分式的有关概念设A

合集下载

分式的概念与分式有意义的条件

分式的概念与分式有意义的条件

智力大冲浪
第一关
第二关
第三关
1. 2.
形当分如母不—的BA等式于子0叫时分,分式式. 有意义(. ())
3. 当分式的值等于0时,分式无意义.( )
4. 当分子等于0时,分式的值等于0. ( )
× ×√ ×
恭喜你们过关! 请进入下一关。
1.下列四个代数式中,分式为( B )
2x 5
1
x8
A. 7 B. 3x C. 8
∴4x-1≠0
4x ≠1
x ≠1/4 答:当x ≠1/4时,分式
x有 1意义。 4x 1
当X取什么值时,分式 x 1 4x 1
的值为零?
解:①要使分式的值为0,则X+1=0 ∴X = -1
此时分母4X-1≠0
∴当x= -1时,分式的值是零。
5 800 x 200 y
16
1000
11
b
a a 100
400 x y 24
这些式子有什么 共同特征?
你能一对般前面地得,到的如果5A,B表11示两个整式, 并 做分且80B式01x中0。0其20含0中0有yA字是a母分b11,060式那的么x分a式4子y0子0,24B是叫分—AB
式的这五分个母式子。按照分母的不同特征分成两类吗?
判断下列式子中哪些是分式?
A.
2 —x—2
B.
1 —x—2+—2— C.
—x—12-—1—
D. —x—1+—1—
恭喜你们过关! 请进入下一关。
1.当x=__3__时,分式—x—+2— 无意义。 x-3
2.当x,y满足关系__x_≠_y__时,分式
x y x y
有意义.

分式的概念和性质+答案

分式的概念和性质+答案

分式的概念和性质(提高)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件. 2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念A 一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子A叫做分式. 其中AB叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的. 分数是整式,不是分式,分式是两个整式相除的商式. 分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母” ,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如x y是分式,与xy 有区别,xy 是整式,即只看形式,x不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1. 分式有意义的条件:分母不等于零.2. 分式无意义的条件:分母等于零.3. 分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值不变,这个性质叫做A A M A A M分式的基本性质,用式子表示是: A A M,A A M(其中M是不等于零的整式).B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式. 其中B≠0 是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠ 0 是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0 这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化. 例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变2 4解:整式有:23,2y 2, 2y 2;其中任何一个或三个,分式成为原分式的相反数 要点诠释: 根据分式的基本性质有 b a b bb. 分式a与 a 互为相反数a a ab b重要的作用 .要点五、分式的约分,最简分式 与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的 值,这样的分式变形叫做分式的约分 . 如果一个分式的分子与分母没有相同的因式 (1 除外), 那么这个分式叫做最简分式 .要点诠释: (1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式 .( 2)约分的关键是确定分式的分子与分母的公因式. 分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式 的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子 与分母是不能再分解的因式积的形式,然后再进行约分 .要点六、分式的通分与分数的通分类似, 利用分式的基本性质, 使分式的分子和分母同乘适当的整式, 不改 变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分 .要点诠释:(1)通分的关键是确定各分式的最简公分母: 一般取各分母所有因式的最高 次幂的积作为公分母 .2)如果各分母都是单项式, 那么最简公分母就是各系数的最小公倍数与相 同字母的最高次幂的乘积; 如果各分母都是多项式, 就要先把它们分解 因式,然后再找最简公分母 .3)约分和通分恰好是相反的两种变形, 约分是对一个分式而言, 而通分则 是针对多个分式而言 .典型例题】 类型一、分式的概念高清课堂 403986 分式的概念和性质 例 1】. 根据有理数除法的符号法则有分式的符号法则在以后关于分式的运算中起着1、指出下列各式中的整式与分式:1 ,1 ,a b ,x , 3 ,, , , ,2 ,x x y 2 x 12y 2,2 x ,思路点拨】 判断分式的依据是看分母中是否含有字母, 如果含有字母则是分式, 如果不含有字母则不是分式. 【答案与解析】∵ x 2 为非负数,不可能等于- 1, ∴ 对于任意实数 x ,分式都有意义; 当 x 0 时,分式的值为零.(2)当 x 2 0即 x 0时,分式有意义; 当 x 0, 即 x 5 时,分式的值为零x 5 0,(3)当 x 5 0,即 x 5 时,分式有意义; 当 x 5 0, ①时,分式的值为零,2x 10 0 ②由①得 x 5时,由②得 x 5 ,互相矛盾.2x 10∴ 不论 x 取什么值,分式 2x 10 的值都不等于零.x5【总结升华】 分母不为零时,分式有意义;分子的值为零,而分母的值不为零时,分式的值 为零. 举一反三:【变式 1】若分式的值为 0,则的值为 _________________________ . 【答案】 - 2;|x| 2 0 |x| 2 0 提示:由题意 2, ,所以 x 2.x 2 5x 6 0 x 3 x 2 0分式有:1,1 , 3 , x2 x x y x 2 1 x总结升华】 判断分式的依据是看分母中是否含有字母.此题判断容易出错的地方有两处: 一个是把 π 也看作字母来判断, 没有弄清 π 是一个常数; 另一个就是将分式化简成整式后2再判断,如 x 和 x x,前一个是整式,后一个是分式,它们表示的意义和取值范围是不相同的.类型二、分式有意义, 分式值为 0 高清课堂 403986当 x 取什么数时,下列分式有意义?当2、 分式的概念和性质 例 2】x 取什么数时,下列分式的值为零?( 1) 2x x 2 答案与解析】2)x52;x3) 2x 10 x5解:( 1)当 x 20,即 x21时,分式有意义.x2变式 2】当 x 取何值时,分式 的值恒为负数? 2x 6 答案】 x 2 0, 或 x 2 0, 2x 6 0, 2x 6 0. 解不等式组x 2 0,该不等式组无解.2x 6 0,解不等式组x 2 0,得 3 x 2. 2x 6 0.所以当 3x 2 时,分式x 2的值恒为负数. 2x 6类型三、分式的基本性质高清课堂 403986 分式的概念和性质 例 4】 3、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数(1) ; (2) ; (3) . 答案与解析】解:(1) ;(3).【总结升华】 (1) 、根据分式的意义, 分数线代表除号, 又起括号的作用; (2) 、添括号法则: 当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号 举一反三:解: 由题意可知(2)a1 a 2 2a 1 ;2;a 22变式】 列分式变形正确的是(A .2 x2ymn(m n)2 (m n)(m n)(m n)2答案】C .x 21x 2x 11 x1ab 2 aD ;提示:条件.将分式变形时,注意将分子、分母同乘(或除以)同一个不为 其中A 项分子、分母乘的不是同一整式,B 项中 m n 0 的整式这一0这一条件不知是1x 否成立,故 A 、B 两项均是错的. C 项左边可化为: 1 x 2(1 x)21 1x11,故 C x1项亦错,只有 D 项的变形是正确的.类型四、分式的约分、通分如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,也就是分子、分母系数的最大公约数与相同字母的最低次幂. 通分的关键是确定几个分式的最简公分 母,若分母是多项式, 则要因式分解, 要防止遗漏只在一个分母中出现的字母以及符号的变 化情况. 类型五、分式条件求值225、若 x 2,求 x 22 2xy 3y 22 的值.y x 2 6xy 7 y 2【思路点拨】 本题可利用分式的基本性质, 采用整体代入法, 或把分式的分子与分母化成只 含同一字母的因式,使问题得到解决. 【答案与解析】x 解法一:因为 2 ,可知 y 0 ,y222(x 22xy3y 2) g12x2x g3所以x 22xy3y 2yyy所以2x 26xy7y 2(x 26xy 7y 2)g12 y2x6 x g7yy4、约分:(1)2;(2) 2n 2 m 3 ;2mn 4n通分:3)3 2a 2ba b ;ab 2c4)x 24x42 x2答案与解析】解:(1) a 2 2a 1a 21(a1)2 ( a 1)(a 1)1;a12) 2 n 2 m2mn 4n 32n 2 m2n (m 2n 2)(m2n 2) 2n (m 2n 2 )1 2n ;3)最简公分母是 222a 2b 2c . 3 g bc222a 2b 2a 2b g bc3bc22 2a b cb ab 2c(a b) g 2a ab 2c g 2a22a 22ab2a 2b 2c4)最简公分母是(x 2)(x 2) ,1 x2x2 (x 2)( x 2)x 2 ,4 xx 2 4 x 2 44x x 2 42(x 2)x 2 (x 2)( x 2)2x 4 x 2 4总结升华】( 2)2 2 ( 2) 3 5 ( 2)2 6 ( 2) 7 9解法二:因为 x 2 , y所以 x 2y ,且 y 0 ,22x 2 2xy 3y 2 (x 3y)(x y) x 3y x 2 6xy 7y 2 (x 7y)(x y) x 7y【总结升华】 本题的整体代入思想是数学中一种十分重要的思想. 一般情况下, 在条件中含 有不定量时,不需求其具体值,只需将其作为一个“整体”代入进行运算,就可以达到化简 的目的. 举一反三: 【变式】已知x 3 y4z(xyz 0) ,求xy 26x 2yz 2 y zx 2的值.z 2【答案】x解: 设yz k(k 0) ,则 x 3k,y4k , z 6k3 46∴xyyz zx3k g4k 4k g6k 6k g3k54k 2 54 ∴2x2 y2z22(3k)2 (4k)2(6k) 261k 2 61【巩固练习】 一. 选择题a 2 91.若分式 2a 9 的值为 0,则 a 的值为( )a 2 a 6A .3B .-3C .±3D . a ≠- 2中的 x 、y 都扩大 m 倍( m ≠ 0),则分式的值()2.把分式 2x2y 3y 5 2y 7y 9xy14. 已知 13. A .扩大 m 倍 5a b若分式 5a b 有意义,则 a 、 3a 2b B .缩小 m 倍C .不变 b 满足的关系是( 4. 5. 6.D .不能确定A . 3a 2b 1b 若分式 12 b 2b 2 A . b < 0 面四个等式: ④xy 2 0个 A . 化简B . a 15bC . b D.23b的值是负数,则 1 b 满足( B .b ≥1 C . b <1 D. b >1 ① x 2 y x 2y ;② xy 2 x 2y ;③ xy 2x y;2xy 2 b 22a a 2 2ab b 2 ab ab 二. 填空题 A .7. 使分式 (x 2x 其中正确的有( B . 1 个 的正确结果是( B . a a b b 2 有意义的条件为 3)2 C . 2个 D . 3个C .1 2abD .2a 1b8. 分式 (x 2x 51)2有意义的条件为 2 分式 |x| 4 x4 m n ( mn 11.填入适当的代数式,使等式成立.9.当 时, 的值为零.10.填空: (1) ) n m m n ;(2) mn 2a 2b2a)2b1) a 2 ab 2b 2 a 2 b 2 ( ) ( 2) ab1a1a b ( ba 2 m 12. 分式 2m 2 1 约分的结果是 m 2 三. 解答题 2 x 13. 若 2 x 23x1的值为零,求 2 的值.2 (x 1)21 x 2,求 3x 7xy 3y 的值.2x 3xy 2y7. 8.15. (1)阅读下面解题过程:已知 2,求 524x的值.x 4 11. 解:∵ 2xx 21 ∴1∴1xx2 5,2,即 5,即 2x 4x1 21 x2 x1 (x 1x )2 2 x2)请借鉴( 已知2 x 2 答案与解析】 . 选择题 答案】 B ; 解析】 由题意 2. 答案】 C ; 解析】 3. 答案】 解析】 4. 答案】 解析】 5. 6. 9. 1)x 3x 2mxmx my D;中的方法解答下面的题目: 2, 求 4 x 0且am 2x m(x y)由题意, 3a D;因为 2b 2 1 答案】 解析】①④正确 . 答案】 解析】. 填空题【答案】【答案】【解析】【答案】2b 0 , C;B; 22ab 22 a 2ab b2x 2x2x xy所以的值.0,所以 1 b aba2abx 3.x 为任意实数;x 为任意实数,分母都大于零x 4 ;1 (52)2 2 170 ,解得 a 3.23b .0,即 b >1.ab ab2,| x| 4 0 解析】 ,所以 x 4 . x40x 2 x 0 ,即 x(x 1) 0 x 2 3x 2 0 (x 1)(x 2) 0x 0 或 x 1 0x 1 0且 x 2 0 x 0或 x 1, x 1且 x 2, x 0 ,14. 【解析】 解:方法一:∵ 1 1 y x 2 ,x y xy等式两边同乘以 xy ,得 2xy y x .x y 2xy .3x 7xy 3y 3(x y) 7 xy 2x 3xy 2y 2( x y) 3xy11 xy【解析】2a ab 2b 2a b a 2b ;1 b ba 2b 2abab1 a bab b12. 【答案】 11m;;m【解析】2m 2m 1 2m 1 1 m10. 【答案】(1)-;(2)+;11. 【答案】(1) a 2b ;(2) b a ;a ab 21 m 1 m 1 m 1 m三. 解答题13. 【解析】ab ba解:由已知得: 将 x 0 代入得:1 ( x 1)2 1 (0 1)2 1 (0 1)21.3 2 xy 7xy xy 2 2 xy 3xy 7xy方法15. 【解析】解:∵ 2xx23x 1 ∴1x13x2x42x x 1121x 2 1x12 x1 21x3x7xy3y3 y72x3xy2y23y 3 x31x1 y73271 2x21 x1 y322372,2 ,∴ x1 4.72 45.12。

分式知识点及例题

分式知识点及例题

分式知识点及例题一、分式的概念形如$\dfrac{A}{B}$($A$、$B$是整式,且$B$中含有字母,$B\neq 0$)的式子叫做分式。

其中,$A$叫做分子,$B$叫做分母。

例如:$\dfrac{x}{y}$,$\dfrac{2}{x + 1}$,$\dfrac{3x 1}{x^2 1}$等都是分式。

需要注意的是:(1)分式的分母中必须含有字母。

(2)分母的值不能为零,如果分母的值为零,那么分式就没有意义。

例如,在分式$\dfrac{x}{x 1}$中,当$x 1 = 0$,即$x = 1$时,分式没有意义。

二、分式的基本性质分式的分子与分母同乘(或除以)一个不等于$0$的整式,分式的值不变。

即:$\dfrac{A}{B} =\dfrac{A \times M}{B \times M}$,$\dfrac{A}{B} =\dfrac{A \div M}{B \div M}$($M$为不等于$0$的整式)例如:$\dfrac{x}{y} =\dfrac{x \times 2}{y \times 2} =\dfrac{2x}{2y}$三、分式的约分把一个分式的分子与分母的公因式约去,叫做分式的约分。

约分的关键是确定分子与分母的公因式。

确定公因式的方法:(1)系数:取分子、分母系数的最大公约数。

(2)字母:取分子、分母相同字母因式的最低次幂。

例如:\\begin{align}\dfrac{6xy}{9x^2y} &=\dfrac{2 \times 3 \times x \times y}{3 \times 3 \times x \times x \times y}\\&=\dfrac{2}{3x}\end{align}四、分式的通分把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

通分的关键是确定几个分式的最简公分母。

确定最简公分母的方法:(1)取各分母系数的最小公倍数。

(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式。

分式概念及意义

分式概念及意义

分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。

这就是分式的概念。

研究分式就从这里展开。

2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。

分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。

一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。

3.〔1〕分式:,当B=0时,分式无意义。

〔2〕分式:,当B≠0时,分式有意义。

〔3〕分式:,当时,分式的值为零。

〔4〕分式:,当时,分式的值为1。

〔5〕分式:,当时,即或时,为正数。

〔6〕分式:,当时,即或时,为负数。

〔7〕分式:,当时或时,为非负数。

三、分式的根本性质:1、学习分式的根本性质应该与分数的根本性质类比。

不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。

2、这个性质可用式子表示为:〔M为不等于零的整式〕3、学习根本性质应注意几点:〔1〕分子与分母同乘或同除的整式的值不能为零;〔2〕易犯错误是只乘〔或只除〕分母或只乘〔或只除〕分子;〔3〕如果分子或分母是多项式时,必须乘以多项式的每一项。

4、分式变号法那么的依据是分式的根本性质。

5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如以下式子:,。

四、约分:1、约分是约去分子、分母中的公因式。

就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。

2、约分的理论依据是分式的根本性质。

3、约分的方法:〔1〕如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中一样因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。

例1,请说出以下各式中哪些是整式,那些是分式?〔1〕〔2〕〔3〕〔4〕〔5〕a2-a〔6〕。

分式的基本概念八年级下册

分式的基本概念八年级下册

分式的基本概念八年级下册分式的基本概念八年级下册分式作为数学中一个基本的概念,是我们在中学阶段时需要掌握的关键知识点之一。

下面我们来一步一步地了解分式的基本概念。

1. 分式的定义分式是两个整数a和b的比,用a/b表示。

其中a叫做分子,b叫做分母。

分式通常写作x = a/b,成为分数或有理数。

可以看出,分子和分母是分式中两个重要的部分。

2. 分式的意义以一个例子来说明分式的意义:假设你要将一个蛋糕均匀地分成4份,那么每份的大小就是蛋糕的1/4。

这里,1/4就是一个典型的分式,它表达了蛋糕的一部分数量与整个蛋糕数量之间的比例关系。

因此,分式可以用来描述整体与部分之间的数量关系。

3. 分式的化简有时候,一个分式不是最简形式,我们需要将其化简。

化简分式的方法是将分子和分母同时除以它们的公因数,使它们互质。

例如,对于分式8/12,我们可以发现它们的公因数是4,于是我们可以将分子和分母同时除以4,得到新的分式2/3。

4. 分式的乘法两个分数的乘积是将分子相乘,分母相乘的结果。

例如,分数2/3和3/4的乘积是2/3 × 3/4 = 6/12。

然后,我们需要将结果化简,得到最简形式,即1/2。

5. 分式的除法两个分数的除法是将被除数的分子和分母分别乘以除数的倒数的分子和分母。

例如,分数2/3和3/4的除法是2/3 ÷ 3/4 = 2/3 × 4/3 = 8/9。

同样,我们需要将结果化简,得到最简形式。

6. 分式的加减法两个分数的加减法是将它们的分母相同,然后将分子相加或相减的结果。

例如,分数2/3和3/4的加法是2/3 + 3/4 = 8/12 + 9/12 = 17/12。

同样,我们需要将结果化简,得到最简形式。

7. 小数和分数的转换分数可以转化成小数,小数也可以转化成分数。

分式转化成小数可以通过手工计算或使用计算器完成。

小数转化成分式则可以将其写成a/b 的形式,其中a为小数部分的数字,b为1后面接上小数点后位数的数量。

八年级数学知识点分式

八年级数学知识点分式

八年级数学知识点分式八年级数学知识点——分式分式在数学中是一个非常重要的知识点。

它常常涉及到计算和应用问题,因此对于学生来说,学习和掌握分式是至关重要的。

本文将为大家详细介绍八年级数学中的分式知识点,包括分式的定义、分式的性质、分式的化简、分式的加减乘除等内容。

一、分式的定义分式是一种表示比例和部分的数学表达式,通常用“a/b”的形式表示。

其中,a表示分子,b表示分母。

分子和分母都是整数,而且分子与分母的最大公约数为1,这种分数称为真分数。

如果分子大于或等于分母,那么这种分数称为假分数。

例如:4/5、1/2、3/4等都是分式。

二、分式的性质1.同分母分式的加减法当分式的分母相同时,可以直接进行加减法运算,即分子相加(减),分母不变。

例如:1/4+3/4=4/4=1;3/5-1/5=2/5。

2.异分母分式的加减法当分式的分母不同时,需要通过通分化简,将分母变成相同的数,然后再进行加减法运算。

通分公式为:a/b+c/d=(ad+bc)/bd。

例如:2/3-1/4=8/12-3/12=5/12。

3.分式的乘除法分式的乘法:分式的乘积等于分子的乘积作为新分子,分母的乘积作为新分母。

例如:2/3×3/4=6/12=1/2。

分式的除法:分式与倒数的乘积等于分子乘以倒数的分子作为新分子,分母乘以倒数的分母作为新分母。

例如:2/3÷3/4=2/3×4/3=8/9。

三、分式的化简分式的化简是指将一个复杂的分式化简成简单的分式,或将分式化成整数、小数等简单形式。

1.约分约分是指将分数的分子和分母同时除以它们的公约数,得到与原数值相等的最简分数。

例如:6/8可以约分为3/4。

2.分式的化简一些分式可以通过使用公式或分式的性质化简为简单的分式或整数。

例如:(8x+12)/(4x)=(4x(2+x))/(4x)=2+x。

四、分式的应用分式在实际生活中有着广泛的应用,比如用于计算家庭预算、进行商业比较、计算地图比例尺等。

分式的概念讲解

分式的概念讲解

分式的概念讲解分式是数学中一个重要的概念,它是有理数的一种特殊表达形式。

分式由分子和分母组成,分子是一个整数或一个多项式,分母是一个非零的整数或一个多项式。

分式的形式通常为a/b,其中a为分子,b为分母。

分式有以下几个重要的概念和性质:1. 分子和分母:分式的分子和分母分别表示表达式中的被除数和除数。

例如,在分式3/4中,3是分子,4是分母。

2. 分式的值:分式表示一个有理数,可以通过计算分子除以分母的商得到。

例如,分式3/4的值为0.75,因为3除以4等于0.75。

3. 约分:分式可以进行约分,即将分子和分母的公因子约去,使分式的值保持不变。

例如,分式6/8可以约分为3/4,因为6和8都能被2整除。

4. 扩分:分式可以进行扩分,即将分子和分母同时乘以一个数,使分式的值保持不变。

例如,分式2/3可以扩分为4/6,因为2除以3等于4除以6。

5. 逆分数:逆分数是指分子大于分母的分式,可以通过将逆分数的分子和分母对调得到原分式。

例如,逆分数5/3可以对调得到3/5。

6. 真分数与假分数:当分子小于分母时,分式称为真分数;当分子大于或等于分母时,分式称为假分数。

7. 混合数:混合数是真分数和整数的组合,它由一个整数和一个真分数组成,可以通过分数的加法和整数的相加得到。

例如,混合数3 1/2可以表示为整数部分3加上真分数1/2。

8. 分式的运算:分式可以进行加、减、乘、除的运算。

加减分式的运算首先要找到它们的公共分母,然后对分子进行加减运算,分母保持不变;乘除分式的运算可以直接对分子和分母进行相应的乘除运算。

分式在数学中的应用非常广泛,特别是在代数中。

分式能够表达有理数的比例关系,可以用于解决许多实际问题,如物体的比例、速度的比例、百分比等。

分式还可以用于代数式的运算和方程的求解等数学问题。

总之,分式是数学中重要的概念,它能够准确地表达有理数的比例关系,进行各种运算和解决实际问题。

熟练掌握分式的概念和性质,对于数学学习和实际生活都有很大的帮助。

分式的概念与计算

分式的概念与计算

分式的概念与计算分式是数学中的基本概念之一,它在实际生活和解决问题中起着重要的作用。

本文将介绍分式的概念、表示方法以及如何进行分式的计算。

一、分式的概念分式是指形如 a/b 的数,其中 a 和 b 都是整数,且 b 不等于 0。

这里的 a 被称为分子,b 被称为分母。

分子和分母之间用一条横线隔开,表示两者之间的除法关系。

分式可以表示真数、假数和整数。

当分子小于分母时,这个分式表示一个真数;当分子大于分母时,这个分式表示一个假数;当分子等于分母时,这个分式表示一个整数。

二、分式的表示方法除了常见的分式形式 a/b,分式还可以以其他形式表示,比如带分数、百分数等。

1. 带分数带分数是指一个整数部分和一个分数部分组合在一起的数。

例如,7 1/4 就是一个带分数,整数部分是7,分数部分是1/4。

2. 百分数百分数是指以百分之一为单位的分数,通常以百分号 "%" 表示。

例如,75% 就表示 75 百分之一。

三、分式的计算分式的计算主要包括分式的加减乘除四则运算,下面将具体介绍每种运算的方法。

1. 分式的加法与减法分式的加法与减法的计算方法类似,需要先找到两个分式的公共分母,然后对分子进行相应的加减运算,最后化简得到结果。

2. 分式的乘法分式的乘法只需要将两个分式的分子和分母分别相乘即可。

如果能对结果进行约分,则需要进行约分化简。

3. 分式的除法分式的除法需要将除数的分子与被除数的分母相乘,再将除数的分母与被除数的分子相乘。

最后将相乘得到的结果作为除法的结果。

四、应用举例为了更好地理解分式的概念和计算,下面举例说明。

1. 例题1:计算 3/8 + 1/4。

解:首先找到两个分式的公共分母,即 8 和 4 的最小公倍数 8。

然后对分子进行相应的加法,得到 3/8 + 2/8 = 5/8。

2. 例题2:计算 5/6 × 2/3。

解:将两个分式的分子和分母分别相乘,得到 5/6 × 2/3 = 10/18。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.分式的有关概念设A、B表示两个整分式式
2..如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简2、分式的基本性质(M 为不等于零的整式)3.分式的运算(分式的运算法则与分数的运算法则类似).(异分母相加,先通分);4.零指数5.负整数指数注意正整数幂的运算性质可以推广到整数指数幂,也就是上述等式中的m、n可以是O或负整数.6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.。

相关文档
最新文档