分式(1)(分式概念、基本性质)
第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。
分式的概念课件

将分数转换为小数是通过除法实现的,例如,$frac{2}{3} = 0.overline{6}$;将小数转换为分数是通 过乘以其倒数或将小数表示为两个整数的比值实现的,例如,$0.333... = frac{1}{3}$。
04
分式的应用
物理中的分式
总结词
物理中的分式主要用于描述和解决与速度、 加速度、功率等相关的物理问题。
分式的概念ppt课件
• 分式的定义 • 分式的基本性质 • 分式的简化 • 分式的应用 • 分式的注意事项
01
分式的定义
什么是分式
总结词
分式是数学中一种基本的代数式,表 示两个整式的商。
详细描述
分式由分子和分母两部分组成,分子 是整式,分母也是整式,并且分母不 为零。例如,$frac{x^2}{y}$是一个分 式,其中$x^2$是分子,$y$是分母。
通分
总结词
通分是将两个或多个分式化为同 分母的过程,以便进行加减运算 。
详细描述
通分是将分母不同的分式化为具 有相同分母的分式的过程。例如 ,将分式$frac{2}{3}$和 $frac{3}{5}$通分为 $frac{10}{15}$和$frac{9}{15}$。
分数和小数的转换
总结词
将分数转换为小数或将小数转换为分数是常见的数学操作,有助于理解和应用分式的概念。
详细描述
在物理学中,分式经常被用来表示和解决与 速度、加速度、功率等相关的物理问题。例 如,在计算物体的运动速度和加速度时,我 们通常使用分式来表示物体的位移与时间的 关系。此外,在电路分析中,分式也常被用
来表示电流与电压的关系。
数学中的分式
总结词
数学中的分式主要用于解决代数和几何问题,以及进 行函数分析。
分式及分式的基本性质

2、分式有意义的条件:当B≠0时,分式有意义)。
3、分式的值为零的条件:当A=0,B≠0时,分式值为0。
4、有理式:整式和分式统称为有理式。
5、分式的基本性质:分式的分子、分母同乘以或除以一个不为0的整式,分式的值不变。
注:(1)约分和通分的依据都是分式的基本性质
(2)分式的约分和通分都是互逆运算过程。
①约分——最简分式②通分——最简公分母
6、分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
7、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。
8、分式的通分步骤:
先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母。同时各分式按照分母所扩大的倍数,相应扩大各自的分子。
注:最简公分母的确定方法:
系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。
分式知识点归纳

分式知识点归纳一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子$\frac{A}{B}$就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分式的分母不能为 0,因为除数不能为 0。
如果分母 B 的值为 0,那么分式$\frac{A}{B}$就没有意义。
例如,$\frac{x}{y}$是一个分式,其中 x 是分子,y 是分母;而$\frac{5}{3}$就不是分式,因为它的分母 3 是一个常数,不含字母。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即对于分式$\frac{A}{B}$,当$B \neq 0$ 时,分式有意义。
例如,对于分式$\frac{x + 1}{x 2}$,要使其有意义,则$x2 \neq 0$,即$x \neq 2$。
三、分式值为 0 的条件分式值为 0 的条件是分子为 0 且分母不为 0。
即对于分式$\frac{A}{B}$,当$A = 0$ 且$B \neq 0$ 时,分式的值为 0。
例如,若分式$\frac{x^2 1}{x + 1}$的值为 0,则$x^2 1 =0$ 且$x + 1 \neq 0$。
由$x^2 1 = 0$ 可得$x =\pm 1$,又因为$x + 1 \neq 0$,所以$x \neq 1$,因此$x = 1$ 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:$\frac{A}{B} =\frac{A \times C}{B \times C}$,$\frac{A}{B} =\frac{A \div C}{B \div C}$($C \neq 0$)例如,$\frac{x}{y} =\frac{x \times 2}{y \times 2} =\frac{2x}{2y}$,$\frac{3a}{5b} =\frac{3a \div 3}{5b \div 3} =\frac{a}{\frac{5}{3}b}$五、约分把一个分式的分子和分母的公因式约去,叫做约分。
分式(1)(分式概念、基本性质)

分式(1)(分式概念、基本性质) 一、基础知识梳理:1.分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA做分式。
A 叫做分子,B 叫做分母. 分式的概念要注意以下几点:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式的分子可以含字母,也可以不含字母,但分母必须含有字母;(3)分式有意义的条件是分母不能为0.2.分式的基本性质:分式的分子分母同时乘以或除以同一个不为0的整式,分式的值不变.3.分式的约分(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分. (2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式. 4.最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式. 二、针对性练习: (一)、填空题: 1.对于分式122x x -+(1)当________时,分式的值为0 ;(2)当________时,分式的值为1;(3)当________时,分式无意义; (4)当________时,分式有意义.2.填充分子,使等式成立;()222(2)a a a -=++; ()22233x x x -=-+- 3.填充分母,使等式成立:()2223434254x x x x -+-=--- ; ()21a a a c ++=(a ≠0). 4.化简:233812a b c a bc =_______;6425633224a b c a b c = ;224488a ba b-=- ;223265a a a a ++=++ ;()()x y a y x a --322= . 5.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数:0.010.50.30.04x y x y -=+ ;y x y x 6.02125.054-+= ;=-+b a ba 41323121 . 6.不改变分式的值,使下列各分式的分子、分母中最高次项的系数都是正数:(1)2211x x x y +++-= ; (2)343223324x x x x -+---= .7.(1)已知:34y x =,则2222352235x xy y x xy y-++-= . (2)已知0345x y m==≠,则x y m x y m +++-= . 8.若||x x x x -+-=+123132成立,则x 的取值范围是 . (二)、选择题:9.在下列有理式221121a x x m n x y x y ya b ,,,,++-+-()()中,分式的个数是( ) A. 1B. 2C. 3D. 410.把分式xx y+(x ≠0,y ≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变 11.下列等式正确的是 ( )A .22b b a a =B .1a b a b -+=--C .0a b a b +=+D .0.10.330.22a b a ba b a b--=++12.与分式a ba b-+--相等的是 ( )A .a b a b +- B .a b a b -+ C .a b a b +-- D a ba b--+ 13.下列等式从左到右的变形正确的是 ( )A .b a =11b a ++B b bm a am =C .2ab b a a= D .22b b a a =14.不改变分式的值,使21233xx x --+-的分子、分母中的最高次项的系数都是正数,则分式可化为 ( )A .22133x x x -+- B .22133x x x +++ C .22133x x x ++- D .22133x x x --+ 15.将分式253xyx y -+的分子和分母中的各项系数都化为整数,应为 ( )A .235x y x y -+ B .151535x y x y -+ C .1530610x y x y -+ D .253x yx y-+16.下列各式正确的是 ( )A .c c a b a b -=-++ B .c c a b b a -=-+- C .c c a b a b -=-++ D .c ca b a b-=-+- 17.不改变分式的值,分式22923a a a ---可变形为 ( )A .31a a ++ B .31a a -- C .31a a +- D .31a a -+ 18.不改变分式的值,把分式23427431a a a a a a -++--+-中的分子和分母按a 的升幂排列,是其中最高项系数为正,正确的变形是 ( )A .23437431a a a a a a -++-+- B .23347413a a a a a a -+--++C .23434731a a a a a a +-+--+-D .23347413a a a a a a -++--++19.已知a b ,为有理数,要使分式ab的值为非负数,a b ,应满足的条件是( ) A. a b ≥≠00, B. a b ≤<00,C. a b ≥>00,D. a b ≥>00,,或a b ≤<00,20.已知113a b-=,求2322a ab b a ab b ----的值( ) A. 12 B. 23 C. 95D. 4(三)、解答题:21.已知:3x y -=20,求x xy y x xy y 2222323-++-的值.22.已知:x x 210--=,求x x441+的值. 23.化简:x x x x x x 32325396512++-++-. 24.把分式1882483222a b ab a b++++化为一个整式和一个分子为常数的分式的和,并且求出这个整式与分式的乘积等于多少?25. 已知:x y y y +=--=22402,,求y xy-的值.26. 已知:a b c ++=0,求a b c b c a c a b()()()1111113++++++的值. 27.已知:,ac zc b y b a x -=-=-求z y x ++的值.28.已知:,0,1=++=++z cy b x a c z b y a x 求222222cz b y a x ++的值.。
分式的基本概念及性质

分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1 t ,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+【例2】代数式22221131321223x x x a b a b abm n xyx x y+--++++,,,,,,,中分式有()A.1个B.1个C.1个D.1个分式的基本概念及性质二、分式有意义的条件【例3】求下列分式有意义的条件:⑴1x⑵33x+⑶2a ba b+--⑷21nm+⑸22x yx y++⑹2128x x--⑺293xx-+【例4】x为何值时,分式2141xx++无意义?【例5】x为何值时,分式2132x x-+有意义?【例6】x为何值时,分式211xx-+有意义?【例7】要使分式23xx-有意义,则x须满足的条件为.【例8】x为何值时,分式1111x++有意义?【例9】要使分式241312aaa-++没有意义,求a的值.【例10】x为何值时,分式1122x++有意义?【例11】x为何值时,分式1122xx+-+有意义?【例12】若分式25011250xx-++有意义,则x;若分式25011250x x-++无意义,则x ;【例13】 若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例14】 x 为何值时,分式29113x x-++有意义?【例15】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例16】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+【例17】 当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288xx + ⑹2225(5)x x -- ⑺(8)(1)1x x x -+-【例18】 若分式41x x +-的值为0,则x 的值为 .【例19】 若分241++x x 的值为零,则x 的值为________________________.【例20】 若分式242x x --的值为0,则x 的值为 .【例21】 若分式 242a a -+ 的值为0,则a 的值为 .【例22】 若分式221x x -+的值为0,则x = .【例23】 (2级)(2010房山二模)9. 若分式221x xx +-的值为0,则x 的值为 .【例24】 若分式231x x ++的值为零,则x = ________________.【例25】 (2级)(2010平谷二模)已知分式11x x -+的值是零,那么x 的值是( ) A .1 B. 0 C. 1- D. 1±【例26】 若分式2532x x -+的值为0,则x 的值为 .【例27】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例28】 若分式()()321x x x +-+的值不为零,求x 的取值范围.【例29】 若22x x a-+的值为0,则x = .【例30】 x 为何值时,分式29113x x-++分式值为零?【例31】 若22032x xx x +=++,求21(1)x -的值.【例32】 x 为何值时,分式23455x xx x ++-+值为零?【例33】 若分式2160(3)(4)x x x -=-+,则x ;【例34】 若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .【例35】 若2(1)(3)032m m m m --=-+,求m 的值.四、分式的基本性质【例36】 填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例37】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ⑵xy x y - ⑶22x y x y -+【例38】 把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y ++ (2)22923x x y +【例39】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴2222x y x y +-⑵3323x y⑶223x y xy-【例40】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例41】 不改变分式的值,把下列各式分子与分母的各项系数都化为整数。
分式的性质

分式的性质一、分式的定义(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式.(2)因为0不能做除数,所以分式的分母不能为0.(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看符合分式概念的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.二、分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.三、分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.四、分式的值分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.五、分式的基本性质(1)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.(2)分式中的符号法则:分子、分母、分式本身同时改变两处的符号,分式的值不变.【方法技巧】利用分式的基本性质可解决的问题1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.六、最简分式最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.和分数不能化简一样,叫最简分数.七、约分(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.(2)确定公因式要分为系数、字母、字母的指数来分别确定.①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.。
分式的意义和性质

---------------------------------------------------------------最新资料推荐------------------------------------------------------分式的意义和性质分式的意义和性质一、分式的概念 1、用 A、 B 表示两个整式, AB 可以表示成的形式,其中 A 叫做分式的分子, B 叫做分式的分母,如果除式 B 中含有字母,式子就叫做分式。
这就是分式的概念。
研究分式就从这里展开。
2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。
分式的分子 A 可取任意数值,但分母 B 不能为零,因为用零做除数没有意义。
一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。
3、(1)分式:,当 B=0 时,分式无意义。
(2)分式:,当 B0 时,分式有意义。
(3)分式:,当时,分式的值为零。
(4)分式:,当时,分式的值为 1。
(5)分式:1 / 10,当时,即或时,为正数。
(6)分式:,当时,即或时,为负数。
(7)分式:,当时或时,为非负数。
二、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。
不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。
2、这个性质可用式子表示为:(M 为不等于零的整式) 3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。
4、分式变号法则的依据是分式的基本性质。
5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。
三、约分:1、约分是约去分子、分母中的公因式。
就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式(1)(分式概念、基本性质) 一、基础知识梳理:
1.分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子B
A
做分式。
A 叫做分子,B 叫做分母. 分式的概念要注意以下几点:
(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;
(2)分式的分子可以含字母,也可以不含字母,但分母必须含有字母;
(3)分式有意义的条件是分母不能为0.
2.分式的基本性质:分式的分子分母同时乘以或除以同一个不为0的整式,分式的值不变.
3.分式的约分
(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分. (2)分式约分的依据:分式的基本性质.
(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式. 4.最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式. 二、针对性练习: (一)、填空题: 1.对于分式
1
22
x x -+(1)当________时,分式的值为0 ;
(2)当________时,分式的值为1;(3)当________时,分式无意义; (4)当________时,分式有意义.
2.填充分子,使等式成立;()2
22(2)a a a -=++; ()22233x x x -=
-+- 3.填充分母,使等式成立:()
22
23434254x x x x -+-=-
-- ; ()2
1a a a c ++=(a ≠0). 4.化简:233812a b c a bc =_______;642
563
3224a b c a b c = ;
224488a b a b -=- ;
223265a a a a ++=++ ;()()
x y a y x a --3
22= . 5.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数:
0.010.50.30.04x y x y -=+ ;y x y x 6.02125.05
4-+= ;=-+b a b
a 4
13231
21 . 6.不改变分式的值,使下列各分式的分子、分母中最高次项的系数都是正数:
(1)2
211x x x y +++-= ; (2)343223324x x x x -+---= .
7.(1)已知:34y x =,则22
22
352235x xy y x xy y
-++-= . (2)已知
0345x y m ==≠,则x y m x y m
+++-= . 8.若
||x x x x -+-=+1231
3
2
成立,则x 的取值范围是 . (二)、选择题:
9.在下列有理式221121
a x x m n x y x y y
a b ,,,,++-+-()()中,分式的个数是( ) A. 1
B. 2
C. 3
D. 4
10.把分式
x
x y
+(x ≠0,y ≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变 11.下列等式正确的是 ( )
A .2
2b b a a
= B .1a b a b -+=-- C .0a b a b +=+ D .0.10.330.22a b a b a b a b --=++
12.与分式
a b
a b
-+--相等的是 ( )
A .
a b a b +- B .a b a b -+ C .a b a b +-- D a b
a b
--+ 13.下列等式从左到右的变形正确的是 ( )
A .b a =11b a ++
B b bm a am =
C .2ab b a a =
D .22b b a a
=
14.不改变分式的值,使2
1233
x
x x --+-的分子、分母中的最高次项的系数都是正数,则分式可化为 ( )
A .
22133x x x -+- B .22133x x x +++ C .22133x x x ++- D .2
21
33
x x x --+ 15.将分式253
x
y
x y -+的分子和分母中的各项系数都化为整数,应为 ( )
A .
235x y x y -+ B .151535x y x y -+ C .1530610x y
x y
-+ D .253x y x y -+
16.下列各式正确的是 ( )
A .
c c a b a b -=-++ B .c c a b b a -=-+- C .c c a b a b -=-++ D .c c
a b a b
-=-+-
17.不改变分式的值,分式229
23
a a a ---可变形为 ( )
A .
31a a ++ B .31a a -- C .31a a +- D .3
1
a a -+ 18.不改变分式的值,把分式23
427431
a a a a a a -++--+-中的分子和分母按a 的升幂排列,是其中
最高项系数为正,正确的变形是 ( )
A .23437431
a a a a a a -++-+- B .23347413a a a a a a -+--++C .23434731a a a a a a +-+--+-D .23347413a a a a a a -++--++
19.已知a b ,为有理数,要使分式a
b
的值为非负数,a b ,应满足的条件是( ) A. a b ≥≠00, B. a b ≤<00,
C. a b ≥>00,
D. a b ≥>00,,或a b ≤<00,
20.已知
113a b -=,求
2322a ab b
a a
b b ----的值( ) A. 12 B. 23 C. 9
5
D. 4
(三)、解答题:
21.已知:3x y -=20,求x xy y x xy y 22
22
323-++-的值.
22.已知:,求x x
4
41
+
的值. 23.化简:x x x x x x 3232
539
6512
++-++-. 24.把分式188248
3222a b ab a b
++++化为一个整式和一个分子为常数的分式的和,并且求出
这个整式与分式的乘积等于多少?
25. 已知:x y y y +=--=22402
,,求y x
y
-的值.
26. 已知:a b c ++=0,求a b c b c a c a b
()()()111111
3++++++的值. 27.已知:,a
c z
c b y b a x -=-=-求z y x ++的值.
28.已知:,0,1=++=++z
c
y b x a c z b y a x 求222222c z b y a x ++的值.。