角形形状的判断问题和恒等式的证明问题。

教学重点:正弦定理的扩充公式的推导和边角之间的转化 教学过程: (一)、引入 复习引入:1、正弦定理:A a sin =B b sin =Ccsin 2、正弦定理的变形:a :b :c =C B A sin :sin :sin3、余弦定理:在ABC ∆中有:A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=.2cos ,2cos ,2cos 222222222abc b a C ac b a c B bc a c b A -+=-+=-+=4、正弦定理的两个应用:(1)已知三角形中两角及一边,求其他元素;(2)已知三角形中两边和其中一边所对的角,求其他元素. 5、余弦定理的两个应用:(1)已知两边和它们的夹角,求其他的边和角; (2)已知三边,求三个内角.(二)、新课 一、(新课教学,注意情境设置) 由正弦定理我们知道,在ABC ∆中,A a sin 、B b sin 、Ccsin 都等于同一个比值k ,这个k 到底有没有什么特殊几何意义呢? 二、概念或定理或公式教学(推导)1、当ABC ∆是直角三角形时,若90=∠C ,我们知道A a s i n =B b sin =Ccsin =c,此时c 可看成Rt ABC ∆外接接圆的直 径,即R k c 2== 。

2、若ABC ∆是任意三角形,作ABC ∆的外接圆O ,O 为圆心, 连接BO 并延长交圆D ,连接CD ,把一般三角形转化为直角三 角形。

证明:连续BO 并延长交圆于D90=∠∴DCB ,A D ∠=∠ ,R BD 2= ,a BC ===∴BC a A R A BD D BD sin 2sin sin == ,即:R Aa2sin = 由正弦定理,得A a sin =B b sin =Ccsin =2R结论:从刚才的证明过程中, A a sin =B b sin =Ccsin =2R ,显示正弦定理的比值等于三角形外接圆的直径R 2。

余弦定理与正弦定理-用余弦定理、正弦定理解三角形(第三课时)高一数学(北师大版2019必修第二册)

余弦定理与正弦定理-用余弦定理、正弦定理解三角形(第三课时)高一数学(北师大版2019必修第二册)

变式 1.(2011 年上海)在相距 2 千米的 A,B 两点处测量目标 C,
若∠CAB=75°,∠CBA=60°,求 A,C 两点之间的距离.
解:由条件知:C=180°-75°-60°=45°, 由正弦定理得sAinCB=sAinBC, 即siAn6C0°=sin245°. 解得 AC= 6.
例2:在△ABC 中,若 2cosBsinA=sin ,试判断CABC 的形 状.
2.余弦定理
a2= b2+c2-2bccos A ,b2= a2+c2-2accos B ,c2
= a2+b2-2abcos C .余弦定理可以变形:cos A
b2+c2-a2
a2+c2-b2
a2+b2-c2
= 2bc ,cos B= 2ac ,cos C= 2ab .
3.三角形中常用的面积公式
(1)S=12ah(h 表示边 a 上的高);
2
2
整理,得4cos2 C 4cos C 1 0,解得cos C 1 , 2
0 C 180,C 60.
(2)由余弦定理得c2 a2 b2 2abcos C,
即7=a2+b2-ab,∴7=(a+b)2-3ab, 由条件a+b=5,得7=25-3ab,ab=6,
SABC
1 2
absin
b=2,a=x,如 c 有两组解,则 x 的取值范围是

解 : 当 asinB< b< a 时 , 三 角 形 ABC 有 两 组 解 . 又 b=2, B=60°, a=x, 如 果 三 角 形 ABC 有 两 组 解 ,
那 么 x 应 满 足 xsin60°< 2< x, 即 2< x< 4
3
,
10

高中数学正余弦定理教案模板(精选7篇)-最新

高中数学正余弦定理教案模板(精选7篇)作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。

下面是的为您带来的7篇《高中数学正余弦定理教案模板》,希望能够对困扰您的问题有一定的启迪作用。

余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。

下面我分别从教材分析。

教学目标的确定。

教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。

平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。

本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。

引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

【高中数学】余弦定理、正弦定理(3)课件 高一下学期数学人教A版(2019)必修第二册

由正弦定理,得AC=
sin30∘
sin45∘
=20 2.
60° 60°
45°30°
40
在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC×BC×cos ∠BCA=(20 2)2+
(40 2)2-2×40 2 ×20 2 cos 60°=2400,
∴AB=20 6 ,故A,B两点之间的距离为20 6 m.
跟踪训练
4.某海上养殖基地A,接到气象部门预报,位于基地南偏东60°相距
20( 3 +1)海里的海面上有一台风中心,影响半径为20海里,正以每小时
10 2海里的速度沿某一方向匀速直线前进,预计台风中心将从基地东北
方向刮过且 3+1小时后开始持续影响基地2小时.求台风移动的方向.
在△ABC中,由余弦定理得
sin30∘

新知探究
1.基线的概念与选择原则
(1)定义
线段
在测量过程中,我们把根据测量的需要而确定的_______叫做基线.
(2)性质
基线长度
在测量过程中,应根据实际需要选取合适的_________,使测量具有

较高的精确度.一般来说,基线越长,测量的精确度越_______.
2.实际测量中的有关名称、术语
5.一船以每小时15 km的速度向东行驶,船在A处看到一灯塔B在
北偏东60°,行驶4 h后,船到达C处,看到这个灯塔在北偏东
30 2
15°,这时船与灯塔的距离为________km.
如图所示,AC=15×4=60.
∠BAC=30°,∠B=45°,
在△ABC中,
∴BC=30 2.
60
sin45∘
=

方法总结
测量距离的基本类型及方案

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。

本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。

(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。

教学难点是:灵活运用余弦定理解决相关的实际问题。

教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。

下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。

高中数学《正弦定理》教案4篇

高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。

因此,正弦定理的学问特别重要。

学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。

(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。

力量目标:探究正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。

教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。

学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。

让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。

教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:正弦定理、余弦定理(3)
教学目的: 1进一步熟悉正、余弦定理内容; 2能够应用正、余弦定理进行边角关系的相互转化; 3能够利用正、余弦定理判断三角形的形状; 4能够利用正、余弦定理证明三角形中的三角恒等式
教学重点:利用正、余弦定理进行边角互换时的转化方向
教学难点:三角恒等式证明中结论与条件之间的内在联系的寻求
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学方法:启发引导式 1启发学生在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等; 2引导学生总结三角恒等式的证明或者三角形形状的判断,重在发挥正、余弦定理的边角互换作用
教学过程: 一、复习引入: 正弦定理:R C
c B b A a 2sin sin sin === 余弦定理:,cos 2222A bc c b a -+=⇔bc
a c
b A 2cos 2
22-+= ,cos 22
22B ca a c b -+=⇔ca b a c B 2cos 2
22-+= C ab b a c cos 22
22-+=,⇔ab c b a C 2cos 2
22-+= 二、讲授新课: 1
对于正、余弦定理,同学们已经开始熟悉,在解三角形的问题中常会用到它其实,在涉及到三角形的其他问题中,也常会用到它们两个定理的特殊功能是边角互换,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,从而使许多问题得以解决
例1已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且
32sin sin =B A ,求B
B A +的值 解:∵2
3sin sin ,sin sin ,sin sin ==∴=B A b a B A B b A a 又(这是角的关系), ∴23=b a (这是边的关系)于是,由合比定理得.25223=+=+b b a 例2已知△ABC 中,三边a 、b 、c 所对的角分别是A 、B 、C ,且a 、b 、c 成等差数列
求证:sin A +sin C =2sin B
证明:∵a 、b 、c 成等差数列,
∴a +c =2b (这是边的关系)① 又
B
A b a C c
B b A a sin sin ,sin sin sin =∴==② B
C b c sin sin =③ 将②、③代入①,得b B C b B A b 2sin sin sin sin =+整理得sin A +sin C =2sin B (这是角的关系) 2
某些三角习题的化简和求解,若能巧用正、余弦定理,则可避免许多繁杂的运算,从而使问题较轻松地获得解决,现举例说明如下:
例3求sin 220°+cos 2
80°+3sin20°cos80°的值 解:原式=sin 220°+sin 2
10°-2sin20°sin10°cos150°
∵20°+10°+150°=180°,
∴20°、10°、150°可看作一个三角形的三个内角
设这三个内角所对的边依次是a 、b 、c ,由余弦定理得:a 2+b 2-2ab cos150°=c 2(※)
而由正弦定理知:a =2Rsin20°,b =2Rsin10°,c =2Rsin150°,代入(※)式得: sin 220°+sin 210°-2sin20°sin10°cos150°=sin 2150°=
41 4
例4在△ABC 中,三边长为连续的自然数,且最大角是最小角的2倍,求此三角形的三边长(αααcos sin 22sin =)
分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建
立边角关系其中αααcos sin 22sin =利用正弦二倍角展开后出现了cos α,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的
解:设三角形的三边长分别为x,x+1,x+2,其中x∈N*,又设最小
角为α,则
ααααcos sin 222sin 2sin ⋅+=+=x x x ,x
x 22cos +=∴α① 又由余弦定理可得x2=(x+1)2+(x+2)2
-2(x+1)(x+2)cos α
将①代入②整理得:x2-3x-4=0
解之得x1=4,x2=-1(舍)
所以此三角形三边长为4,5,6
评述: 此题所求为边长,故需利用正、余弦定理向边转化,从而建立关于边长的方程 例5已知三角形的一个角为60°,面积为103c m2
,周长为20c m,求此三角形的各边长
分析:此题所给的题设条件除一个角外,面积、周长都不是构成三角形的基本元素,但是都与三角形的边长有关系,故可以设出边长,利用所给条件建立方程,这样由于边长为三个未知数,所以需寻求三个方程,其一可利用余弦定理由三边表示已知60°角的余弦,其二可用面积公式S△ABC =
2
1ab sin C 表示面积,其三是周长条件应用
解:设三角形的三边长分别为a 、b 、c ,B =60°,则依题意得 ⎪⎪⎪⎩
⎪⎪⎪⎨⎧=++=︒⋅-+=︒2031060sin 2
1260cos 2
22c b a ac ac b c a ⎪⎩⎪⎨⎧=-+==++∴4020222ac ac c a b c b a 由①式得:b 2=[20-(a +c )]2=400+a 2+c 2+2ac -40(a +c ) ④
将②代入④得400+3ac -40(a +c )=0
再将③代入得a +c =13
由⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==+588540132
211c a c a ac c a 或解得 ∴b 1=7,b 2=7 所以,此三角形三边长分别为5c m,7c m,8c m
评述: (1)在方程建立的过程中,应注意由余弦定理可以建立方程,也要注意含有正弦形式的面积公式的应用
① ② ③
(2)由条件得到的是一个三元二次方程组,要注意要求学生体会其求解的方法和思路,以提高自己的解方程及运算能力
三、课堂练习: 1ABC 中,已知B =30°,b =503,c =150,那么这个三角形是( ) A B 直角三角形 C D 等腰三角形或直角三角形 2ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,则此三角形为( ) A B 等腰三角形 C 等边三角形 D 等腰直角三角形 3ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,则sec A = 4ABC 中,B A B A sin sin tan tan =,则三角形为 5ABC 中,角A 、B 均为锐角且cos A >sin B ,则△ABC 是 6ABC 中,A b B a c c b a c b a cos cos 22
22==-+-+且,试判断△ABC 的形状 7ABC 中,(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),判断△ABC 的形状 参考答案:1D 2A 3 8 4等腰三角形 5钝角三角形
6等边三角形 7等腰三角形或直角三角形
四、小结 熟悉了正、余弦定理在进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断
五、课后作业: 1ABC 中,已知)
sin()sin(sin sin C B B A C A --=,求证:a 2,b 2,c 2成等差数列 证明:由已知得sin (B +C )sin (B -C )=sin (A +B )·sin (A -B )
cos2B -cos2C =cos2A -cos2B ⇒2cos2B =cos2A +cos2C
2
2cos 122cos 122cos 12B A B -+-=-⋅ ∴2sin 2B =sin 2A +sin 2C 由正弦定理可得2b 2=a 2+c 2, 即a 2,b 2,c 2成等差数列
2ABC 中,A =30°,cos B =2sin B -3sin C
(1)求证:△ABC 为等腰三角形;(提示B =C =75°)
(2)设D 为△ABC 外接圆的直径BE 与AC 的交点,且AB =2,求AD ∶DC 的值
答案:(1)略 (2)1∶3
六、板书设计(略)
七、课后记:。

相关文档
最新文档