地理信息系统坐标和投影

合集下载

如何选择适合的坐标系和投影方式

如何选择适合的坐标系和投影方式

如何选择适合的坐标系和投影方式选择适合的坐标系和投影方式在地理信息系统(GIS)和空间数据处理中至关重要。

坐标系和投影方式的选择直接影响着地图的精度和可视化效果。

本文旨在介绍如何选择适合的坐标系和投影方式,以便更好地应用于GIS和空间数据处理。

一、了解坐标系和投影方式的概念坐标系是一种地理坐标系统,用于描述地球上任意位置的坐标。

常用的坐标系包括经纬度坐标系、平面直角坐标系、地心坐标系等。

而投影方式是地球表面三维坐标映射到二维平面上的一种方法。

常用的投影方式有等面积投影、等角投影、等距投影等。

二、考虑数据来源和应用目的选择适合的坐标系和投影方式首先需要考虑数据来源和应用目的。

不同的数据来源可能使用不同的坐标系和投影方式。

例如,遥感数据常用的坐标系是地心坐标系(WGS84);而测量数据常使用局部的平面直角坐标系。

根据应用目的,选择坐标系和投影方式能够更好地呈现所需信息。

三、考虑地理范围和形状地理范围和形状也是选择适合的坐标系和投影方式的重要因素。

对于较小的地理范围,可以采用平面直角坐标系,如UTM投影。

而对于全球范围的数据,则需要选择适用于大范围的坐标系和投影方式,如Mercator投影。

此外,根据地球的形状,也需考虑到地球在不同地区的畸变程度,如极地存在极大畸变。

四、考虑数据精度和准确性选择适合的坐标系和投影方式还需要考虑数据的精度和准确性。

对于高精度要求的数据,在选择坐标系和投影方式时需要尽量减小数据的形变和畸变,保证数据的准确性。

同时,要根据实际情况选择合适的投影方式,以符合数据的精度要求。

五、考虑处理软件和技术支持最后,选择适合的坐标系和投影方式还需要考虑处理软件和技术支持。

不同的GIS软件和数据处理工具可能支持不同的坐标系和投影方式。

因此,要确保所选择的坐标系和投影方式能够被处理软件和工具支持,以便进行数据处理和分析。

总结起来,选择适合的坐标系和投影方式需要考虑数据来源和应用目的、地理范围和形状、数据精度和准确性以及处理软件和技术支持等因素。

大地坐标系与投影坐标系的转换方法与原理

大地坐标系与投影坐标系的转换方法与原理

大地坐标系与投影坐标系的转换方法与原理在地理信息系统(GIS)和测绘工作中,大地坐标系和投影坐标系是两个重要的概念。

大地坐标系是一种用于精确表示地球上任意点位置的坐标系统,而投影坐标系则是为了方便地图绘制和测量而将地球表面投影到一个平面上的一种方法。

一、大地坐标系大地坐标系是一种用于描述地球上的任意点位置的坐标系统。

在大地坐标系中,地球被看作一个椭球体,而任意点的位置由其纬度、经度和海拔高度来表示。

纬度和经度是用来确定地理位置的两个基本要素,其中纬度表示北纬或南纬,经度表示东经或西经。

一般情况下,纬度的范围是从-90°到+90°,经度的范围是从-180°到+180°。

而海拔高度则是指点位于椭球体上离海平面的垂直距离。

大地坐标系是基于地球椭球体模型建立的,有多种不同的参考椭球体可以选择。

常见的有WGS84、CGCS2000等。

这些参考椭球体的选择依赖于具体的应用场景和精度要求。

在实际的测量工作中,通过卫星定位、GPS等技术,我们可以获取到一个点在大地坐标系中的位置。

二、投影坐标系由于地球是一个三维的球体,要将其表面投影到一个平面上,就需要进行投影。

投影坐标系是为了方便地图绘制和测量而将地球表面投影到一个平面上的一种方法。

通过选取适当的投影方法,可以将地球上的纬度和经度等大地坐标系的坐标转换为平面上的x、y坐标,从而方便地进行测量和制图。

投影坐标系有很多种,常见的有等经纬度投影、等角度投影、等距离投影等。

每种投影方法都具有不同的特点和使用范围。

例如,等经纬度投影是基于经纬度网格的投影方法,适用于大范围的地图制图;等角度投影则可以保持地图上角度的等值,适用于绘制航空图和海洋航海图;等距离投影可以保持地图上距离的等值,适用于区域地图的制图。

三、大地坐标系到投影坐标系的转换方法大地坐标系到投影坐标系的转换是一个重要的计算过程,在GIS和测绘工作中经常会涉及到。

下面我们介绍两种常用的转换方法:正算和反算。

地理信息中各种坐标系区别和转换总结

地理信息中各种坐标系区别和转换总结

地理信息中各种坐标系区别和转换总结引言简述地理信息系统(GIS)中坐标系的重要性概述坐标系在地理信息处理中的应用一、坐标系基本概念1.1 坐标系定义定义地理坐标系和投影坐标系描述坐标系的组成要素1.2 地理坐标系(GCS)介绍地理坐标系的基本概念描述纬度、经度和高度的概念1.3 投影坐标系(PCS)介绍投影坐标系的基本概念解释地图投影的基本原理二、常见坐标系类型2.1 地理坐标系类型WGS 84北京 54国家大地测量 2000(CGCS2000)2.2 投影坐标系类型UTM(通用横轴墨卡托投影)State Plane Coordinate System(美国州平面坐标系)地方投影坐标系(如高斯-克吕格投影)三、坐标系之间的区别3.1 坐标系参数差异描述不同坐标系的基准面、椭球体和参数差异3.2 应用领域差异讨论不同坐标系在不同领域的应用特点3.3 精度和适用性分析不同坐标系的精度和适用性四、坐标系转换原理4.1 转换基础描述坐标系转换的数学基础解释坐标转换的七参数模型4.2 转换方法平移、旋转和缩放(7参数转换)相似变换(相似因子、旋转和偏移)4.3 转换工具和技术介绍GIS软件中的坐标系转换工具讨论专业的坐标转换软件和技术五、坐标系转换实践5.1 数据准备数据格式和坐标系信息的检查5.2 转换流程描述转换的具体步骤和注意事项5.3 转换精度评估讨论转换后的精度评估方法六、坐标系转换中的常见问题6.1 投影变形问题分析投影过程中可能出现的变形问题6.2 转换误差问题讨论转换过程中可能出现的误差来源6.3 技术限制问题描述现有技术和工具的限制七、坐标系转换案例分析7.1 案例选择选择具有代表性的坐标系转换案例7.2 案例实施过程详细描述案例实施的具体步骤7.3 案例结果分析分析案例的转换效果和经验教训八、未来发展趋势8.1 技术进步预测坐标系转换技术的未来发展趋势8.2 应用拓展探讨坐标系转换在新兴领域的应用前景8.3 标准化和国际化讨论坐标系转换标准化和国际化的重要性结语总结坐标系转换的重要性和本文档的主要内容对未来坐标系转换工作的展望。

地理坐标系统和投影坐标系统

地理坐标系统和投影坐标系统

地理坐标系统和投影坐标系统001979年,国际大地测量及地球物理协会决定采用夏利数据来表示地球的形状。

*地球的平均赤道半径(a6378.14km*地球的极半径(b6356.76km*地球的赤道周长(2πR40075.7km*地球的表面积(4πR2510100934km2*地球的平均半径约:6371km一个要素要进行定位,必须嵌入到一个空间参照系中,因为GIS所描述的是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经纬网)可以作为所有要素的参考系统。

在用GIS表现现实世界的要素时,需要正确地描述它们的地表位置,这被称为空间参考。

空间参考系统是建立地图要素和实际地物之间关系的一个过程,使用坐标系统来完成。

为了从GIS数据库中得到正确地分析结果,必须理解并确定坐标系统。

椭球体、基准面、投影和单位组成了一个坐标系统。

椭球体(Spheroid):各种地球椭球体模型:白塞尔(Bessel)、克拉克(Clarke)、海福特(Hayford)、克拉索夫斯基、LUGG、埃维尔斯特(Everest)。

中国自1980年开始使用GRS1975)新参考椭球体系。

基准面(Datum):地区表面起伏不平,十分不规则,陆地最高点与海洋最深处相差近20km。

地表无法用数学公式表达,所以制图时,必须找一个规则的曲面来代替地球的自然表面。

水平基准面是定位地表要素的参考系,有两种基本类型:地心基准面和本地基准面。

(若两幅地图空间数据的编辑采用相同的地图投影,不同的基准面,那么地表的同一位置会有不同的坐标值)坐标系统分为地理坐标系统和投影坐标系统地理坐标系统:地理坐标系统是使用经纬度来定义球面或椭球面上点的位置的参照系统,是一种球面坐标。

最常见的位置参考坐标系统就是以经纬度来量算的球面坐标系统。

地球坐标系统不是地图投影,只是对球体或椭球体的模仿。

地理坐标系统有经线和纬线组成,经纬度以地心与地表点之间的夹角来量算的,通常以度分秒(DMS)来度量。

地理坐标系与投影坐标系的概念及应用

地理坐标系与投影坐标系的概念及应用

前言:温馨小提示:本篇文档是通过查阅资料精心整理编制的,希望能帮助大家解决实际问题,文档内容不一定完美契合各位的需求,请各位根据需求进行下载。

文档下载后可自己根据实际情况对内容进行任意改写,确保能够帮助到大家。

除此之外,本店铺还提供各种文档材料,涉及多个领域例如活动文案、工作方案、读后感、读书笔记等,大家按需搜索查看!Warm tip:This document is prepared by consulting information carefully. Hope to help you solve practical problems. The content of the document is not necessarily perfect to match your needs. Please download according to your needs. Then you can rewrite the content according to the actualsituation to ensure that we can help. In addition, the store also provides a variety of documents and materials, covering areas such as copywriting for activities, work plans, reflections, reading notes, etc.正文如下:地理坐标系与投影坐标系的概念及应用解读地理和投影坐标系的定义及其运用解读地理和投影坐标系的定义及其运用一、地理坐标系定义:地理坐标系统,本质上是一种基于地球椭球体的参照框架,通过结合经度和纬度参数,精确标识地球表面任意一点的三维空间位置。

在地理空间坐标框架内,每个地理位置点均对应着独一无二的经度和纬度坐标对。

如何进行地理坐标转换和投影变换

如何进行地理坐标转换和投影变换

如何进行地理坐标转换和投影变换地理坐标转换和投影变换是地理信息系统 (Geographic Information System, GIS) 中非常重要的概念和技术。

它们在各种地图制作、地理空间分析和空间数据处理任务中起到了核心作用。

本文将介绍地理坐标转换和投影变换的基本原理和常用方法。

一、地理坐标转换1. 简介地理坐标转换是将一个地理位置点的坐标从一种坐标系统转换到另一种坐标系统的过程。

在地理信息系统中,常见的地理坐标系统有经纬度坐标系统 (WGS84)和投影坐标系统 (UTM) 等。

由于不同坐标系统间的坐标表示方式不同,因此需要进行坐标转换。

2. 原理地理坐标转换的原理是通过数学运算将坐标从一个坐标系统转换到另一个坐标系统。

这需要考虑坐标轴的旋转、尺度变换和坐标原点的平移等因素。

通常使用的方法有三参数法、七参数法和分区法等,根据不同的坐标系统和需求选择合适的方法。

3. 方法地理坐标转换的方法有多种,其中最常见的是使用地理坐标转换软件,如ArcGIS、QGIS等。

这些软件可以通过设置坐标系统和输入需转换的坐标来完成转换工作。

另外,也可以通过编程语言如Python中的库,如pyproj来实现地理坐标转换。

二、投影变换1. 简介投影变换是将地球表面的三维地理坐标转换为平面坐标的过程,也被称为地理坐标投影。

这是由于地球是一个三维椭球体,而平面地图是一个二维平面,因此需要将地球表面上的点投影到一个平面上。

2. 原理投影变换的原理是通过将地球椭球体投影到一个平面上,从而将三维地理坐标转换为二维平面坐标。

常见的投影方法有等距圆柱投影、等角圆锥投影和等面积投影等。

每种投影方法都有其特点和适用范围,根据需求选择合适的投影方法。

3. 方法投影变换的方法有多种,其中最常用的是使用地理信息系统软件进行投影变换,如ArcGIS、QGIS等。

这些软件提供了多种投影方法和参数设置,可以根据需求进行选择。

此外,也可以使用编程语言中的库,如Python中的proj4库进行投影变换。

如何进行地理坐标系与投影坐标系的转换

如何进行地理坐标系与投影坐标系的转换

如何进行地理坐标系与投影坐标系的转换地理坐标系与投影坐标系的转换是地理信息系统(GIS)领域中一个重要的话题。

在GIS中,地理坐标系用经度和纬度表示地球上的位置,而投影坐标系则通过将地球的曲面投影到平面上来表示。

本文将从基础概念开始,介绍如何进行地理坐标系与投影坐标系之间的转换。

一、地理坐标系与投影坐标系的基本概念地理坐标系是基于地球的椭球体来定义的,通过经度(Longitude)和纬度(Latitude)来表示地球上的位置。

经度是指从地球中心引出的经线,在东经0度和西经0度之间取值,范围为-180度到180度;纬度是指从地球中心引出的纬线,在赤道和两极之间取值,范围为-90度到90度。

投影坐标系是将地球的曲面投影到平面上来表示地球上的位置,使得较大范围的地理信息能够在平面上得到合理的表示。

投影坐标系是二维的,使用直角坐标系来表示地球上的位置。

常见的投影方式有墨卡托投影、等经纬度投影、兰伯特等角投影等。

二、地理坐标系到投影坐标系的转换方法在GIS中,经常需要将地理坐标系转换为投影坐标系,以适应不同的应用需求。

下面介绍几种常见的转换方法。

1. 坐标参照系统(Coordinate Reference System,简称CRS)的设定CRS是地理信息数据的基础,它定义了地理坐标系和投影坐标系之间的关系。

在进行转换之前,首先需要确定数据使用的CRS。

2. 数据预处理在转换之前,需要对待转换的数据进行预处理。

这包括检查数据质量、确定数据坐标系,并进行必要的数据清洗和转换。

3. 地理坐标系到投影坐标系的转换转换地理坐标系到投影坐标系可以通过数学计算来实现。

通过使用已知的转换公式和参数,将经纬度坐标转换为直角坐标。

4. 空间插值和逆变换进行地理坐标系到投影坐标系的转换后,往往需要进行空间插值或逆变换来处理不同投影坐标系之间的差异。

空间插值方法可以校正因投影而引入的形变和失真。

三、常见的地理坐标系与投影坐标系的转换工具在实际应用中,有许多工具可以用来进行地理坐标系与投影坐标系的转换。

测绘技术中常见的地理坐标系与投影坐标系

测绘技术中常见的地理坐标系与投影坐标系

测绘技术中常见的地理坐标系与投影坐标系地理坐标系和投影坐标系在测绘技术中起着重要的作用,它们是为了描述地球表面上的点位置而建立的两种坐标系统。

地理坐标系通常用经度和纬度表示,而投影坐标系则将地球表面投影到一个平面上,使用X和Y坐标表示。

本文将详细介绍这两种坐标系的特点和应用。

1. 地理坐标系地理坐标系是一种以地球自转轴和广义纬线为基准,用经纬度来描述地球表面上点的位置的坐标系统。

经度是东西方向上的角度,以经过伦敦的本初子午线为基准,向东为正,向西为负。

纬度是南北方向上的角度,以赤道为基准,向北为正,向南为负。

地理坐标系的优点是直观、简单,适合描述全球范围内的位置信息。

在实际应用中,地理坐标系常用于全球定位系统(GPS)等卫星导航系统、地质勘探、大地测量和地理信息系统(GIS)等领域。

地理坐标系的能力超出了商业领域,也影响到了许多其他行业,例如航空航天、军事和交通规划等。

2. 投影坐标系投影坐标系是为了将地球表面上的点投影到平面上而建立的坐标系统。

由于地球是一个三维的球体,无法完全展开成一个平面。

因此,为了在地图上呈现出地球表面上的点的位置,需要进行一定的变形。

投影坐标系通过一系列数学方法将地球表面投影到平面上,使得点的位置可以用X和Y坐标表示。

不同的投影方法会导致不同形状和大小的变形。

常见的投影类型包括等面积投影、等角投影和等距投影等。

选择适当的投影方法取决于使用地图的目的和地理位置。

例如,在海洋测绘中常使用的墨卡托投影可以保持小范围内的面积比例不变,而麦卡托投影可以保持大范围内的方向和形状比例不变。

投影坐标系的应用广泛,包括地图制图、导航、城市规划、土地利用和资源管理等。

它使得我们能够更准确地测量和描述地球表面上的各种地理现象和人类活动,并在实践中起着重要的作用。

3. 地理坐标系与投影坐标系的联系和转换地理坐标系和投影坐标系是相互关联的,它们之间可以通过不同的转换方法进行互相转换。

当我们在地球上的某一点给定经纬度时,可以通过投影转换方法将其转换为投影坐标系中的X和Y坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Y' Y''
Y
3.地图投影的基本概念
•为什么要进行投影? •地图投影实质 •投影变形 •投影方法 •投影选择所考虑的因素
地理信息系统坐标和投影
3.地图投影的基本概念
(一)为什么要进行投影 •将地源自椭球面上的点映射到平面上的方法,称 为地图投影 •地理坐标为球面坐标,不方便进行距离、方位、 面积等参数的量算 •地球椭球体为不可展曲面 •地图为平面,符合视觉心理,并易于进行距离、 方位、面积等量算和各种空间分析
地理信息系统坐标和投影
2.坐标系 2.2平面坐标系
直接建立在球体上的地理坐标,用 经度和纬度表达地理对象位置
投 影
地理信息系统坐标和投影
建立在平面上的直角坐标系统,用
(x,y)表达地理对象位置
2.坐标系 2.2平面坐标系
坐标系的平移 X
x=x’+a
y=y’+b
X' P
b
O'
Y'
a
O
Y
地理信息系统坐标和投影
地理信息系统坐标和投影
2.坐标系 2.2平面坐标系
地理坐标是一种球面坐标。由于地球表面是不可 展开的曲面,也就是说曲面上的各点不能直接表 示在平面上,因此必须运用地图投影的方法,建 立地球表面和平面上点的函数关系,使地球表面 上任一点由地理坐标(φ、λ)确定的点,在平面 上必有一个与它相对应的点,平面上任一点的位 置可以用极坐标或直角坐标表示。
地理信息系统坐标和投影
1.地球椭球体基本要素
(一)地球形状 地球自然表面是一个起伏不平、十分不规则的表面,这 个高低不平的表面无法用数学公式表达,也无法进行运 算。所以在量测与制图时,必须找一个规则的曲面来代 替地球的自然表面。当海洋静止时,它的自由水面必定 与该面上各点的重力方向(铅垂线方向)成正交,我们 把这个面叫做水准面。但水准面有无数多个,其中有一 个与静止的平均海水面相重合。可以设想这个静止的平 均海水面穿过大陆和岛屿形成一个闭合的曲面,这就是 大地水准面。
5分 5分 5分 5分 5分 5分
+5-10分 +5-10分 +5-10分
空间参照系统和地图投影
一个要素要进行定位,必须嵌入到一个空间参照系中, 因为GIS所描述是位于地球表面的信息,所以根据地球 椭球体建立的地理坐标(经纬网)可以作为所有要素的 参照系统。因为地球是一个不规则的球体,为了能够将 其表面的内容显示在平面的显示器或纸面上,必须进行 坐标变换。 本章讲述了地球椭球体参数、常见的投影类型。考虑到 目前使用的1:100万以上地形图都是采用高斯——克吕 格投影,本章最后又对该种投影类型和相关的地形图分 幅标准做了简单介绍。
地理信息系统坐标和投影
3.地图投影的基本概念
地理信息系统坐标和投影
3.地图投影的基本概念
(三)投影变形 将不可展的地球椭球面展开成平面,并且不能有 断裂,则图形必将在某些地方被拉伸,某些地方 被压缩,故投影变形是不可避免的。 •长度变形 •面积变形 •角度变形
地理信息系统坐标和投影
3.地图投影的基本概念
地理信息系统坐标和投影
1.地球椭球体基本要素
地理信息系统坐标和投影
1.地球椭球体基本要素
(二)地球大小
椭球体名称 白塞尔(Bessel) 克拉克(Clarke) 克拉克(Clarke) 海福特(Hayford) 克拉索夫斯基 IUGG WGS84
年代 1841 1880 1866 1910 1940 1976 1984
地理信息系统坐标和投影
3.地图投影的基本概念
(二)地图投影的实质 建立地球椭球面上经纬线网和平面上相应经纬线网的数 学基础,也就是建立地球椭球面上的点的地理坐标(λ, φ)与平面上对应点的平面坐标(x,y)之间的函数关 系:
x f1(, ) y f2 (,)
当给定不同的具体条件时,将得到不同类型的投影方式。
物流信息管理
地理信息系统坐标和投影
第五章 地理信息系统
地理信息系统坐标和投影
实验评分标准
实验任务:
全球船舶轨迹图注册、描画 导入外部数据到地图属性表 创建统计图、专题图 拓扑化全球航线网络 创建路径查询程序 创建最短路径程序
加分项:
创建流量分配程序 与外部程序集成 其他
地理信息系统坐标和投影
(四)投影分类 变形分类:
等角投影:投影前后角度不变 等面积投影:投影前后面积不变; 任意投影(等长投影):角度、面积、长度均变形,但某一方 向长度不变 投影面: 横圆柱投影:投影面为横圆柱 圆锥投影:投影面为圆锥 方位投影:投影面为平面 投影面位置: 正轴投影:投影面中心轴与地轴相互重合 斜轴投影:投影面中心轴与地轴斜向相交 横轴投影:投影面中心轴与地轴相互垂直 相切投影:投影面与椭球体相切 地理信息系统坐标和投影相割投影:投影面与椭球体相割
2.坐标系 2.2平面坐标系 坐标系的旋转
x=x’cosθ+y’sinθ y=y’cosθ-x’sinθ X' X
O
地理信息系统坐标和投影
P Y'
θ
Y
2.坐标系 2.2平面坐标系
坐标系的平移加旋转
X'
X
X''
P
x=x’cosθ+y’sinθ+a
y”=y’cosθ-x’sinθ+b
θ
O'
O
地理信息系统坐标和投影
地理信息系统坐标和投影
长半轴(米) 6378137.0
短半轴(米) 6356752.3
扁率 1:299.15 1:293.5 1:295.0 1:297 1:298.3 1:298.25 1:298.26
2.坐标系 2.1地理坐标系
地理坐标系是以地理 极(北极、南极)为极点。 通过A点作椭球面的 垂线,称之为过A点的 法线。 法线与赤道面的交角, 叫做A点的纬度ψ。 过A点的子午面与通 过英国格林尼治天文台 的子午面所夹的二面角, 叫做A点的经度λ。
3.地图投影的基本概念
地理信息系统坐标和投影
3.地图投影的基本概念
(五)投影选择因素 制图区域的地理位置、形状和范围 制图比例尺 地图内容 出版方式
地理信息系统坐标和投影
3.地图投影的基本概念
(六)GIS中的投影 GIS以地图方式显示地理信息,而地图是平面,地理信息 则在地球椭球上,因此地图投影在GIS中不可缺少。 GIS数据库中地理数据以地理坐标存储时,则以地图为数 据源的空间数据必须通过投影变换转换成地理坐标;而输 出或显示时,则要将地理坐标表示的空间数据通过投影变 换变换成指定投影的平面坐标。 GIS中,地理数据的显示可根据用户的需要而指定投影方 式,但当所显示的地图与国家基本地图系列的比例尺一致 时,一般采用国家基本系列地图所用的投影。
相关文档
最新文档