2014-2015学年江苏省无锡市北塘区九年级(上)数学期中试卷带解析答案

合集下载

江苏省无锡市新区2015届九年级上期中考试数学试题及答案

江苏省无锡市新区2015届九年级上期中考试数学试题及答案

2014-2015学年第一学期初三数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分)1. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两条弧是等弧.其中正确的有 ( )A .4个B .3个C . 2个D . 1个2. 用配方法解方程2250x x --=时,原方程应变形为 ( )A .()216x -= B .()216x += C .()229x += D .()229x -=3. 三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 ( )A .12B .14C .12或14D .以上都不对4. 在Rt△ABC 中,∠C=90°,∠B=30°,BC =4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是 ( ) A .相离 B .相切 C .相交 D .相切或相交5. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 ( ) A.k >14-B. 14k ≥-且0k ≠C.k <14-D. k >14-且0k ≠6.某厂一月份生产某机器300台,计划二、三月份共生产980台。

设二三月份每月的平均增长率为x ,根据题意列出的方程是 ( ) A .300(1+x )2=980 B .300(1-x )2=980C .300(1+x )+300(1+x )2=980D .300+300(1+x )+300(1+x )2=9807. 如图,将量角器按所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为 ( ) A .15︒ B .28︒ C .29︒ D .34︒8.如图,等边三角形ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了 ( )A .2周B . 3周C .4周D .5周 二、填空题(本大题共10小题,每空2分,共26分)9.将一元二次方程x 2+1=2x 化成一般形式可得 ,它的解是 . 10.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 .班级 姓名 学号 .……………………………………………………………装……………订……………线…………………………………………………………(第8题) O D AB C(第7题)11. 一元二次方程220x x +-=的两根之和是 ,两根之积是 .12. 方程x 2-6x +k =0的一根是4,则k = ,另一个根是______.13. 如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠OBC = °.14. 如图,ABCD 是⊙O 的内接四边形,AD 为直径,∠C =130°,则∠ADB 的度数为 .15.如图,直角坐标系中一条圆弧经过格点A ,B ,C ,其中B 点坐标为(3,4),则该弧所在圆心的坐标是 .16.若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则ab= .17. 如图,一张圆心角为45°的扇形纸板按如图方式剪得一个正方形,正方形的边长为1,则扇形纸板的面积是 .18. 如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是 .三、解答题(本大题共7小题,共50分) 19(本题满分12分,每小题3分)解下列方程: (1)042=-x x (2)x 2-8x-10=0(配方法)(3)x 2+6x -1=0 (4)2x 2+5x -3=0(第13题)OB C D A(第14题) O x y A B C(第15题)(第17题) (第18题)A BC P O 20(本题满分6分)如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A=30°,AC =CP . (1) 求证:CP 是⊙O 的切线;(2) 若PC =6,AB=43求图中阴影部分的面积.21(本题满分4分)如图,AB 是⊙O 直径,弦CD 与AB 相交于点E ,∠ACD =52°,∠ADC =26°.求∠CEB 的度数.22(本题满分4分)某商店经销一批小家电,每个小家电的成本为40元。

江苏省无锡 九年级(上)期中数学试卷-(含答案)

江苏省无锡 九年级(上)期中数学试卷-(含答案)

九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列方程中是关于x的一元二次方程的是()A. B.C. D.2.如图,CD是⊙O的直径,弦DE∥OA,若∠D的度数是50°,则∠C的度数是()A.B.C.D.3.如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有()A. 0个B. 1个C. 2个D.3个4.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 35.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cmB.C. cmD. 1cm6.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A. B.C. D.7.下列命题是真命题的是()A. 垂直于圆的半径的直线是圆的切线B. 经过半径外端的直线是圆的切线C. 直线上一点到圆心的距离等于圆的半径的直线是圆的切线D. 到圆心的距离等于圆的半径的直线是圆的切线8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.9.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.B.C.D.10.如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=2,线段CP的最小值是()A. B. C. D.二、填空题(本大题共8小题,共16.0分)11.已知=,则= ______ .12.近年来全国房价不断上涨,我市2013年的房价平均每平方米为7000元,经过两年的上涨,2015年房价平均每平方米为8500元,设这两年房价的年平均增长率均为x,则关于的方程为______ .13.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是______.14.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA= ______ °.15.小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为______ .16.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是______.17.如图,平面直角坐标系中,⊙A的圆心在x轴上,坐标为(a,0),半径为1,直线l为y=2x-2,若⊙A沿x轴向右运动,当⊙A与直线l有公共点时,点A横坐标a 的取值范围是______ .18.如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,那么点D的坐标为______ .三、解答题(本大题共10小题,共84.0分)19.(1)3y(y-1)=2(y-1)(2)(x-1)(x+2)=70(3)2y2-3=4y(配方法)20.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(注意:根据光的反射定律:反射角等于入射角).21.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.22.如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为______ (结果保留根号);②的长为______ (结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.23.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.24.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB 于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果保留根号和π).25.某公司销售一种进价为20(元/个)的计算器,其销售量y(万个)与销售价格x(元/个)之间为一次函数关系,其变化如下表:40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额-总进价-其他开支)26.如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,BO=8,(1)如图①,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动,求当P、Q、C三点构成等腰三角形时点P的坐标.(2)如图②,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC 内部,延长AF交BC于点G.求点G的坐标.27.如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E 点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.28.对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C 在点D的左侧.(1)当r=4时,①在P1(0,-3),P2(4,6),P3(4,2)中可以成为正方形ABCD的“等距圆”的圆心的是______;②若点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为______;(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是______.答案和解析1.【答案】C【解析】解:A、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;B、当a=0时.该方程不是一元二次方程.故本选项错误;C、由原方程得到x2-x-1=0,符合一元二次方程的定义,故本选项正确;D、该方程中含有两个未知数.故本选项错误;故选C.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.【答案】A【解析】解:∵DE∥OA,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°,故选:A.根据平行线的性质可得∠AOD=∠D,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.【答案】D【解析】解:∵等边三角形ABC的边长为2,DE是它的中位线,∴DE=1,DE∥AB,∴△CDE∽△CAB,∴DE:AB=1:2,∴△CDE的面积与△CAB的面积之比为1:4.故选D.由题意即可推出DE∥AB,推出DE=1,△CDE∽△CAB,△CDE的面积与△CAB 的面积之比为相似比的平方,即为1:4.本题主要考查相似三角形的判定与性质、等边三角形的性质、三角形中位线定理,关键在于推出DE∥AB.4.【答案】B【解析】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.5.【答案】A【解析】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD=×120°=60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.此题比较简单,解答此题的关键是作出辅助线,根据等腰三角形及正六边形的性质求解.6.【答案】B【解析】解:依题意,设金色纸边的宽为xcm,则(80+2x)(50+2x)=5400.故选:B.根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(树叶画的长+2个纸边的宽度)×(树叶画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.此题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.7.【答案】D【解析】解:A、应经过此半径的外端,故本选项错误;B、应该垂直于此半径,故本选项错误.C、应是圆心到直线的距离等于圆的半径,故本选项错误;D、根据切线的判定方法,故本选项正确;故选D.要正确理解切线的定义:和圆有唯一公共点的直线是圆的切线.掌握切线的判定:①经过半径的外端,且垂直于这条半径的直线,是圆的切线;②到圆心的距离等于半径的直线是该圆的切线.本题考查了命题和定理,知识点有:切线的判定方法.8.【答案】D【解析】解:∵∠C=∠E,且∠BDE=∠ADC,∴△BDE∽△ADC,∴=,∵BC=8,BD:DC=5:3,∴BD=5,DC=3,AD=4,∴=,解得DE=,故选:D.由条件可证明△BDE∽△ADC,且可求得BD和DC的长度,利用相似三角形的对应边的比相等可求得DE.本题主要考查了相似三角形的判定与性质,解题时注意:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.9.【答案】B【解析】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是.则这张圆形纸片“不能接触到的部分”的面积是4×(1-)=4-π.故选:B.这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差的4倍.本题主要考查了轨迹、正方形和圆的面积的计算公式,正确记忆公式是关键.10.【答案】B【解析】解:∵动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴∠DAE=∠CDF,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADF+∠DAE=90°,∴∠APD=90°,取AD的中点O,连接OP,则OP=AD=×2=1(不变),根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,在Rt△COD中,根据勾股定理得,CO===,所以,CP=CO-OP=-1.故选B.根据点E、F的运动速度判断出DE=CF,然后利用“边角边”证明△ADE和△DCF全等,根据全等三角形对应角相等可得∠DAE=∠CDF,然后求出∠APD=90°,取AD的中点O,连接OP,根据直角三角形斜边上的中线等于斜边的一半可得点P到AD的中点的距离不变,再根据两点之间线段最短可得C、P、O三点共线时线段CP的值最小,然后根据勾股定理列式求出CO,再求解即可.本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P到AD的中点的距离是定值是解题的关键,也是本题的难点.11.【答案】【解析】解;由=,得=.由合比性质,得=.=,故答案为:.根据比例的性质,可得y:x的值,再根据倒数的意义,可得答案.本题是基础题,考查了比例的基本性质,比较简单12.【答案】7000(1+x)2=8500【解析】解:设这两年房价的年平均增长率均为x,根据题意,可列方程:7000(1+x)2=8500,故答案为:7000(1+x)2=8500.由于设这两年房价的平均增长率均为x,那么2014年房价平均每平方米为7000(1+x)元,2015年的房价平均每平方米为7000(1+x)(1+x)元,然后根据2015年房价平均每平方米为8500元即可列出方程.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.13.【答案】k>且k≠1【解析】解:根据题意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故答案为:k>且k≠1.根据一元二次方程的定义和判别式的意义得到k-1≠0且△=22-4(k-1)×(-2)>0,然后求出两个不等式的公共部分即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.【答案】67.5【解析】解:∵PD切⊙O于点C,∴∠OCD=90°;又∵CO=CD,∴∠COD=∠D=45°;∴∠A=∠COD=22.5°(同弧所对的圆周角是所对的圆心角的一半),∵OA=OC,∴∠A=∠ACO=22.5°(等边对等角),∴∠PCA=180°-∠ACO-∠OCD=67.5°.故答案是:67.5°.根据切线的性质知∠OCD=90°,然后在等腰直角三角形OCD中∠COD=∠D=45°;再由圆周角定理求得∠ACO=22.5°;最后由平角的定义即可求得∠PCA的度数.本题考查了圆的切线.解题的关键是根据切线的定义推知∠OCD=90°.15.【答案】216°【解析】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【答案】4π【解析】解:弧CD的长是=,弧DE的长是:=,弧EF的长是:=2π,则曲线CDEF的长是:++2π=4π.故答案为:4π.弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3,利用弧长的计算公式可以求得三条弧长,三条弧的和就是所求曲线的长.本题考查了弧长的计算公式,理解弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3是解题的关键.17.【答案】1-≤a≤1+【解析】解:如图:当⊙A在直线L的左侧,⊙A与直线L相切时,△BOD∽△ABC,∵直线l为y=2x-2,∴B(1,0),D(0,-2),∴OB=1,OD=2,∴,即,∴BC=,∴AB=,当⊙A在直线L的右侧,⊙A与直线L相切时,同理A′B=,∴A横坐标a的取值范围是1-≤a≤1+,故答案为:1-≤a≤1+.根据⊙A与L有公共点从左相切开始,到相交,到右相切,所以A移动的距离是左相切到右相切时的距离.此题主要考查了坐标与图形的性质和直线与圆的位置关系,关键是知道点A 移动距离.18.【答案】(-,)【解析】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3-x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3-x)2=x2+12,∴x=.又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3-=,∴==,即==.∴DF=,AF=.∴OF=-1=.∴点D的坐标为(-,).故答案为:(-,).如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3-x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.19.【答案】解:(1)∵3y(y-1)=2(y-1),∴(y-1)(3y-2)=0,∴y-1=0或3y-2=0,∴y1=1,y2=;(2)∵(x-1)(x+2)=70,∴x2+x-2=70,∴x2+x-72=0,∴(x+9)(x-8)=0,∴x+9=0或x-8=0,∴x1=-9,x2=8;(3)∵2y2-3=4y,∴2(y2-2y+1-1)-3=0,∴2(y-1)2=5,y=1±,y1=1+,y2=1-.【解析】(1)移项将方程右边化简为0,然后在提取公因式即可求解;(2)将方程左边去括号然后再化简成x2+x-72=0,利用因式分解即可求解;(3)移项然后在利用配方法即可求解.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.【答案】解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,(2分)∴△ABE∽△CDE,(5分)∴,(7分)∴,(8分)∴AB=13.44(米).(11分)答:教学大楼的高度AB是13.44米.(12分)【解析】根据反射定律,∠1=∠2,又因为FE⊥EC,所以∠3=∠4,再根据垂直定义得到∠BAE=∠DCE,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.21.【答案】解:∵关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;解得b=2,b=-10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;答:△ABC的周长是12.【解析】若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.此题考查了根与系数的关系、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.22.【答案】2;π【解析】解:(1)如图所示:连接AC,作线段AC的垂线OE,交正方形网格于点O,则O点即为⊙O的圆心;(2)①在Rt△OCF中,∵CF=2,OF=4,∴OC===2;②在Rt△OAG与Rt△OCF中,AG=OF=4,OG=CF=2,OA=OC=2,∴∠OAG=∠COF,∠AOG=∠OCF,∵∠OAG+∠AOG=90°,∠OCF+∠COF=90°,∴∠AOG+∠COF=90°,∴∠AOC=90°,∴===π;③直线DC与⊙O相切.理由:∵连接CD,在△DCO中,CD=,CO=2,DO=5,∴CD2+CO2=25=DO2.∴∠DCO=90°,即CD⊥OC.∴CD与⊙O相切.(1)连接AC,作AC的垂直平分线,由垂径定理可知OE与网格的交点即为⊙O的圆心;(2)①直接根据正方形网格的特点及勾股定理求出OC的长即为⊙O的半径;②先根据直角三角形的性质得出∠AOC=90°,再根据弧长公式求出的度数;③连接CD,根据勾股定理得出CD、OD的长,由勾股定理的逆定理判断出△OCD的形状即可.本题考查的是垂径定理的应用、勾股定理、直线与圆的位置关系、勾股定理的逆定理及弧长的计算,在解答此题时要先根据垂径定理作出圆心,再根据勾股定理的相关知识进行解答.23.【答案】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=4cm.又∵OF⊥CD,∴DF=CD=3cm.在Rt△ODF中,OD==5cm,即⊙O的半径为5cm.【解析】(1)欲证明AE⊥CD,只要证明∠EAD+∠ADE=90°即可;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE,根据垂径定理得出DF=CD,在Rt△ODF中,根据勾股定理即可求得⊙O的半径.本题考查了等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.24.【答案】解:(1)相切,理由是:∵∠ACB=90°,BC为半圆的直径,∴以BC为直径的圆与AC所在的直线相切;(2)在Rt△ACB中,∠B=30°,∴∠A=90°-30°=60°,AC=AB=×4=2,由勾股定理得:BC==2,∴S阴影=S半圆-(S△ABC-S扇形AEC),=π-×2×+,=-2,答:图中阴影部分的面积是-2.【解析】(1)切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,满足这两个条件,则与圆相切;(2)先根据条件求直角三角形的各边长和锐角∠A的度数,再利用差求阴影部分的面积.本题考查了直线和圆的位置关系、勾股定理及扇形的面积,属于常考题型,难度不大;熟练掌握直线和圆的位置关系,在求阴影部分面积时,要注意利用和或差来求解.25.【答案】解:设y与x的解析式为:y=ax+b,则,解得:,∴y=-0.1x+8,根据题意,得:(x-20)(-0.1x+8)-40=40,∴x1=40,x2=60,∵尽可能让顾客得到实惠,∴价格应定为40元.答:价格应定为40元.【解析】设y与x的解析式为:y=ax+b,将表格中的数代入解析式,求出a、b的值,求出解析式,然后表示出利润,根据利润为40万元,求出销售价格.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.26.【答案】解:(1)设运动的时间为t秒,由勾股定理得,OC==10,当CQ=CP时,2t=10-4t,解得,t=,此时CP=2×=,∴AP=8-=,P点坐标为(,6),当PC=PQ时,如图①,过点Q作AC的垂线交AC于点E,CQ=10-4t,CP=2t.∵△CEQ∽△CAO,∴EQ=CQ=(10-4t)=6-t,PE=(10-4t)-2t=8-t-2t=8-t,由勾股定理得,(6-t)2+(8-t)2=(2t)2,整理得:36t2-140t+125=0,解得,t1=,t2=(舍去),此时,AP=8××2=,∴P点坐标为(,6),当QC=PQ时,如图②,过点Q作AC的垂线交AC于点F,CQ=10-4t,CP=2t,∵△CFQ∽△CAO,∴QF═(10-4t)=6-t,PF=2t-(10-4t)=t-8,则(6-t)2+(t-8)2=(10-4t)2,整理得,21t2-40t=0,解得,t1=,t2=0(舍去),此时,AP=8-×2=,则P点坐标为(,6),综上所述,P点坐标为(,6),(,6),(,6);(2))如图③,连接EG,由题意得:△AOE≌△AFE,∴∠EFG=∠OBC=90°,∵E是OB的中点,∴EG=EG,EF=EB=4,在Rt△EFG和Rt△EBG中,,∴Rt△EFG≌Rt△EBG(HL)∴∠FEG=∠BEG,∠AOB=∠AEG=90°,∴△AOE∽△AEG,∴AE2=AO•AG,即36+16=6×AG,解得,AG=,由勾股定理得,CG==,∴BG=6-=,G的坐标为(8,).【解析】(1)分CQ=CP、PC=PQ和QC=PQ三种情况,根据等腰三角形的性质计算即可;(2)连接EG,由翻转变换的性质得到△AOE≌△AFE,根据全等三角形的性质得到∠EFG=∠OBC=90°,证明Rt△EFG≌Rt△EBG得到∠FEG=∠BEG,∠AOB=∠AEG=90°,得到△AOE∽△AEG,根据相似三角形的性质列出比例式,计算即可.本题考查的是翻转变换的性质、等腰三角形的性质、相似三角形的判定和性质,掌握翻转变换的性质、灵活运用分情况讨论思想是解题的关键.27.【答案】解:(1)∵BE=AB=15,在直角△BCE中,CE===9∴DE =6,∵∠EAD +∠BAE =90°,∠BAE =∠BEF ,∴∠EAD +∠BEF =90°,∵∠BEF +∠F =90°,∴∠EAD =∠F∵∠ADE =∠FBE∴△ADE ∽△FBE ,∴ ,, ∴BF =30;(2)①如图1,将矩形ABCD 和直角△FBE 以CD 为轴翻折,则△AMH 即为未包裹住的面积,∵Rt △F ′HN ∽Rt △F ′EG ,∴ ′ ′ = ,即 ,解得:HN =3,∴S △AMH = •AM •MH = ×12×24=144; ②如图2,将矩形ABCD 和Rt △ECF 以AD 为轴翻折,∵Rt △GBE ∽Rt △GB ′C ′,∴ ′ ′ ′,即′ ′ ,解得:GB ′=24, ∴S △B ′C ′G = •B ′C ′•B ′G = ×12×24=144, ∴按照两种包裹方法的未包裹面积相等.【解析】(1)先证明△ADE ∽△FBE ,利用相似的性质得BF ;(2)①利用相似三角形的判定,证明Rt △F′HN ∽Rt △F′EG ,利用相似三角形的性质,求得HN ,利用三角形的面积公式得结果;②利用相似三角形的判定,证明Rt △F′HN ∽Rt △F′EG ,利用相似三角形的性质,求得HN ,利用三角形的面积公式得结果.本题主要考查了相似三角形的判定和性质及翻折变化,以动态(平移和旋转)的形式考查了分类讨论的思想、函数的知识和直角三角形是解答此题的关键.28.【答案】P 2,P 3;(4,-2)或P (-4,6);0<r < 或r >2 +2【解析】解:(1)①连接AC和BD,交于点M,∵四边形ABCD是正方形,∴M到正方形ABCD四条边距离都相等∴⊙P一定通过点M,∵A(2,4)∴M(0,2)设⊙P的圆心坐标是(x,y),∴r=4时,∴x2+(y-2)2=(4)2,即,x2+(y-2)2=32,把P1(0,-3),P2(4,6),P3(4,2)代入,只有P2,P3成立,∴可以成为正方形ABCD的“等距圆”的圆心的是P2,P3,故答案为:P2,P3;②∵点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,∴把y=-x+2代入x2+(y-2)2=32,得x2+x2=32,解得x=±4,∴y=-2或6,∴P(4,-2)或P(-4,6).故答案为:(4,-2)或P(-4,6).(2)如下图:①∵⊙P同时为正方形ABCD与正方形EFGH的“等距圆”,∴⊙P同时过正方形ABCD的对称中心E和正方形EFGH的对称中心I.∴点P在线段EI的中垂线上.∵A(2,4),正方形ABCD的边CD在x轴上;F(6,2),正方形EFGH的边HE 在y轴上,∴E(0,2),I(3,5)∴∠IEH=45°,设线段EI的中垂线与y轴交于点L,与x轴交于点M,∴△LIE为等腰直角三角形,LI⊥y轴,∴L(0,5),∴△LOM为等腰直角三角形,LO=OM∴M(5,0),∴P在直线y=-x+5上,∴设P(p,-p+5)过P作PQ⊥直线BC于Q,连结PE,∵⊙P与BC所在直线相切,∴PE=PQ,∴p2+(-p+5-2)2=(p+2)2,解得:P1=5+2,P2=5-2,∴P1(5+2,-2),P2(5-2,2),∵⊙P过点E,且E点在y轴上,∴⊙P在y轴上截得的弦长为2|-2-2|=4或2|2-2|=4-4.②如图2,连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT-DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HF所在的直线为:y=-x+8,DT所在的直线为:y=x-2,∴T(5,3),∵D(2,0),∴DT==3,∵DE=DE1∴DT-DE=DT-DE=3-2=,1∴当0<r<时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HE2=HD+DE2,DE2=DE,∴HE=HD+DE=+2=2+2,2∴当r>2+2时,线段HF上没有一个点能成为它的“等距圆”的圆心.综上可知当0<r<或r>2+2时线段HF上没有一个点能成为它的“等距圆”的圆心,故答案为:0<r<或r>2+2.(1)①连接AC和BD,交于点M,设⊙P的圆心坐标是(x,y),列出圆心到M的关系式,把P1(0,-3),P2(4,6),P3(4,2)代入,看是否成立来逆定,②把y=-x+2代入x2+(y-2)2=32,求出x和y的值,再写出坐标.(2)①先求出△LIE为等腰直角三角形,得到L(0,5),进而得出△LOM为等腰直角三角形,设P(p,-p+5)据关系列出方程求了圆心,的坐标,最后得出弦长.②连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT-DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.据此求解.本题考查圆的综合题,解题的关键是明确题意,根据题目给出的条件,作出合适的辅助线,找出所求问题需要的条件,利用数形结合的思想解答问题.此外对本题中的“等距圆”的定义正确理解也是解题的关键.。

江苏初三初中数学期中考试带答案解析

江苏初三初中数学期中考试带答案解析

江苏初三初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.(2015秋•仪征市期中)方程x2=2x的解是()A.2B.﹣2C.0,2D.0,﹣22.(2014•孟津县一模)关于x的一元二次方程x2﹣2ax﹣1=0(其中a为常数)的根的情况是()A.有两个不相等的实数根B.可能有实数根,也可能没有C.有两个相等的实数根D.没有实数根3.(2015秋•仪征市期中)如图,AB为⊙O的直径,点C在⊙O上,∠A=40°,则∠B的度数为()A.20°B.40°C.50°D.60°4.(2015秋•仪征市期中)下列命题:①直径是圆中最长的弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④菱形的四个顶点在同一个圆上;其中正确结论的个数有()A.1个B.2个C.3个D.4个5.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:56.(2006•杭州)已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.7.(2014•天津)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28D.x(x﹣1)=288.(2015秋•仪征市期中)如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=42°,则∠CAD的度数为()A.110°B.88°C.84°D.66°二、填空题1.(2014•汕头)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.2.(2015秋•仪征市期中)⊙O的半径为R,圆心O到点A的距离为d,且R、d分别是方程x2﹣6x+9=0的两根,则点A与⊙O的位置关系是.3.(2015秋•仪征市期中)在⊙O中,弦AB=2cm,圆心角∠AOB=60°,则⊙O的直径为 cm.4.(2013•禅城区校级模拟)在如图所示的平面直角坐标系中,点A(2,9),B(2,3),C(3,2),D(9,2)在⊙P上,则圆心P的坐标是.5.(2015秋•仪征市期中)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是.6.(2015秋•仪征市期中)一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成了正方形,则原矩形的长是米.7.(2014•滨州)如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则= .8.(2015秋•仪征市期中)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=3,BD=2,则CD的长为.9.(2015秋•仪征市期中)若m是方程x2﹣2x﹣2=0的一个根,则2m2﹣4m+2012的值是.10.(2015•河池)如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则+= . 三、解答题 1.(2015秋•仪征市期中)解方程:(1)x 2﹣8x ﹣10=0;(2)9t 2﹣(t ﹣1)2=0.2.(2015秋•仪征市期中)已知关于x 的方程x 2+(m+2)x+2m ﹣1=0.(1)求证:方程有两个不相等的实数根.(2)若1是该方程的一个根.求m 的值并求出此时方程的另一个根.3.(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?4.(2015秋•仪征市期中)如图△ABC 中,DE ∥BC ,=,M 为BC 上一点,AM 交DE 于N .(1)若AE=4,求EC 的长;(2)若M 为BC 的中点,S △ABC =36,求S △ADN .5.(2013秋•昌平区校级期末)如图,在△ABC 中,∠ABC=2∠C ,BD 平分∠ABC ,且,,求AB 的值.6.(2013秋•相城区校级期末)如图,已知点C 、D 在以O 为圆心,AB 为直径的半圆上,且OC ⊥BD 于点M ,CF ⊥AB 于点F 交BD 于点E ,BD=8,CM=2.(1)求⊙O 的半径;(2)求证:CE=BE .7.(2015秋•仪征市期中)如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .(1)求证:BE=CE ;(2)若∠B=70°,求弧DE 的度数.(3)若BD=2,BE=3,求AC 的长.8.(2015•海宁市模拟)如图,四边形OBCD 中的三个顶点在⊙O 上,点A 是⊙O 上的一个动点(不与点B 、C 、D 重合).(1)若点A 在优弧上,且圆心O 在∠BAD 的内部,已知∠BOD=120°,则∠OBA+∠ODA= °. (2)若四边形OBCD 为平行四边形.①当圆心O 在∠BAD 的内部时,求∠OBA+∠ODA 的度数; ②当圆心O 在∠BAD 的外部时,请画出图形并直接写出∠OBA 与∠ODA 的数量关系.9.(2015秋•仪征市期中)如图,在矩形ABCD 中,AB=3,BC=4,动点P 从点D 出发沿DA 向终点A 运动,同时动点Q 从点A 出发沿对角线AC 向终点C 运动.过点P 作PE ∥DC ,交AC 于点E ,动点P 、Q 的运动速度是每秒1个单位长度,运动时间为t 秒,当点P 运动到点A 时,P 、Q 两点同时停止运动.(1)用含有t 的代数式表示PE= ;(2)探究:当t 为何值时,四边形PQBE 为梯形?(3)是否存在这样的点P 和点Q ,使△PQE 为等腰三角形?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由.江苏初三初中数学期中考试答案及解析一、选择题1.(2015秋•仪征市期中)方程x 2=2x 的解是( )A .2B .﹣2C .0,2D .0,﹣2【答案】C【解析】首先移项,进而提取公因式分解因式解方程即可.解:x 2=2x ,则x 2﹣2x=0,x (x ﹣2)=0,解得:x 1=0,x 2=2.故选:C .【考点】解一元二次方程-因式分解法.2.(2014•孟津县一模)关于x 的一元二次方程x 2﹣2ax ﹣1=0(其中a 为常数)的根的情况是( )A .有两个不相等的实数根B .可能有实数根,也可能没有C .有两个相等的实数根D .没有实数根【答案】A【解析】先计算△=(﹣2a)2﹣4×(﹣1)=4a2+4,由于4a2≥0,则4a2+4>0,即△>0,然后根据根的判别式的意义进行判断即可.解:△=(﹣2a)2﹣4×(﹣1)=4a2+4,∵4a2≥0,∴4a2+4>0,即△>0,∴方程有两个不相等的实数根.故选A.【考点】根的判别式.3.(2015秋•仪征市期中)如图,AB为⊙O的直径,点C在⊙O上,∠A=40°,则∠B的度数为()A.20°B.40°C.50°D.60°【答案】C【解析】根据圆周角定理:直径所对的圆周角为直角,可以得到△ABC是直角三角形,根据直角三角形的两锐角互余即可求解.解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=40°,∴∠B=50°,故选C.【考点】圆周角定理;直角三角形的性质.4.(2015秋•仪征市期中)下列命题:①直径是圆中最长的弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④菱形的四个顶点在同一个圆上;其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】B【解析】利用直径、不在同一直线上的三点确定一个圆和三角形外心和四点共圆即可作出判断.解:①直径是圆中最长的弦,正确;②经过不在同一直线上的三点确定一个圆,错误;③三角形的外心到三角形各顶点的距离都相等,正确;④菱形的对角不一定互补,故其四个顶点不一定在同一个圆上,错误;故选B【考点】命题与定理.5.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:5【答案】A【解析】根据四边形ABCD是平行四边形,求证△AEF∽△BCF,然后利用其对应边成比例即可求得答案.解:∵四边形ABCD是平行四边形,∴△AEF∽△BCF,∴=,∵点E为AD的中点,∴==,故选:A.【考点】相似三角形的判定与性质;平行四边形的性质.6.(2006•杭州)已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.【答案】C【解析】△ABC是等腰三角形,底角是75°,则顶角是30°,看各个选项是否符合相似的条件.解:∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A、三角形各角的度数分别为75°,52.5°,52.5°,B、三角形各角的度数都是60°,C、三角形各角的度数分别为75°,30°,75°,D、三角形各角的度数分别为40°,70°,70°,∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.【考点】相似三角形的判定.7.(2014•天津)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28D.x(x﹣1)=28【答案】B【解析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选:B.【考点】由实际问题抽象出一元二次方程.8.(2015秋•仪征市期中)如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=42°,则∠CAD的度数为()A.110°B.88°C.84°D.66°【答案】C【解析】首先以A为圆心,AB长为半径画弧,然后可确定B、C、D同在⊙A上,再根据∠CBD=2∠BDC可得=2,然后可得∠CAD=2∠BAC=84°.解:以A为圆心,AB长为半径画弧,∵AB=AC=AD,∴B、C、D同在⊙A上,∵∠CBD=2∠BDC,∴=2,∴∠CAD=2∠BAC=84°,故选:C.【考点】圆周角定理.二、填空题1.(2014•汕头)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.【答案】3.【解析】作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在Rt△AOC中利用勾股定理计算OC即可.解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.【考点】垂径定理;勾股定理.2.(2015秋•仪征市期中)⊙O的半径为R,圆心O到点A的距离为d,且R、d分别是方程x2﹣6x+9=0的两根,则点A与⊙O的位置关系是.【答案】点A在⊙O上.【解析】解方程得出R=d=3,即可得出点A在⊙O上.解:∵R、d分别是方程x2﹣6x+9=0的两根,解方程得:R=d=3,∴点A在⊙O上.故答案为:点A在⊙O上.【考点】点与圆的位置关系;解一元二次方程-配方法.3.(2015秋•仪征市期中)在⊙O中,弦AB=2cm,圆心角∠AOB=60°,则⊙O的直径为 cm.【答案】4.【解析】根据题意画出图形,再由等边三角形的性质即可得出结论.解:如图所示,∵在⊙O中AB=2cm,圆心角∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB=2cm,∴⊙O的直径=2OA=4cm.故答案为:4.【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.4.(2013•禅城区校级模拟)在如图所示的平面直角坐标系中,点A(2,9),B(2,3),C(3,2),D(9,2)在⊙P上,则圆心P的坐标是.【答案】(6,6).【解析】根据A、B、C、D都在⊙P上得出P在AB和CD的垂直平分线的交点上,根据A、B的纵坐标得出P在直线y=6上,根据CD的横坐标得出P在直线x=6上,求出两直线的交点坐标即可.解:∵A(2,9),B(2,3),C(3,2),D(9,2)在⊙P上,∴P在AB和CD的垂直平分线的交点上,根据A、B的纵坐标得出P在直线y=6上,根据CD的横坐标得出P在直线x=6上,即P的坐标是(6,6),故答案为:(6,6).【考点】垂径定理;坐标与图形性质;勾股定理.5.(2015秋•仪征市期中)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是.【答案】k>﹣1且k≠0.【解析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.∴k的取值范围为k>﹣1且k≠0,故答案为:k>﹣1且k≠0.【考点】根的判别式;一元二次方程的定义.6.(2015秋•仪征市期中)一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成了正方形,则原矩形的长是米.【答案】12.【解析】根据“如果它的长减少2m,那么菜地就变成正方形”可以得到长方形的长比宽多2米,利用矩形的面积公式列出方程即可.解:∵长减少2m,菜地就变成正方形,∴设原菜地的长为x米,则宽为(x﹣2)米,根据题意得:x(x﹣2)=120,解得:x=12或x=﹣10(舍去),故答案为:12.【考点】一元二次方程的应用.7.(2014•滨州)如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则= . 【答案】. 【解析】根据相似三角形的判定与性质,可得答案. 解:∵DE ∥BC , ∴△ADE ∽△ABC . ∵S △ADE =S 四边形BCED ,∴, ∴, 故答案为:.【考点】相似三角形的判定与性质.8.(2015秋•仪征市期中)如图,△ABC 中,D 为BC 上一点,∠BAD=∠C ,AB=3,BD=2,则CD 的长为 .【答案】.【解析】易证△BAD ∽△BCA ,然后运用相似三角形的性质可求出BC ,从而可得到CD 的值.解:∵∠BAD=∠C ,∠B=∠B ,∴△BAD ∽△BCA ,∴=. ∵AB=3,BD=2, ∴=,∴BC=,∴CD=BC ﹣BD=﹣2=.故答案为.【考点】相似三角形的判定与性质.9.(2015秋•仪征市期中)若m 是方程x 2﹣2x ﹣2=0的一个根,则2m 2﹣4m+2012的值是 .【答案】2016.【解析】根据一元二次方程的解的定义得到m 2﹣2m ﹣2=0,变形得m 2﹣2m=2,又2m 2﹣4m+2012=2(m 2﹣2m )+2012,然后利用整体思想进行计算解:∵m 是方程x 2﹣2x ﹣2=0的一个根,∴m 2﹣2m ﹣2=0,∴m 2﹣2m=2,∴2m 2﹣4m+2012=2(m 2﹣2m )+2012=2×2+2012=2016.故答案为2016.【考点】一元二次方程的解.10.(2015•河池)如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则+= .【答案】1.【解析】根据四边形ABCD 是菱形得到BC ∥AD ,从而得到=,根据CD ∥AM 得到,从而得到==1,代入菱形的边长为1即可求得结论. 【解答】证明:∵四边形ABCD 是菱形,∴BC ∥AD ,CD ∥AM ,∴=,, ∴==1, 又∵AB=AD=1,∴+=1. 故答案为:1.【考点】相似三角形的判定与性质;菱形的性质.三、解答题1.(2015秋•仪征市期中)解方程:(1)x 2﹣8x ﹣10=0;(2)9t 2﹣(t ﹣1)2=0.【答案】(1)x 1=4+,x 2=4﹣;(2)t 1=,t 2=﹣.【解析】(1)利用配方法得到(x ﹣4)2=26,然后利用直接开平方法解方程;(2)利用因式分解法解方程.解:(1)x 2﹣8x=10,x 2﹣8x+16=26,(x ﹣4)2=26,x ﹣4=±,所以x 1=4+,x 2=4﹣;(2)(3t+t ﹣1)(3t ﹣t+1)=0,3t+t ﹣1=0或3t ﹣t+1=0,所以t 1=,t 2=﹣.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.2.(2015秋•仪征市期中)已知关于x 的方程x 2+(m+2)x+2m ﹣1=0.(1)求证:方程有两个不相等的实数根.(2)若1是该方程的一个根.求m 的值并求出此时方程的另一个根.【答案】(1)见解析;(2)另一个根为﹣【解析】(1)若方程有两个不相等的实数根,则应有△=b 2﹣4ac >0,故计算方程的根的判别式即可证明方程根的情况;(2)直接代入x=1,求得m 的值后,解方程即可求得另一个根.【解答】(1)证明:∵a=1,b=m+2,c=2m ﹣1,∴△=(m+2)2﹣4×1×(2m ﹣1)=m 2﹣4m+8=(m ﹣2)2+4,∵无论m 取何值,(m ﹣2)2≥0,∴(m ﹣2)2+4>0,即△>0,∴方程x 2+(m+2)x+2m ﹣1=0有两个不相等的实数根;(2)解:把x=1代入原方程得,1+m+2+2m ﹣1=0,∴m=﹣,∴原方程化为程x 2+x ﹣=0,解得:x 1=1,x 2=﹣,即另一个根为﹣【考点】根的判别式.3.(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【答案】(1)10%;(2)2名业务员.【解析】(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意得10(1+x )2=12.1,解得x 1=0.1,x 2=﹣2.2(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件, ∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31, ∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.【考点】一元二次方程的应用;一元一次不等式的应用.4.(2015秋•仪征市期中)如图△ABC 中,DE ∥BC ,=,M 为BC 上一点,AM 交DE 于N .(1)若AE=4,求EC 的长;(2)若M 为BC 的中点,S △ABC =36,求S △ADN .【答案】(1)EC=2;(2)S △ADN =8.【解析】(1)利用平行可得=可求得AC 的长,结合条件可求得EC ;(2)可先求得△ABM 的面积,再利用相似可求得△ADN 的面积.解:(1)∵DE ∥BC ,∴==,∵AE=4, ∴AC=6, ∴EC=6﹣4=2;(2)∵M 为BC 的中点,∴S △ABM =S △ABC =18,∵DE ∥BC , ∴△AND ∽△ABM ,∴=()2=,∴S △ADN =8.【考点】平行线分线段成比例;相似三角形的判定与性质.5.(2013秋•昌平区校级期末)如图,在△ABC 中,∠ABC=2∠C ,BD 平分∠ABC ,且,,求AB 的值.【答案】【解析】由在△ABC中,∠ABC=2∠C,BD平分∠ABC,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得AB2=AD•AC,则可求得AB的值.解:∵在△ABC中,∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠C=∠CBD,∴CD=BD=2,∴AC=AD+CD=+2=3,∵∠A是公共角,∴△ABD∽△ACB,∴AD:AB=AB:AC,∴AB2=AD•AC=×3=6,∴AB=【考点】相似三角形的判定与性质.6.(2013秋•相城区校级期末)如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.【答案】(1)r=5;(2)见解析【解析】(1)可在Rt△OBM中,用半径表示出OM,然后根据勾股定理求出半径的长;(2)可连接BC,证∠EBC=∠ECB即可;已知的条件是由垂径定理得出的,可有两种证法:①连接AC,易证得∠CAB=∠BCF,然后根据上面得出的等弧,通过等量代换得出结论;②将半圆补全,直接由垂径定理求出结果.【解答】(1)解:∵OC为⊙O的半径,OC⊥BD,∴;∵DB=8,∴MB=4(1分)设⊙O的半径为r,∵CM=2,∴OM=r﹣2,在Rt△OMB中,根据勾股定理得(r﹣2)2+42=r2,解得r=5;(2分)(2)证明:方法一:连接AC、CB,∵AB是直径,∴∠ACB=90°.∴∠ACF+∠FCB=90°.又∵CF⊥AB,∴∠CAF+∠ACF=90°∴∠FCB=∠CAF(3分)∵OC为⊙O的半径,OC⊥BD,∴C是的中点,∴∠CAF=∠CBD.(4分)∴∠FCB=∠DBC.∴CE=BE;(5分)方法二:如图,连接BC,补全⊙O,延长CF交⊙O于点G;又∵CF⊥AB,AB为直径,∴=.(3分)∴OC为⊙O的半径,OC⊥BD.∴C是的中点,∴=.(4分)∴=.∴∠FCB=∠DBC.∴CE=BE.(5分)【考点】圆周角定理;勾股定理;垂径定理.7.(2015秋•仪征市期中)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若∠B=70°,求弧DE的度数.(3)若BD=2,BE=3,求AC的长.【答案】(1)见解析;(2)40°;(3)9.【解析】(1)连结AE,如图,由圆周角定理得∠AEC=90°,而AB=AC,则根据等腰三角形的性质即可判断BE=CE;(2)连结OD、OE,如图,在Rt△ABE中,利用互余计算出∠BAE=20°,再根据圆周角定理得∠DOE=2∠DAE=40°,然后根据圆心角的度数等于它所对的弧的度数即可得到弧DE的度数为40°;(3)连结CD,如图,BC=2BE=6,设AC=x,则AD=x﹣2,由圆周角定理得∠ADC=90°,在Rt△BCD中,利用勾股定理得CD2=32,然后在Rt△ADC中再利用勾股定理得到(x﹣2)2+32=x2,接着解方程求出x即可.解:(1)证明:连结AE,如图,∵AC为直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:连结OD、OE,如图,在Rt△ABE中,∠BAE=90°﹣∠B=90°﹣70°=20°,∴∠DOE=2∠DAE=40°,∴弧DE的度数为40°;(3)解:连结CD,如图,BC=2BE=6,设AC=x,则AD=x﹣2,∵AC为直径,∴∠ADC=90°,在Rt△BCD中,CD2=BC2﹣BD2=62﹣22=32,在Rt△ADC中,∵AD2+CD2=AC2,∴(x﹣2)2+32=x2,解得x=9,即AC的长为9.【考点】圆周角定理;等腰三角形的判定与性质.8.(2015•海宁市模拟)如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).(1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,则∠OBA+∠ODA= °.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.【答案】(1)60°;(2)①60°;②∠ODA=∠OBA+60°.【解析】(1)连接BD,首先圆周角定理,求出∠BAD的度数是多少;然后根据三角形的内角和定理,求出∠0BD、∠ODB的度数和是多少;最后在△ABD中,用180°减去∠BAD、∠0BD、∠ODB的度数和,求出∠OBA+∠ODA等于多少即可.(2)①首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,,求出∠B0D的度数,进而求出∠BAD的度数;最后根据平行四边形的性质,求出∠OBC、∠ODC的度数,再根据∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②Ⅰ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,,求出∠B0D的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠OBA=∠ODA+60°即可.Ⅱ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,,求出∠B0D的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠ODA=∠OBA+60°即可.解:(1)如图1,连接BD,,∵∠BOD=120°,∴∠BAD=120°÷2=60°,∴∠0BD+∠ODB=180°﹣∠BOD=180°﹣120°=60°,∴∠OBA+∠ODA=180°﹣(∠0BD+∠ODB)﹣∠BAD=180°﹣60°﹣60°=120°﹣60°=60°(2)①如图2,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,,∴,∴∠B0D=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°﹣120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°﹣(∠OBC+∠ODC)=180°﹣(60°+60°)=180°﹣120°=60°②Ⅰ、如图3,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,,∴,∴∠B0D=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA=∠ODA+60°.Ⅱ、如图4,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,,∴,∴∠B0D=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD﹣∠BAD=∠OAD﹣60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA=∠ODA﹣60°,即∠ODA=∠OBA+60°.故答案为:60.【考点】圆周角定理;平行四边形的性质;圆内接四边形的性质.9.(2015秋•仪征市期中)如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为t秒,当点P运动到点A时,P、Q两点同时停止运动.(1)用含有t的代数式表示PE= ;(2)探究:当t为何值时,四边形PQBE为梯形?(3)是否存在这样的点P和点Q,使△PQE为等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.【答案】(1)﹣t+3;(2)t=,(3)见解析【解析】(1)由四边形ABCD为矩形,得到∠D为直角,对边相等,可得三角形ADC为直角三角形,由AD与DC的长,利用勾股定理求出AC的长,再由PE平行于CD,利用两直线平行得到两对同位角相等,可得出三角形APE与三角形ADC相似,由相似得比例,将各自的值代入,整理后得到y与x的关系式;(2)若QB与PE平行,得到四边形PQBE为矩形,不合题意,故QB与PE不平行,当PQ与BE平行时,利用两直线平行得到一对内错角相等,可得出一对邻补角相等,再由AD与BC平行,得到一对内错角相等,可得出三角形APQ与三角形BEC相似,由相似得比例列出关于x的方程,求出方程的解即可得到四边形PQBE为梯形时x的值;(3)存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形,分两种情况考虑:当Q在AE上时,由AE﹣AQ表示出QE,再根据PQ=PE,PQ=EQ,PE=QE三种情况,分别列出关于x的方程,求出方程的解即可得到满足题意x的值;当Q在EC上时,由AQ﹣AE表示出QE,此时三角形为钝角三角形,只能PE=QE列出关于x的方程,求出方程的解得到满足题意x的值,综上,得到所有满足题意的x的值.解:(1)∵四边形ABCD是矩形,∴∠D=90°,AB=DC=3,AD=BC=4,∴在Rt△ACD中,利用勾股定理得:AC==5,∵PE∥CD,∴∠APE=∠ADC,∠AEP=∠ACD,∴△APE∽△ADC,又∵PD=t,AD=4,AP=AD﹣PD=4﹣t,AC=5,DC=3,∴==,即==,∴PE=﹣t+3.故答案为:﹣t+3;(2)若QB∥PE,四边形PQBE是矩形,非梯形,故QB与PE不平行,当QP∥BE时,∵∠PQE=∠BEQ,∴∠AQP=∠CEB,∵AD∥BC,∴∠PAQ=∠BCE,∴△PAQ∽△BCE,由(1)得:AE=﹣t+5,PA=4﹣t,BC=4,AQ=t,∴==,即==,整理得:5(4﹣t)=16,解得:t=,∴当t=时,QP∥BE,而QB与PE不平行,此时四边形PQBE是梯形;(3)存在.分两种情况:当Q在线段AE上时:QE=AE﹣AQ=﹣t+5﹣t=5﹣t,(i)当QE=PE时,5﹣t=﹣t+3,解得:x=;(ii)当QP=QE时,∠QPE=∠QEP,∵∠APQ+∠QPE=90°,∠PAQ+∠QEP=90°,∴∠APQ=∠PAQ,∴AQ=QP=QE,∴t=5﹣t,解得,t=;(iii)当QP=PE时,过P作PF⊥QE于F(如图1),可得:FE=QE=(5﹣t)=,∵PE∥DC,∴∠AEP=∠ACD,∴cos∠AEP=cos∠ACD==,∵cos∠AEP===,解得t=;当点Q在线段EC上时,△PQE只能是钝角三角形,如图2所示:∴PE=EQ=AQ﹣AE,AQ=t,AE=﹣t+5,PE=﹣t+3,∴﹣t+3=t﹣(﹣t+5),解得t=.综上,当t=或t=或t=或t=时,△PQE为等腰三角形.【考点】四边形综合题.。

2014年江苏省无锡市中考数学试卷及答案解析

2014年江苏省无锡市中考数学试卷及答案解析

2014年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。

在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.(3分)﹣3的相反数是( ) A .3B .﹣3C .±3D .132.(3分)函数y =√2−x 中自变量x 的取值范围是( ) A .x >2 B .x ≥2 C .x ≤2 D .x ≠23.(3分)分式22−x可变形为( )A .22+xB .−22+xC .2x−2D .−2x−24.(3分)已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( ) A .平均数B .标准差C .中位数D .众数5.(3分)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60﹣x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60﹣x )=876.(3分)已知圆锥的底面半径为4cm ,母线长为5cm ,则这个圆锥的侧面积是( ) A .20πcm 2B .20cm 2C .40πcm 2D .40cm 27.(3分)如图,AB ∥CD ,则根据图中标注的角,下列关系中成立的是( )A .∠1=∠3B .∠2+∠3=180°C .∠2+∠4<180°D .∠3+∠5=180°8.(3分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3B.2C.1D.09.(3分)在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(−√3,0),则直线a的函数关系式为()A.y=−√3x B.y=−√33x C.y=−√3x+6D.y=−√33x+610.(3分)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条二、填空题(本大题共8小题,每小题2分,共16分。

江苏省无锡市北塘区九年级上期中数学试题含答案

江苏省无锡市北塘区九年级上期中数学试题含答案

一.选择题:(本大题共10题,每小题3分,共30分.)1.一元二次方程032=+x x 的解是…………………………………………………( ) A .3-=x B .01=x ,32-=x C .3,021==x x D .3=x2.一元二次方程x 2-3x +4=0的根的情况是…………………………………………( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D . 没有实数根3.用配方法解方程2250x x --=时,原方程应变形为 ( )A .()216x -= B .()216x += C .()229x +=D .()229x -=4.下列说法中,不正确的是…………………………………………………………( ) A .过圆心的弦是圆的直径 B .等弧的长度一定相等 C .周长相等的两个圆是等圆 D .相等的弦所对的圆周角也相等5.下面给出了一些关于相似的命题,其中真命题有…………………………………………( )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似. A . 1 个B . 2个C . 3个D . 4个6.如图,在△ABC 中,DE 与BC 不平行,那么下列条件中,不能判断△ADE ∽△ACB 的是( ) A .∠ADE =∠C B .∠AED =∠B C .BC DE AB AD = D .ABAEAC AD =7.如图,为测量某树的高度,小明用长为2m 的竹竿作测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好落在地面的同一点,此时竹竿与这一点相距6m ,与树距15m ,则树的高度为( )A . 4mB . 5mC . 7mD . 9m 8.如图,AB 、AC 是⊙O 的两条弦,∠BAC =25°,过点C 的切线与OB 的延长线交于点D ,则∠D 的度为…………………………………………………………………………………………( ) A . 25° B . 30° C . 35° D . 40° 9.如图,△ABC 内接于⊙O ,∠C =45°,AB =2,则⊙O 的半径为………………………………( )A .1 B .C .2 D .10.如图,在Rt△AOB中,OA=OB =3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ的最小值为………………()A .﹣1 B.2 C.2D.3二.填空题(本大题共10小题,每空2分,共20分.)11.将一元二次方程2x(x-3)=1化成一般形式为.12.若关于x的方程x2-2x+k=0有两个相等的实数根,则k的值是.13.一元二次方程x2+ x﹣2=0的两根之积是 _______.14.已知两相似三角形对应高之比是1︰2,则它们的面积之比为.15.某企业五月份的利润是25万元,预计七月份的利润将达到36万元.设平均月增长率为x,根据题意所列方程是 ________ _ .16.如图,已知A、B、C三点都在⊙O上,∠AOB=50°,∠ACB= _________ °.17.如图,⊙O的直径AB与弦CD相交,∠ACD = 60°,则∠BAD = _____ °.18.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为 _________ .19.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是 ________ .20.如图,矩形ODEF的一边落在矩形ABCO的一边上,并且矩形ODEF∽矩形ABCO,其相似比为1:4,矩形ABCO的边AB=4,BC=43.将矩形ODEF绕点O逆时针旋转一周,连接EC、EA,则整个旋转过程中△ACE的最大面积为.三.解答题(本大题共8小题,共80分.21.解方程(本题满分16分)①3x2-4x=0 ②x2﹣4x+2=0(第10题)(第20题)③ 9(x +1)2-(x -2)2=0 ④ 04322=--x x22.(本题满分8分)在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC = °,BC = .(2)判断△ABC 与△DEF 是否相似,并说明理由.(3)请在图中再画一个和△ABC 相似,但与图中三角形均不全等的格点三角形.23 (本题满分8分)关于x 的一元二次方程x 2+3x +m -1=0有两个实数根,分别为x 1、x 2. (1)求m 的取值范围;(2)若2(x 1+x 2)+x 1x 2+10=0.求m 的值.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线交AC 于点D ,点O 是AB 上一点,⊙O 过B 、D 两点,且分别交AB 、BC 于点E 、F . (1)求证:AC 是⊙O 的切线;(2)已知AB =10,BC =6,求⊙O 的半径r.25. (本题满分8分)为迎接“元旦”的到来,某食品连锁店对某种商品进行了跟踪调查,发现每天它的销售价与销售量之间有如下关系:如果单价从最高25元/千克下调到x 元/千克时,销售量为y 千克,已知y 与x 之间的函数关系是一次函数: (1)求y 与x 之间的函数关系式;(2)若该种商品成本价是15元/千克,为使“元旦”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?每千克售价(元)252423…15每天销售量(千克)30323450CD所在⊙O的圆心,点O又恰CD和矩形ABCD构成.O点为⌒如图为一桥洞的形状,其正视图是由圆弧⌒好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.(1)求⌒CD所在⊙O的半径DO;(2)若河里行驶来一艘正视图为矩形的船,其宽6米,露出水面AB的高度为h米,求船能通过桥洞时的最大高度h.阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个..强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM 的边AB上的一个强相似点,试探究AB和BC的数量关系.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为1cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=23cm,AD=2cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为2cm/s,矩形ABCD的移动速度为3cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为 °;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<1时,求t的取值范围(解答时可以利用备用图画出相关示意图).参考答案及评分标准22.(本题满分8分)(1)填空:∠ABC = 135 °,BC = 2 2 .………2分 (2)判断△ABC 与△DEF 是否相似,并说明理由.(3)请在图中再画一个和△ABC 相似,但与图中三角形均不全等的格点三角形. 解:(2)△ABC 与△DEF 相似 ………3分 理由为:∵AB =2 , BC =2 2 , AC =2 5DE =2, EF =2 , DF =10 ……… 4分 ∴2===DFACEF BC DE AB ∴△AB C ∽△DEF ……………6分(其他解法请酌情给分.)(3)只要画对一种即可得2分25.解:(1)设y=kx+b(k≠0),将(25,30)(24,32)代入得:1分解得:,…………2分∴y=﹣2x+80.…………3分(2)设这一天每千克的销售价应定为x元,根据题意得:(x﹣15)(﹣2x+80)=200,…………5分x2﹣55x+700=0,∴x1=20,x2=35.…………7分(其中,x=35不合题意,舍去)(2)如图所示:点E 是四边形ABCD 的边AB 上的强相似点(只需画对一个)………6分 …(3)∵点E 是四边形ABCM 的边AB 上的一个强相似点, ∴△AEM ∽△BCE ∽△ECM , …………7分∴∠BCE =∠ECM =∠AEM . 由折叠可知:△ECM ≌△DCM , ∴∠ECM =∠DCM ,CE =CD ,∴∠BCE =∠BCD =30°, …………8分BE =,在Rt △BCE 中,=,∴.(或BC AB =32)…………10分11 / 11。

2014年4月无锡省锡中初三数学期中试卷(含答案)

2014年4月无锡省锡中初三数学期中试卷(含答案)

初三数学适应性练习试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.............)1。

16的算术平方根等于(▲)A.±4 B.一4 C.4 D.16±2。

下列计算正确的是(▲)A.()baab33= B.1-=+--babaC. 326aaa=÷ D.222)(baba+=+3.若一个正多边形的一个外角是45°,则这个正多边形的边数是(▲)A.7 B.8 C.9 D.104.两圆的半径分别为3和7,圆心距为4,则两圆的位置关系是( ▲)A. 内切B. 相交 C。

外切 D. 外离5.等腰三角形的一边长为4,另一边长为3,则它的周长为(▲)A.11 B.10 C.10或11 D.以上都不对6.矩形具有而菱形不一定具有的性质是( ▲)A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角互补7。

一组数据2,7,6,3,4, 7的众数和中位数分别是( ▲) A。

7和4.5 B。

4和6 C。

7和4 D。

7和58。

抛物线223y x x=-++的顶点坐标是(▲) A.(-1,4) B.(1,3) C.(-1,3) D.(1,4)9.一次函数y kx b=+的图象如图所示,则不等式:0kx b-+>的解集为( ▲)A.1x>-B.1x<-C.1x>D.1x<10。

如图,在斜边为3的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3…依次作下去,则第2014个正方形A2014B2014C2014D2014的边长是( ▲) A.201213B.201313C.201413D.201513(第10题图)(第9题图)二、填空题(本大题共8小题, 每小题2分,共16分,不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11。

江苏省无锡大桥中学2015届九年级上期中考试数学试题及答案

江苏省无锡大桥中学2015届九年级上期中考试数学试题及答案

ABCO(第6题图)2014~2015学年度第一学期期中考试初三数学面卷一、选择题1.方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x =2.若关于x 的方程022=+-n x x 无实数根,则一次函数n x n y --=)1(的图像不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.下列说法:(1)三个点确定一个圆;(2)相等的圆心角所对的弦相等;(3)同弧或等弧所对的圆周角相等;(4)三角形的外心到三角形三条边的距离相等;(5)外心在三角形的一边上的三角形是直角三角形;(6)方程x 2+4x ―1=0的两个实数根的和为4.其中正确的有( ) A .0个 B .1个 C .2个 D .3个 4.三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是 ( ) A . 9B . 11C .13D . 11或135. 如图,AB 是⊙O 的直径,AB 垂直于弦CD ,∠BOC =70°,则∠ABD =( ) A .20°B .46°C .55°D .70°6.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .130°B .100°C .50°D .65°7.关于x 的一元二次方程(a −1)x 2−2x +3=0有实数根,则整数a 的最大值是( )A .2B .1C .0D .−18.在平面直角坐标系中,以点(3,-5)为圆心,r 为半径的圆上有且仅有两点到x 轴所在直线 的距离等于1,则圆的半径r 的取值范围是( ) A .r>4B .0<r<6C .4≤r<6D .4<r<69.如图,P A 切⊙O 于点A ,割线PBC 经过圆心O ,OB =PB =1,OA 绕点O 逆时针方向旋转 60°到OD ,则PD 的长为( )A .7B .231C .5D .22 10.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i”,使其满足21i =-(即方程21x =-有一个根为i )。

无锡市新区2014届九年级(上)期中数学试题(含答案)

无锡市新区2014届九年级(上)期中数学试题(含答案)

2013—2014学年第一学期初三数学期中考试试卷(时间:100分钟,分值:100分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列二次根式中,最简二次根式是 ( ).(A)(B) (C) (D) .2. 下列方程中是关于x 的一元二次方程的是 ( )A .2210x x +=B .20ax bx c ++=C .(1)(2)1x x -+=D .223250x xy y --=3. 下面计算正确的是 ( )A.3= 3= C. = 2=-4.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是 ( ) A .平均数是4 B .极差是5 C .众数是3 D . 中位数是65. 下列关于矩形的说法中正确的是 ( ) A .对角线相等的四边形是矩形 B .对角线互相平分的四边形是矩形 C .矩形的对角线互相垂直且平分 D .矩形的对角线相等且互相平分6. 12a =-,则 ( )A .a <12 B. a ≤12 C. a >12 D. a ≥127. 已知等腰三角形的一个内角为70°,则另外两个内角的度数是 ( ) A .55°,55° B .70°,40° C .55°,55°或70°,40° D .以上都不对 8. 已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是( ) A .12cm 2 B . 24cm 2 C . 48cm 2 D . 96cm 29. 如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,︒>∠60BEG ,现沿直线EG 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与BEG ∠相等的角的个数为 ( ) A.4 B. 3 C.2 D.1(第9题图) (第10题图)10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是 ( ) A .4m cm B . 4n cm C . 2(m +n ) cm D . 4(m -n ) cm 二.填空题(本大题共8小题,每空2分,共16分.)11. 有意义的x 的取值范围是 . 12.在实数范围内因式分解:416a -= .13.已知关于x 的方程260x mx +-=的一个根为2,则另一根是___ ____.142(5)0b -=,求a b -=15.如图,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,EF 为中位线,若AB =2b ,EF =a ,则阴影部分的面积为 .(第15题图) (第16题图) (第17题图)16.如图,P 是菱形ABCD 对角线BD 上一点,PE ⊥AB 于点E ,PE =4cm ,则点P 到BC 的距离是_ ____cm .17.如图,已知矩形ABCD 中,AB =12,AD =3,E 、F 分别为AB 、DC 上的两个动点,则AF +FE +EC的最小值为18.存在正整数a ,能使得关于x 的一元二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根,则a =三.解答题(本大题共8小题,共54分. 解答需写出必要的文字说明或演算步骤) 19.计算(8分)(1 (2)20.解下列一元二次方程(8分)(1)2890x x +-= (2)2250x x --=(配方法)21.(6分)如图已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE=DF .求证:四边形AECF 是平行四边形22.(5分)一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩有如下信息:(1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的标准差.(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?23.(6分)已知,下列n(n为正整数)个关于x的一元二次方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年江苏省无锡市北塘区九年级(上)期中数学试卷一、选择题(本大题共8小题,每题3分,共24分)1.(3分)一元二次方程x2﹣3x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对3.(3分)如图,E是▱ABCD边AB的延长线上一点,DE交BC于F,则图中的相似三角形共有()A.l对B.2对 C.3对 D.4对4.(3分)两个相似多边形的一组对应边分别为6cm和8cm,如果较小多边形的周长为24cm,那么较大多边形的周长为()A.32cm B.30cm C.40cm D.56cm5.(3分)下列条件中,不能判断△ABC与△A′B′C′相似的是()A.∠A=45°,∠C=26°;∠A′=45°,∠B′=109°B.AB=1,AC=,BC=2;A′B′=6,A′C′=9,B′C′=12C.AB=1.5,AC=,∠A=36°;A′B′=2.1,A′C′=1.5,∠A′=36°D.AB=2,BC=1,∠B=90°;A′B′=4,B′C′=2,∠B′=90°6.(3分)已知⊙O的直径是11cm,点O到直线m的距离是6cm,则⊙O与直线m的位置关系是()A.相离B.相切C.相交D.无法判断7.(3分)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为()A.35°B.45°C.60°D.70°8.(3分)如图,已知BO是△ABC的外接圆的半径,CD⊥AB于D.若AD=3,BD=8,CD=6,则BO的长为()A.6 B.C.4 D.二、填空题(本大题共10小题,每空2分,共22分)9.(2分)一元二次方程2x2﹣6=0的解为.10.(4分)关于x的一元二次方程x2﹣5x+p=0的一个根为2,则p的值是,另一个根为.11.(2分)在一次朋友家聚会上,每两个人都互相握了一次手,总共握了55次手,设参加聚会的人数为x,则列方程:.12.(2分)已知,关于x方程kx2+3x﹣1=0有实根,则实数k的取值范围是.13.(2分)若=,则=.14.(2分)在比例尺为1:300 000的地图上,量得无锡三阳广场到江阴文明广场的距离为14cm,则两地的实际距离为km.15.(2分)如图,∠B=68°,则∠OCA=°.16.(2分)在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于两点M(0,2),N(0,8),则点P的坐标为.17.(2分)如图,⊙I为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为20,BC边的长为6,则△ADE的周长为.18.(2分)如图,已知点P是半径为1.5的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=2,则▱ABCD面积的最大值为.三、解答题(本大题共7小题,共54分.)19.(12分)(1)2(x﹣1)2=32(2)2(x﹣3)2=x(x﹣3)(3)2x2﹣4x+1=0(4)x2﹣5x+6=0.20.(4分)以原点O为位似中心,将△ABC缩小,使变换后得到的△A1B1C1与△ABC对应边的比为1:2.请在网格内画出△A1B1C1,并写出点A1的坐标.21.(6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.22.(6分)把球放在长方体纸盒内,球的一部分露出盒外,如图所示为正视图.已知EF=CD=16厘米,求出这个球的半径.23.(8分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.24.(8分)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.25.(10分)如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA上一动点,连结PC交⊙O于点D,过点P作PC的垂线,交切线BC于点E,交⊙O于点F,连结DF交AB于点G.(1)当P是OA的中点时,求PE的长;(2)若∠PDF=∠E,求△PDF的面积.2014-2015学年江苏省无锡市北塘区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题3分,共24分)1.(3分)一元二次方程x2﹣3x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根【解答】解:△=b2﹣4ac=(﹣3)2﹣4×1×4=﹣7,∵﹣7<0,∴原方程没有实数根.故选:D.2.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.3.(3分)如图,E是▱ABCD边AB的延长线上一点,DE交BC于F,则图中的相似三角形共有()A.l对B.2对 C.3对 D.4对【解答】解:图中相似三角形有:△BFE∽△ADE,△DFC∽△EFB,△DFC∽△EDA,共3对,故选:C.4.(3分)两个相似多边形的一组对应边分别为6cm和8cm,如果较小多边形的周长为24cm,那么较大多边形的周长为()A.32cm B.30cm C.40cm D.56cm【解答】解:∵两个相似三角形的一组对应边分别为6cm和8cm,∴相似比为:6:8=3:4,∴周长比为:3:4,∵较小三角形的周长为24cm,∴较大三角形的周长为:24×=32(cm).故选:A.5.(3分)下列条件中,不能判断△ABC与△A′B′C′相似的是()A.∠A=45°,∠C=26°;∠A′=45°,∠B′=109°B.AB=1,AC=,BC=2;A′B′=6,A′C′=9,B′C′=12C.AB=1.5,AC=,∠A=36°;A′B′=2.1,A′C′=1.5,∠A′=36°D.AB=2,BC=1,∠B=90°;A′B′=4,B′C′=2,∠B′=90°【解答】解:A、∵∠A=45°,∠C=26°,∴∠B=180°﹣∠A﹣∠C=180°﹣45°﹣26°=109°,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,故本选项错误;B、===6,△ABC∽△A′B′C′,故本选项错误;C、==,==,,≠,△ABC与△A′B′C′不相似,故本选项正确;D、=,∠B=∠B′,△ABC∽△A′B′C′,故本选项错误.故选:C.6.(3分)已知⊙O的直径是11cm,点O到直线m的距离是6cm,则⊙O与直线m的位置关系是()A.相离B.相切C.相交D.无法判断【解答】解:∵⊙O的直径11cm,∴⊙O的半径为5.5cm,∵圆心O到直线l的距离d=6cm,∴d>R,∴直线l与⊙O的位置关系是相离.故选:A.7.(3分)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为()A.35°B.45°C.60°D.70°【解答】解:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.故选:D.8.(3分)如图,已知BO是△ABC的外接圆的半径,CD⊥AB于D.若AD=3,BD=8,CD=6,则BO的长为()A.6 B.C.4 D.【解答】解:如图,延长BO交⊙O于点E,连接CE.在直角△ADC中,由勾股定理得到:AC===3.在直角△BCD中,由勾股定理得到:BC===10,∵BE是直径,∴∠BCE=90°.又∵CD⊥AB,∴∠ADC=∠ECB=90°.又∠ACD=∠EBC,∴△ACD∽△EBC,∴=.∴=,解得BE=5,则BO=BE=.故选:B.二、填空题(本大题共10小题,每空2分,共22分)9.(2分)一元二次方程2x2﹣6=0的解为±.【解答】解:2x2﹣6=0,2x2=6,x2=3,x=±.10.(4分)关于x的一元二次方程x2﹣5x+p=0的一个根为2,则p的值是6,另一个根为3.【解答】解:设方程的另一根是t,则2+t=5,解得t=3,即方程的另一根是3.把x=2代入已知方程,得4﹣10+p=0,解得p=6.故答案是:6,3.11.(2分)在一次朋友家聚会上,每两个人都互相握了一次手,总共握了55次手,设参加聚会的人数为x,则列方程:x(x﹣1)=66.【解答】解:设有x人参加聚会,根据题意列方程得,x(x﹣1)=66,故答案为:x(x﹣1)=66.12.(2分)已知,关于x方程kx2+3x﹣1=0有实根,则实数k的取值范围是k ≥﹣.【解答】解:(1)当k=0时,3x﹣1=0,解得:x=;(2)当k≠0时,此方程是一元二次方程,∵关于x方程kx2+3x﹣1=0有实根,∴△=(3)2﹣4k×(﹣1)≥0,解得k≥﹣,由(1)和(2)得,k的取值范围是k≥﹣.故答案为:k≥﹣.13.(2分)若=,则=.【解答】解:∵=,∴4(a﹣b)=3b,∴4a=7b,∴=.故答案为:.14.(2分)在比例尺为1:300 000的地图上,量得无锡三阳广场到江阴文明广场的距离为14cm,则两地的实际距离为52km.【解答】解:14×300000=5200000cm=52km.故答案为52.15.(2分)如图,∠B=68°,则∠OCA=22°.【解答】解:连接OA,则∠AOC=2∠B=136°,∵OA=OC,∴∠OCA=∠OAC=(180°﹣∠AOC)=22°,故答案为:22.16.(2分)在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于两点M(0,2),N(0,8),则点P的坐标为(4,5).【解答】解:过点P作PD⊥MN于D,连接PQ.∵⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,∴OM=2,NO=8,∴NM=6,∵PD⊥NM,∴DM=3∴OD=5,∴OQ2=OM•ON=2×8=16,OQ=4.∴PD=4,PQ=OD=3+2=5.即点P的坐标是(4,5).故答案是:(4,5).17.(2分)如图,⊙I为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为20,BC边的长为6,则△ADE的周长为8.【解答】解:∵BG和BF是圆的切线,∴BF=BG,同理,DG=DI,EH=EI,CF=CH.∴BG+CH=BC=6,△ADE的周长=AD+AE+DE=AD+AE+DI+IE=AD+AE+DG+EH=AG+AH=20﹣6﹣6=8.故答案是:8.18.(2分)如图,已知点P是半径为1.5的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=2,则▱ABCD面积的最大值为6.【解答】解:∵S▱ABCD=S△ABC,∴当△ABC的面积最大时,▱ABCD的面积最大.∵AC、AB已知,所以当B点到AC的高h最大时,△ABC的面积最大.∵AB≥h,∴当AB=h,即AB⊥AC时,△ABC的面积最大,如图:∴S▱ABCD=2S△ABC=2×AB•AC=2×3=6.∴▱ABCD面积的最大值为6.故答案为:6.三、解答题(本大题共7小题,共54分.)19.(12分)(1)2(x﹣1)2=32(2)2(x﹣3)2=x(x﹣3)(3)2x2﹣4x+1=0(4)x2﹣5x+6=0.【解答】解:(1)方程变形得:(x﹣1)2=16,开方得:x﹣1=4或x﹣1=﹣4,解得:x1=5,x2=﹣3;(2)方程变形得:2(x﹣3)2﹣x(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x)=0,解得:x1=3,x2=6;(3)整理a=2,b=﹣4,c=1,∵△=16﹣8=8,∴x1=,x2=;(4)分解因式得:(x﹣2)(x﹣3)=0,解得:x1=2,x2=3.20.(4分)以原点O为位似中心,将△ABC缩小,使变换后得到的△A1B1C1与△ABC对应边的比为1:2.请在网格内画出△A1B1C1,并写出点A1的坐标(1,4).【解答】解:如图所示:A1(1,4).故答案为:(1,4).21.(6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.【解答】解:(1)△ABC是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)△ABC是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形.22.(6分)把球放在长方体纸盒内,球的一部分露出盒外,如图所示为正视图.已知EF=CD=16厘米,求出这个球的半径.【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=8,设求半径为r,则OH=16﹣r,在Rt△OFH中,r2﹣(16﹣r)2=82,解得r=10,∴这个球的半径是10厘米.23.(8分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【解答】解:(1)当每吨售价是240元时,此时的月销售量为:45+×7.5=60;(2)设当售价定为每吨x元时,由题意,可列方程(x﹣100)(45+×7.5)=9000.化简得x2﹣420x+44000=0.解得x1=200,x2=220.当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.(3)我认为,小静说的不对.∵由(2)知,x2﹣420x+44000=0,∴当月利润最大时,x为210元.理由:方法一:当月利润最大时,x为210元,而对于月销售额=来说,当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.∵17325元<18000元,∴当月利润最大时,月销售额W不是最大.∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分)24.(8分)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.【解答】(1)证明:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠2+∠ODC=90°,∵OC=OD,∴∠C=∠ODC,∴∠2+∠C=90°,而OC⊥OB,∴∠C+∠3=90°,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2;(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠1=∠2,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴=,即=,∴AG=6.25.(10分)如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA上一动点,连结PC交⊙O于点D,过点P作PC的垂线,交切线BC于点E,交⊙O于点F,连结DF交AB于点G.(1)当P是OA的中点时,求PE的长;(2)若∠PDF=∠E,求△PDF的面积.【解答】解:(1)当P是OA的中点时,PB=3,∵CE是⊙O的切线,∴AB⊥CE,又∵CP⊥PE,∠CPB=∠E,∴△CBP∽△PBE,∴=,∴BE=,∴在Rt△PBE中,PE===;(2)在Rt△PDG中,由∠PDF=∠E=∠CPB,可知∠GPF=∠GFP于是GD=GP=GF,直径AB平分弦DF,有两种可能:(ⅰ)弦DF不是直径,如图1,则AB⊥DF,于是PD=PF,∠GPD=∠GDP=45°=×2×2=2;∴BP=BC=2=BO,点P与点O重合.S△PDF(ⅱ)弦DF恰为直径,如图2,则点P即为点A.而BC=2,BP=4,∴BE=8,S△PCE=×10×4=20,=()2×20=.∴S△PDF。

相关文档
最新文档