分式的概念和性质练习题

合集下载

第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

 第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。

分式的基本性质(第二讲

分式的基本性质(第二讲

(2)看分子如何变化,想分母如何变化;
练习1:
1、下列等式的右边是怎样从左边得到的?
1) b by ( y 0) 2) ax a
2x 2xy
bx b
2、下列运算正确的是( )
A) x x 2 ; y y2
C) x x(x 2) ; y y( y 2)
B) a a 3 b b3
D)
约分:如果分式不是最简分式,把 分子分母的所有公因式都约去的过程 叫约分。
分式的基本性质(第二讲
例1:约分
(1) 4a2bc3 , (2) 2a2 (x y)2
16abc5
a( y x)3
x2 9 (3) x2 6x 9
巩固新知
二、化简
(1)6m2n3 3mn
(a(y x)
(C)扩大9倍 (D)缩小
下列各式中,正确的是( )
(A)
a b
m m
a b
(B)
a a
b b
1
(C)
ab ac
1 1
b c
1 1
(D)
2x 4x2
y y2
1 2x
y
(3)在代数式中 x y、5
2a
、6xy、53
y
、2ab2c3中,
5
分式的个数有_______
(4)当X=______时,分式
怎样找几个分式的最简公分母?
例4 确定下列分式的最简公分母?
1
1
1
8x2 y , 2x3 y2 , 4xy4 z .
8x3 y4z
例5 通分:
(1)
3 2a 2b

a b ab 2 c
(2) 2 x 与 3x x5 x5

《分式》典型练习题

《分式》典型练习题

分式知识点和典型习题(一)、分式定义及有关题型题型一:考查分式的定义1、下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .2、下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个 3、下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个题型二:考查分式有意义的条件 1、当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件 1、当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件 1、(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数1、不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0(3)b a ba 10141534.0-+题型二:分数的系数变号2、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx yx --+- (2)ba a ---(3)ba ---题型三:考查分式的性质 1、若分式xyx +中x 、y 的值都增加到原来的3倍,则分式的值( ) A 、不变 B 、是原来的3倍 C 、是原来的31 D 、是原来的912、若分式xyy x 22+中x 、y 的值都增加到原来的3倍,则分式的值( )A 、不变B 、是原来的3倍C 、是原来的31D 、是原来的91题型三:化简求值题 1、已知:511=+y x ,求yxy x yxy x +++-2232的值. 2、已知:311=-b a ,求a ab b b ab a ---+232的值.3、已知:21=-xx ,求221xx +的值. 4、若0)32(|1|2=-++-x y x ,求yx 241-的值.5、已知与互为相反数,代数式的值。

分式知识点及例题

分式知识点及例题

分式知识点及例题一、分式的概念形如$\dfrac{A}{B}$($A$、$B$是整式,且$B$中含有字母,$B\neq 0$)的式子叫做分式。

其中,$A$叫做分子,$B$叫做分母。

例如:$\dfrac{x}{y}$,$\dfrac{2}{x + 1}$,$\dfrac{3x 1}{x^2 1}$等都是分式。

需要注意的是:(1)分式的分母中必须含有字母。

(2)分母的值不能为零,如果分母的值为零,那么分式就没有意义。

例如,在分式$\dfrac{x}{x 1}$中,当$x 1 = 0$,即$x = 1$时,分式没有意义。

二、分式的基本性质分式的分子与分母同乘(或除以)一个不等于$0$的整式,分式的值不变。

即:$\dfrac{A}{B} =\dfrac{A \times M}{B \times M}$,$\dfrac{A}{B} =\dfrac{A \div M}{B \div M}$($M$为不等于$0$的整式)例如:$\dfrac{x}{y} =\dfrac{x \times 2}{y \times 2} =\dfrac{2x}{2y}$三、分式的约分把一个分式的分子与分母的公因式约去,叫做分式的约分。

约分的关键是确定分子与分母的公因式。

确定公因式的方法:(1)系数:取分子、分母系数的最大公约数。

(2)字母:取分子、分母相同字母因式的最低次幂。

例如:\\begin{align}\dfrac{6xy}{9x^2y} &=\dfrac{2 \times 3 \times x \times y}{3 \times 3 \times x \times x \times y}\\&=\dfrac{2}{3x}\end{align}四、分式的通分把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

通分的关键是确定几个分式的最简公分母。

确定最简公分母的方法:(1)取各分母系数的最小公倍数。

(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式。

分式的概念及性质

分式的概念及性质

分式的概念及性质一、分式的基本概念:【例1】下列各式2x ,22a b +,a b π+,2x +,1a m +中,分式有( )A .1个B .2个C .3个D .4个【拓1】(1)当x 满足条件_________时,分式21xx -有意义.(2)若分式()11x x +有意义,则x 需满足____________;若分式()1xx x +有意义,则x 需满足_____________.【拓2】当x 为何值时,下列分式的值为0:①31x x + ②2213x x - ③242x x -+ ④212x x x -+-【例2】已知:当x =2时,分式x m x n -+无意义;当x =-6时,分式x mx n-+的值为0,则 m -n =_______.【拓3】当x ________时,分式36x -的值为正数;当x ________时,分式26xx--的值为负数.【拓4】(21广陵期末)关于x 的方程1233x kx x -=+--的解为非负数,则k 的取值范围是___.【拓5】若分式1324x x x x ++÷++有意义,则x 的取值范围为__________.【拓6】(2021·扬州)不论x 取何值,下列代数式的值不可能为0的是( )A .1x +B .21x -C .11x + D .2(1)x +二、分式的基本性质:①x y x y +- ②xy x y - ③22x y x y +- ④2xx y+【拓7】(21邗江期末)把分式2xyx y+中的x 和y 都扩大2倍,分式的值( ) A .不变 B .扩大4倍 C .缩小12D .扩大2倍【拓8】不改变分式的值,把分式的分子和分母系数都化为整数:①0.10.51.5x y x y -+ ②21321334x y x y -+ ③10.3210.55a ba b -+【拓9】(1)不改变分式的值,把分式的分母化为6ab 2:23a b 22a bab+(2)不改变分式的值,把分式的分母化为()()11x x x -+:()11x x x -+ 21xx -【例4】(1)下列等式,从左到右的变形正确的是( )A .1x y x y --=-- B .0.220.50.353x y x yx y x y++=-- C .x a ax b b+=+ D .()2x y x y y x -=-+-(2)将下列格式约分:3439x x =-__________322384a b a b c -=-___________ 23224x x x -=-___________ 2442a a a-+=-_________【拓10】下列分式:2x x ,1m m +,x xπ+,a bb a --中,最简分式的个数有( ) A .4个 B .3个 C .2个 D .1个【拓11】(21扬州期末)当2021a =时,分式293a a --的值是________.【拓12】分式2214a b 与36a bab c+的最简公分母是________.【拓13】通分:①()()112x x --,2121x x -+;②()11a a a -+,21a a -,2221a a ++.【拓14】(18邗江期中)先约分,再求值:32322444a ab a a b ab --+,其中2a =,12b =-.【拓15】(15邗江月考)已知:y z z x x y x y z +++==,其中0x y z ++≠,求x y zx y z+-++的值.三、分式的运算:(1)2222463ab cc a b -⋅ (2)32422ab c ac c ab b ⎛⎫⎛⎫⎛⎫⋅⋅ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭(3)()()222142y x x y xy x y x +-÷⋅- (4)23x y x y x y y x x y ++----(5)a b b c ab bc ++- (6)24142x x +-+【拓16】化简,求值:22211111m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中m =四、真题演练:1.(21邗江月考)已知:23a b b c c a m cab+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最小的值为y ,则x y +=( ) A .1- B .1 C .2 D .32.(19扬州一模)已知111m n -=,则代数式222m mn nm mn n--+-的值为( ) A .3 B .1 C .1- D .3-3.(19江都期中)已知113x y +=,则分式2322x xy yx xy y-+++的值为( ) A .35 B .9C .1D .不能确定4.(15扬州月考)已知x 为整数,且222218329x x x x ++++--为整数,则所有符合条件的x 值的和为________.5.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(20邗江期末)关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是________.7.(21广陵期末)先化简,再求值222124424x x x x x x x ++++÷--,其中2021x =.8.(19宝应期中)已知实数A 、B 使得等式34(1)(2)12x A Bx x x x -=+----成立,求实数A 、B .9.(18高邮期中)已知13x x +=,求221x x+的值.10.(18江都月考)定义,如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”如:112122111111x x x x x x x x +-+-==+=+-----,232252255211111x x x x x x x x -+-+-==+=-+++++,则 11x x +-和231x x -+都是“和谐分式”. (1)下列分式中,属于“和谐分式”的是:________(填序号); ①1x x+;②22x +;③21x x ++;④221y y +(2)将“和谐分式2231a a a -+-化成一个整式与一个分子为常数的分式的和的形为:2231a a a -+=-________+________.(3)应用:先化简22361112x x x x x x x +---÷++,并求x 取什么整数时,该式的值为整数.11.(20仪征期中)阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式. 如:1(1)221111x x x x x -+-==-+++. 解决下列问题: (1)分式3x 是____(填“真”或“假”)分式;假分式64x x ++可化为带分式________形式; (2)如果分式42x x --的值为整数,求满足条件的整数x 的值; (3)若分式22251x x ++的值为m ,则m 的取值范围是________(直接写出答案).。

分式的概念和性质练习题-基础

分式的概念和性质练习题-基础

分式的概念和性质练习题-基础一.选择题1.(2015春•东台市月考)下列式子是分式的是( )A. B. C. +y D.+1 2.(2016•连云港)若分式12x x -+的值为0,则的值是( ) A .-2 B .0 C .1 D .1或-23.下列判断错误..的是( ) A .当时,分式有意义 B .当时,分式有意义 C .当时,分式值为0 D .当时,分式有意义 4.为任何实数时,下列分式中一定有意义的是( )A .B .C .D . 5.如果把分式中的和都扩大10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的D .不变 6.下列各式中,正确的是( )A .B . x 23x ≠231-+x x a b ≠22ab a b -21-=x 214x x+x y ≠22x y y x--x 21x x +211x x --11x x -+211x x -+yx y x ++2x y 32a m a b m b +=+0a b a b+=+C .D . 二.填空题7.(2016•北京)如果分式21x -有意义,那么x 的取值范围是______. 8.若分式的值为正数,则满足______. 9.(1) (2) 10.(1) (2) 11.分式与的最简公分母是_________. 12. (2015•朝阳区一模)一组按规律排列的式子:,,,,,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三.解答题13. (2014春•丹阳市校级期中)当x 取什么值时,分式.(1)没有意义?(2)有意义?(3)值为零?1111ab b ac c +-=--221x y x y x y-=-+67x--x 112()x x x --=-.y x xy x 22353)(=22)(1y x y x -=+⋅-=--24)(21yy x 2214a b 36x ab c14.已知分式当=-3时无意义,当=2时分式的值为0, 求当=-7时分式的值.15.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1) (2) (3) (4),y a y b-+y y y 22x x y--2b a a --2211x x x x---+2231m m m ---一.选择题1. 【答案】B ;【解析】解:A 、分母中不含有字母是整式,故A 错误;B 、分母中含有字母是分式,故B 正确;C 、分母中不含有字母是整式,故C 错误;D 、分母中不含有字母是整式,故D 错误;故选:B .2. 【答案】C ;【解析】x -1=0且x +2≠03. 【答案】B ;【解析】,有意义. 4. 【答案】D ;【解析】无论为何值,都大于零.5. 【答案】D ;【解析】. 6. 【答案】D ;【解析】利用分式的基本性质来判断.二.填空题7. 【答案】x ≠1;【解析】由题意,x -1≠0a b ≠±22ab a b -x 21x +102010(2)2101010()x y x y x y x y x y x y+++==+++【解析】由题意.9. 【答案】(1);(2);10.【答案】(1);(2);【解析】. 11.【答案】;【解析】最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积.12.【答案】,.【解析】解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n 个式子为:.故答案是:,.三.解答题13.【解析】解:(1)∵分式没意义,∴x ﹣1=0,解得x=1;70,7x x -<>∴2x -5y x y -22xy x y +--221(1)(2)22244x x y xy x y y y y --++--==---2312a b c(2)∵分式有意义,∴x ﹣1≠0,即x≠1;(3)∵分式的值为0, ∴,解得x=﹣2. 14.【解析】解:由题意:,解得 ,解得 所以分式为,当=-7时,. 15.【解析】解:(1) ; (2); (3);(4). 30b -+=3b =2023a -=+2a =23y y -+y 2729937344y y ----===+-+-2222x x x y x y -=---22b b a a a a =---+222222111111x x x x x x x x x x x x ----++-==-+-++--22223311m m m m m m ---=---。

分式的概念、基本性质训练

分式的概念、基本性质训练

乐学分式的概念、基本性质训练1.下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x +2.分式31x a x +-中,当x a =-时,下列结论正确的是( )A .分式的值为零;B .分式无意义C .若13a -≠时,分式的值为零;D .若13a ≠时,分式的值为零3下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++4.下列各式πa ,11x +,15x y +,22a b a b --,23x -,0•中,是分式的有___ __;是整式的有_____ .5.当x ______时,分式2134x x +-无意义.6.当x _______时,分式2212x x x -+-的值为零.7.当m =________时,分式2(1)(3)32m m m m ---+的值为零.8.当x ______时,分式435x x +-的值为1;当x _______时,分式435x x +-的值为1-.9.当x _______时,分式15x -+的值为正;当x ______时,分式241x -+的值为负.10.已知123x y x-=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数; (3)y 的值是零;(4)分式无意义.11.不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以A .10B .9C .45D .90 12.如果把分式63xx y-中的x,y 都扩大10倍,那么分式的值一定( ) A.扩大10倍 B.扩大100倍 C.缩小10倍 D.不变 13. 使等式27+x =xx x 272+自左到右变形成立的条件是 ( )A .x<0 B.x>0 C.x≠0 D.x≠0且x≠-2 14. 写出等式中未知的分子或分母: ①xy3= ()23x y ② y x xy 257=()7 ③)(1ba b a +=- 15. 不改变分式的值,使分式的分子与分母都不含负号: ①=--y x 25 ; ②=---ba3 . 16. 等式1)1(12--=+a a a a a 成立的条件是________. 17. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:① yx yx 6125131+- ②y x yx 4.05.078.08.0+- ③ ba b a436.04.02+-18. 不改变分式的值,使分式的分子、分母中的首项的系数都不含 “-” 号:①112+--x x ②2122--+-x x x ③1312+----x x x19.分式434y xa +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个 20.下列约分正确的是( )A.32)(3)(2+=+++a c b a c b B.1)()(22-=--a b b a C.ba b a b a +=++222 D.xy y x xy y x -=---1222 21.等式)1)(1()1(1+++=+b a b a a a 成立的条件是( ) A.a ≠0且b ≠0 B.a ≠1且b ≠1 C.a ≠-1且b ≠-1 D.a 、b 为任意数 22. 约分:① 232636yz z xy - ② 2224m m m +- ③ 2411x x -- ④ 22699x x x ++-⑤ 44422-+-a a a ⑥ 16282--m m ⑦ 2232m m m m -+- ⑧ 22221521033223y x y x --23.通分: (1)26x ab ,29y a bc ; (2)21x x-, 2121x x --+;2. 先化简,再求值:① 1616822-+-a a a ,其中a=5; ② 2222b ab a ab a +++,其中a=3b ≠0.3.已知511=-yx,求分式y xy x y xy x 272-+++-的值. 4.已知432zy x ==,求222z y x zx yz xy ++++的值.5.已知12,4-=-=+xy y x , 求1111+++++y x x y 的值. 6.已知13x x +=,求2421x x x ++的值.。

分式的概念和性质练习题

分式的概念和性质练习题

1.填空题:(1)当x= 时,分式135-+x x 无意义。

(2)当x= 时,分式123-+x x 的值为零;当分式23+-x x =0时,x= 。

(3)()()333++x x x =x 3成立的条件是 。

(7)当x 时,分式121+-x x 有意义。

2.选择题:(1)下列说法正确的是( )A .形如BA 的式子叫分式B .分母不等于零,分式有意义C .分式的值等于零,分式无意义D .分式等于零,分式的值就等于零(2)已知有理式:x 4、4a 、y x -1、43x 、21x 2、a 1+4,其中分式有 ( ) A .2个 B .3个 C .4个 D .5个(3)使分式ax 45-有意义的x 的值是 ( )A .4aB .-4aC .±4aD .非±4a 的一切实数(4)使分式mx m x 41622--的值为零的x 的值是 ( ) A .4m B .-4m C .±4m D .非±4m 的一切实数3.解答下列各题:(1)当x 取什么数时,分式1132-+x x 有意义? (2)当x 为何值时,分式x x x 32212-++无意义? (3)若分式1642-+x x 无意义,求x 的值。

4.已知分式()()()()22253435232-----+x x x x (1)当x 为何值时,分式无意义?(2)当x 为何值时,分式的值为零?(3)当x 为何值时,分式的值为-1?5.当x 为何值时,下列分式的值为正?(1)432+-x x (2)232-+x x 6.(1)填充分子,使等式成立;()222(2)a a a -=++ (2).填充分母,使等式成立:()2223434254x x x x -+-=--- (3)化简:233812a b c a bc =_______。

6.(1)()2a b ab a b += (2)()21a aa c++=(a ≠0) (3)()22233x x x -=-+-(4)()2232565a a a a a ++=+++7.(1))333()3ax by ax by ax by ax by---=-=---,对吗?为什么? (2)22112x y x y x y x y++==---对吗?为什么? 8.把分式x x y+(x≠0,y≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变9.下列等式正确的是 ( )A .22b b a a = B .1a b a b-+=-- C .0a b a b +=+ D .0.10.330.22a b a b a b a b--=++ 10.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.填空题:
(1)当x= 时,分式1
35-+x x 无意义。

(2)当x= 时,分式123-+x x 的值为零;当分式2
3+-x x =0时,x= 。

(3)()()333++x x x =x 3成立的条件是 。

(7)当x 时,分式1
21+-x x 有意义。

2.选择题:
(1)下列说法正确的是( )
A .形如B
A 的式子叫分式
B .分母不等于零,分式有意义
C .分式的值等于零,分式无意义
D .分式等于零,分式的值就等于零
(2)已知有理式:x 4、4a 、y x -1、4
3x 、21x 2、a 1+4,其中分式有 ( ) A .2个 B .3个 C .4个 D .5个
(3)使分式a
x 45-有意义的x 的值是 ( )
A .4a
B .-4a
C .±4a
D .非±4a 的一切实数
(4)使分式m
x m x 41622--的值为零的x 的值是 ( ) A .4m B .-4m C .±4m D .非±4m 的一切实数
3.解答下列各题:
(1)当x 取什么数时,分式1
132-+x x 有意义? (2)当x 为何值时,分式x
x x 32212-++无意义? (3)若分式16
42-+x x 无意义,求x 的值。

4.已知分式()()()()
22253435232-----+x x x x (1)当x 为何值时,分式无意义?(2)当x 为何值时,分式的值为零?
(3)当x 为何值时,分式的值为-1?
5.当x 为何值时,下列分式的值为正?
(1)43
2+-x x (2)2
32-+x x 6.(1)填充分子,使等式成立;()222
(2)a a a -=++ (2).填充分母,使等式成立:()
2223434254x x x x -+-=--- (3)化简:233812a b c a bc =_______。

6.(1)()2a b ab a b +=
(2)()21
a a a c ++=(a ≠0) (3)()22233x x x -=-+-(4)()
2232565a a a a a ++=+++
7.(1))333()
3ax by ax by ax by ax by ---
=-=---,对吗?为什么?
(2)22112x y
x y x y x y ++==---对吗?为什么?
8.把分式x
x y +(x≠0,y≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 (
) A .扩大2倍 B .缩小2倍 C .改变 D .不改变
9.下列等式正确的是 ( )A .22b b a a = B .1a b
a b -+=--
C .0a b
a b +=+ D .0.10.330.22a b a b
a b a b --=++
10.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数。

(1)0.010.50.30.04x y x y -+; (2)322
283a b
a b
--
11.不改变分式的值,使下列各分式的分子、分母中最高次项的系数都是整数。

(1)2211x x x y +++- (2)34
3223324x x x x -+---
12.将下列各式约分
(1)642
5633224a b c a b c = (2)224488a b
a b -=-
13.将下列各式通分
(1)
1a ,234a b ,216ab c (2)12x +,42x -
(3)122x -,21(1)x - (4)21(1)x -,221x -,3(1)(2)x x --
(5)1()()a b b c --,2()()
b c a c -- 14.与分式
a b a b -+--相等的是 ( ) A .a b a b +- B .a b a b -+ C .a b a b +-- D a b a b
--+ 15.下列等式从左到右的变形正确的是 ( )
A .b a =11b a ++
B b bm a am =
C .2ab b a a
= D .22b b a a = 16.不改变分式的值,使
21233x x x --+-的分子、分母中的最高次项的系数都是正数,则分式可化为 ( )
A .22133x x x -+-
B .22133x x x +++
C .22133x x x ++-
D .22133
x x x --+ 17.将分式253
x y
x y -+的分子和分母中的各项系数都化为整数,应为 ( ) A .235x y x y -+ B .151535x y x y -+ C .1530610x y x y -+ D .253x y x y
-+ 18.将分式22x x x +化简得1
x x +,则x 必须满足______。

19.()22(0)x y x y x y x y -=-≠+- 20.()
2(0)a ab a b ab ab --=≠
21.不改变分式的值,使下列各组里第二个分式的分母和第一个分式的分母相同。

(1)2613x x x ++-,2453
x x x -+--+ (2)()()a a b b c --,()()a b a b c -- 22.下列等式的右边是怎样由左边得到的
(1)213(3)26x x x x x -=≠+-- (2)2114
54x x x x -=--+ 23.下列各式正确的是 ( )
A .c c a b a b -=-++
B .c c a b b a -=-+-
C .c c a b a b -=-++
D .c c a b a b
-=-+- 24.不改变分式的值,分式22923
a a a ---可变形为 ( ) A .31a a ++ B .31a a -- C .31a a +- D .31
a a -+ 25.不改变分式的值,把分式23
427431
a a a a a a -++--+-中的分子和分母按a 的升幂排列,是其中最高项系数为正,正确的变形是 ( )
A .23437431a a a a a a -++-+-
B .23347413a a a a a a -+--++
C .23434731a a a a a a +-+--+-
D .23347413a a a a a a
-++--++ 26.已知y -2x =0求代数式22222222()()()()
x y x xy y x xy y x y --+++-的值?
27.已知34y x =,求2222
352235x xy y x xy y -++-的值。

28.不改变分式的值,使下列分式的分子、分母均不含“-”号
(1)-22()(4)x y -- (2)2
37(2)
m n ----
29.已知
23a b =,求a b b +的值?。

相关文档
最新文档