高中数学教案必修四:正弦定理
正弦定理教案

正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。
2.能够判断已知条件能否求解三角形的某个角或某个边。
3.能够运用正弦定理解决相关的实际问题。
二、教学重点1.正弦定理的公式和应用。
2.正弦定理与其他三角函数定理的关系。
三、教学难点1.运用正弦定理求解实际问题。
2.能够判断已知条件能否求解三角形的某个角或某个边。
四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。
在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。
2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。
也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。
3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。
具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。
解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。
3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。
具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。
解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。
正弦定理教案

1.1.1 正弦定理一、教学目标1.知识与技能:(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;(2)简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题2.过程与方法:通过对定理的探究,培养学生发现数学规律的思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法.3.情感、态度与价值观:(1)通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识;(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养.二、教学重点、难点教学重点: 1.正弦定理的推导. 2.正弦定理的运用教学难点:1.正弦定理的推导. 2.正弦定理的运用.三、学法与教法学法:开展“动脑想、严格证、多交流、勤设问”的研讨式学习方法,逐渐培养学生“会观察”、“会类比”、“会分析”、“会论证”的能力。
教法:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式整堂课围绕“一切为了学生发展”的教学原则,(2)你还能用其它五、评价分析这堂课由实际问题出发,引导学生探索研究三角形中边角关系,展示了一个完整的数学探究过程。
提出问题、发现规律、推到证明,定理应用,让学生经历了知识再发现的过程,促进了个性化学习。
在教学过程中,使学生体会认识事物由特殊到一般,再由一般到特殊的规律,体会分类讨论、数形结合的数学思想方法,并提高运用所学知识解决实际问题的能力。
通过学习和运用,进一步使学生体会数学的科学价值、应用价值,进而领会数学的人文价值、美学价值,不断提高自身的文化素养。
(附)板书设计。
高中数学正玄定理教案

高中数学正玄定理教案
教学内容:高中数学正弦定理
教学目标:
1. 了解正弦定理的概念和应用。
2. 能够运用正弦定理解决相关题目。
3. 提高学生的数学思维能力和解题能力。
教学重点:
1. 正弦定理的概念和原理。
2. 正弦定理在三角形中的应用。
教学难点:
1. 如何运用正弦定理解决实际问题。
2. 正弦定理与其他三角函数定理的区别和联系。
教学准备:
1. 教师准备教材、黑板、彩色粉笔等。
2. 学生准备笔记本、铅笔、橡皮等。
教学步骤:
1. 引入:通过一个简单的例子引入正弦定理的概念。
2. 讲解:讲解正弦定理的概念和原理,并说明正弦定理的推导过程。
3. 练习:让学生通过一些简单的例题练习应用正弦定理。
4. 拓展:给学生提供更复杂的问题,引导他们在解题过程中灵活运用正弦定理。
5. 归纳总结:总结正弦定理的应用条件和解题方法。
6. 练习检测:布置相关练习题,检验学生对正弦定理的掌握情况。
7. 课堂小结:对正弦定理的重要性和作用进行总结。
教学反思:
本节课主要围绕正弦定理展开,通过引入、讲解、练习等环节让学生深入了解正弦定理的
概念和应用。
同时,通过拓展和练习检测环节,帮助学生巩固所学知识,并提高解题能力。
在教学中,要注意引导学生灵活运用正弦定理解决实际问题,培养其数学思维能力和解题
技巧。
高中数学教案正弦定理

高中数学教案正弦定理
主题:正弦定理
一、教学目标:
1. 理解正弦定理的概念和原理;
2. 熟练运用正弦定理解决相关问题;
3. 发展学生的逻辑思维和数学推理能力。
二、教学重点:
1. 正弦定理的概念和公式;
2. 正弦定理在实际问题中的应用。
三、教学内容:
1. 正弦定理的概念和公式:
设三角形ABC中,a为边BC的长度,b为边CA的长度,c为边AB的长度,A、B、C分别为角A、角B、角C的对边,则正弦定理可以表示为:
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$$
2. 正弦定理的应用:
通过正弦定理可以解决一些不易直接求解的三角形问题,例如求解未知边长或角度大小等。
四、教学方法:
1. 引导学生通过实例理解正弦定理的概念和原理;
2. 结合实际问题,让学生应用正弦定理解决相关问题;
3. 多种形式的练习,巩固学生的理解和运用能力。
五、教学过程:
1. 导入:通过一个实际问题引入正弦定理的概念;
2. 讲解:介绍正弦定理的公式及推导过程;
3. 练习:让学生通过练习题来熟练运用正弦定理;
4. 总结:总结正弦定理的应用方法及注意事项。
六、课后作业:
1. 完成相关练习题;
2. 思考如何在实际生活中应用正弦定理解决问题。
七、教学评估:
1. 练习题成绩;
2. 学生对正弦定理的理解和应用能力。
八、教学反思:
1. 教师应该根据学生的实际水平合理设计教学内容;
2. 加强与实际问题的联系,提高学生的学习兴趣和动力。
高中数学正弦定理教案全套

高中数学正弦定理教案全套
一、教学目标:
1. 理解正弦定理的含义和应用;
2. 掌握正弦定理的推导过程;
3. 能够运用正弦定理解决相关问题。
二、教学重点:
1. 正弦定理的概念和推导过程;
2. 正弦定理解决问题的方法。
三、教学难点:
1. 正弦定理的应用;
2. 正弦定理与三角函数的关系。
四、教学准备:
1. 教材:高中数学教材;
2. 教具:黑板、彩色粉笔;
3. 视频资料。
五、教学过程:
1. 导入:
1)复习:回顾三角函数的基本概念和性质;
2)引入:介绍正弦定理的概念和应用。
2. 学习:
1)概念:讲解正弦定理的定义和表述;
2)推导:通过几何图形和三角函数的关系,推导正弦定理的公式; 3)应用:讲解如何运用正弦定理解决三角形的边长和角度问题。
3. 实践:
1)练习:布置一些练习题,让学生独立解答;
2)讲评:讲解练习题的解题过程和方法。
4. 总结:
总结正弦定理的概念、公式和应用,并与学生共同讨论解题方法。
六、作业:
1. 完成课堂练习题;
2. 阅读相关资料,了解正弦定理的历史和发展。
七、课后反思:
1. 教学内容安排是否合理;
2. 学生的学习情况和反馈;
3. 下节课的教学准备。
正弦定理教案模板高中

课时:2课时年级:高一年级教学目标:一、知识与技能1. 理解并掌握正弦定理的概念及其应用。
2. 掌握正弦定理的证明方法,并能运用正弦定理解三角形。
3. 了解正弦定理在解三角形中的应用价值。
二、过程与方法1. 通过观察、实验、归纳等方法,探索正弦定理的推导过程。
2. 通过小组合作、讨论等方式,提高分析问题、解决问题的能力。
三、情感、态度与价值观1. 感受数学的严谨性,培养对数学的兴趣。
2. 通过正弦定理的应用,体会数学在生活中的价值。
教学重难点:一、教学重点1. 正弦定理的概念及其应用。
2. 正弦定理的证明方法。
二、教学难点1. 正弦定理的推导过程。
2. 正弦定理在解三角形中的应用。
教学过程:第一课时一、导入新课1. 复习初中阶段学习的任意三角形中的边和角的关系。
2. 引出本节课学习的内容:正弦定理。
二、新课讲授1. 利用直角三角形得到正弦定理:(1)回顾直角三角形的边角关系。
(2)推导正弦定理:设直角三角形的两个锐角分别为A、B,斜边为c,对边分别为a、b,则有:sinA = a/c,sinB = b/c。
2. 推导正弦定理的通式:(1)利用三角形内角和定理,将三角形分为三个直角三角形。
(2)根据直角三角形的边角关系,推导出正弦定理的通式:a/sinA = b/sinB = c/sinC。
三、课堂练习1. 利用正弦定理求解以下问题:(1)已知三角形ABC中,∠A = 30°,∠B = 45°,求∠C的度数。
(2)已知三角形ABC中,AB = 5,BC = 7,∠A = 30°,求AC的长度。
四、课堂小结1. 总结本节课所学内容:正弦定理的概念、推导过程及应用。
2. 强调正弦定理在解三角形中的应用价值。
第二课时一、复习导入1. 回顾正弦定理的概念、推导过程及应用。
2. 引出本节课的学习内容:正弦定理在解三角形中的应用。
二、新课讲授1. 利用正弦定理解三角形:(1)已知三角形两边和其中一边的对角,求第三边和另外两个角的度数。
正弦定理教案

正弦定理教案正弦定理教案「篇一」教学目标:1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
教学准备:制作多媒体,学生准备计算器,直尺,量角器。
教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习,对科技楼熟悉吗?生:当然熟悉。
师:那大家知道科技楼有多高吗?学生不知道。
激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片刻,教师引导。
生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相似。
师:方法可行吗?生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。
师:你有什么想法?生2:可以再取一个观测点D。
师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计 ,CD=10,那么我们能计算出AB吗?生3:由正弦定理教学设计求出AB。
师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。
高中数学《正弦定理》教案

高中数学《正弦定理》教案•相关推荐高中数学《正弦定理》教案4篇作为一名优秀的教育工作者,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。
如何把教案做到重点突出呢?以下是小编为大家整理的高中数学《正弦定理》教案,仅供参考,大家一起来看看吧。
高中数学《正弦定理》教案1教材地位与作用:本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的知识非常重要。
学情分析:作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
教法学法分析:教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题 1.1.1 正弦定理
授课人 雷 娜 授课时间
5月 日
年 级
高 一
班 次
1321、1322
教学目标
知识与技能:
通过对任意三角形边长和角度关系的探索,掌握正弦定理的
内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:
让学生从已有的几何知识出发,共同探究在任意三角形中,
边与其对角的关系,引导学生通过观察,推导,比较,由特殊到
一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感、态度、价值观:
培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形
函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
内容分析 重 点: 正弦定理的探索和证明及其基本应用。
难 点: 已知两边和其中一边的对角解三角形时判断解的个数。
关 键: 掌握正弦定理的内容并能够灵活应用
教学方法
探究式教学
教 学 过 程
一、课题导入:
如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?
显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来?
二、新课探究
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a
A c
=,sin b B c =,又sin 1c
C c
==, 则sin sin sin a b c c A B C
=== A
B
C B
A C。