仪表放大器特点及作用
仪用放大器的介绍

一、仪用放大器的介绍:仪用放大器与很多放大电路一样,都是用来放大信号的用的,但仪用放大电路的特点是,它所测量的信号通常都是在噪声环境下的微小信号。
而噪声通常都是公共模噪声,所以在电路设计要求上,电路有很高的共模抑制比,利用共模抑制比将信号从噪声中分离出来。
因此好的仪用放大器测量的信号能达到很高的精度,在医用设备、数据采集、检测和控制电子设备等方面都得到了广泛的应用。
例:在这些应用中,信号源的输出阻抗常常达几kΩ或更大,因此,仪表放大器的输入阻抗非常大——通常达数GΩ,它工作在DC到约1 MHz之间。
在更高频率处,输入容抗的问题比输入阻抗更大。
高速应用通常采用差分放大器,差分放大器速度更快,但输入阻抗要低。
二、仪用放大器的基本电路:大多数仪用放大器采用3个运算放大器排成两级:一个由两运放组成的前置放大器,后面跟一个差分放大器。
前置放大器提供高输入阻抗、低噪声和增益。
差分放大器抑制共模噪声,还能在需要时提供一定的附加增益。
如下图:三运放方案是仪表放大器采用的惟一结构吗?可以采用具有两个运放的较少元器件的结构替代,但有两个缺点(图1b)。
首先,不对称的结构使CMRR较低,特别是高频时。
其次,可用于第一级的增益量有限。
输出级误差则反馈回输入端,导致相对入的噪声和补偿误差更大。
也有单运放组成的仪用放大器,在最基本的拓扑结构中,一个仪用放大器可由一个单一的运算放大器,见附录.三、仪用放大器的信号放大原理:现所设计的仪用放大器是三运放结构,如上图。
它是由运放A1,A2按通向输入接法组成第一级查分放大电路,运放A3组成第二级差分放大电路。
在第一级电路中,Vi1,Vi2分别加到A1和A2的同向端,Rg和R5、R6组成的反馈网络,引入了负反馈。
由A1、A2虚短可得Vi1=V2;Vi2=V3; 3.1又由A1、A2虚断可得3.2又由A3虚断可得;整理得 3.3;整理得 3.4由A3虚短可得V5=V6; 3.5则由3.3式、3.4式和3.5式可得整理后可得3.6在上式中,如果我们选取电阻满足的关系,则输出电压可化简为3.7根据式3.2和3.7我们可以得到3.8而我们为了是电路对称,提高仪用放大器性能,我们选取电阻应满足R5=R6的关系,且VREF 通常接地,当我们对仪用放大器进行电路调零时,我们才会将VREF赋予一定电压(这在后面进行电路调零时会具体讲到),最终我们会得到输出电压的关系式为3.9电压增益则为3.10从该式中我们可直观的看到,我们可以根据选取R2/R1 和R5/Rg 电阻的比例关系,来达到不同的信号放大比例要求。
现代电子技术_第四章_仪表放大器和隔离放大器

现代电子技术第四章 仪表放大器和隔离放大器第一节 仪表放大器 一、仪表放大器定义:仪表放大器是一种闭环、差动输入的增益单元,用来精确地放大输入信号电压。
我们可以认为仪表放大器就是应用在需要精确测量输入信号的场合,将待测信号精确放大后传递给信号处理的下一级。
二、仪表放大器的主要特点 1.理想的仪表放大器可以精确放大两输入信号的差值,因此两输入端之间及每个输入端对地之间均有极高的阻抗;2.放大器的输出对地呈单端状态(单端输出),且精确等于放大器增益乘两输入电压之差;3.理想的仪表放大器具有无限大的输入阻抗和零输出阻抗,增益A 已知且可以设定,没有非线性问题,带宽可以认为无限宽,完全的共模抑制,无直流漂移。
三、仪表放大器的应用领域各类传感器的的前置放大器、多路缓冲器、电流传感器、伺服误差放大器以及过程控制和数据获取系统中的信号调节器。
四、仪表放大器的工作原理典型的仪表放大器如图2-1所示,它由三个运算放大器组成,A 1和A 2是输入级,A 3是差动级。
II O图2-1 典型的仪表放大器结构增益的计算:A 1部分:由虚短虚断概念可得:GI I G I I O R V V R R V V 2121-=+-(2-1) GI I G I I G I O R R V R V V R R V ++-=+2211(2-2)两边同乘以G I R R +则()()GI G I I G I O R V R V V R R V 2211⋅+-+=(2-3) 整理得()()211211I I GI I I G I I G G I O V V R R V V R R V R R R V -+=-+=(2-4) A 2部分: 由对称性可得()()122122I I GII I I G II I G G II O V V R R V V R R V R R R V -+=-+=(2-5) 而输出()()()()()⎪⎪⎭⎫ ⎝⎛+-+-=---+-=-G I G II I I I I I I G I I I G II I I O O R R R R V V V V V V R R V V R R V V V V 121221121212(2-6) ()⎥⎦⎤⎢⎣⎡++-=-G II I I I O O R R R V V V V 11212(2-7) 对输出级有在A 2部分:2323O p V R R R V +=(2-8) 在A 1部分:321R V V R V V O p pO -=-(2-9)()p O O V R R V R V R 32213+=+(2-10)(2-8)代入(2-10):()1232O O O V V R V R -=(2-11)()()122312231I I G III O O O V V R R R R R V V R R V -⎥⎦⎤⎢⎣⎡++=-=(2-12) 设32R R = 可得增益GII II I O R R R V V V ++=-112(2-13)可见,仪表放大器的闭环增益可以由R I ,R II和R G来决定。
必须收藏的仪表放大器设计及经典应用方案汇总

必须收藏的仪表放大器设计及经典应用方案汇总
仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。
仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。
本文为大家介绍仪表放大器的设计及经典应用方案。
差分输入/输出低功耗仪表放大器
全差分仪表放大器具有其他单端输出放大器所没有的优势,它具有很强的共模噪声源抗干扰性,可减少二次谐波失真并提高信噪比,还可提供一种与现代差分输入ADC 连接的简单方式。
基于零漂移仪表放大器的传感器电路优化方案
系统设计师喜欢将模拟链路设计得尽可能短,希望以此来提高信号抗外部噪声的能力。
过长的模拟链要求在后续电路中使用特定的信号处理电路。
使用仪表放大器(IA)连接传感器和ADC,在靠近信号源的地方将小信号放大可以改善一些应用的总信噪比,特别是当传感器不靠近ADC 时。
用于数据采集的超高性能差分输出可编程增益仪表放大器
有一种方法可以构建一个强大的模拟前端,以便在单一信号路径中实现衰减和放大,并且提供差分输出来驱动高性能模数转换器,将一个可编程增益仪表放大器,与一个全差分漏斗(衰减)放大器等级联。
该解决方案简单灵活,具有高速特性,并提供出色的精度和温度稳定性。
仪表放大器电路设计
本文从仪表放大器电路的结构、原理出发,设计出四种仪表放大器电路。
仪表放大器的原理

仪表放大器的原理
仪表放大器是一种电子放大器,它的作用是将输入信号放大到一定的程度并输出给仪表进行测量。
仪表放大器的原理基于放大器的工作原理和电路设计。
在仪表放大器的工作中,常见的放大器电路包括晶体管放大器、运算放大器等。
晶体管放大器是一种常用的放大器,它采用晶体管作为放大极,通过控制晶体管的工作状态,将输入信号放大到所需的程度。
运算放大器是一种高增益放大器,具有输入阻抗高、输出阻抗低、增益稳定等特点。
仪表放大器的电路设计是为了满足仪表的精确测量要求。
在设计中,需要考虑放大器的增益、带宽、输出电流、输入和输出阻抗等参数。
其中,增益是仪表放大器最重要的指标之一,它表示输出信号与输入信号之间的比例关系。
带宽是指放大器能够放大的频率范围,一般要根据仪表的测量范围选择合适的带宽。
输出电流是指放大器输出信号的电流大小,需要根据仪表的灵敏度来确定。
输入和输出阻抗是指放大器输入端和输出端的电阻大小,设计时需要考虑与仪表的匹配情况。
仪表放大器的工作原理可以简单描述为:输入信号进入放大器电路,经过放大电路的放大作用,输出信号被放大到一定程度后传输给仪表进行测量。
放大器的输入和输出信号之间存在一定的线性关系,可以通过调节放大器电路的参数来实现欲测量信号的放大和精确测量。
总之,仪表放大器是一种能够将输入信号放大并输出给仪表进
行测量的电子放大器。
它的原理基于放大器的工作原理和电路设计,通过控制放大器的参数来达到放大和精确测量信号的目的。
如何选择仪表放大器_仪表放大器的选择分析

如何选择仪表放大器_仪表放大器的选择分析什么是仪表放大器这是一个特殊的差动放大器,具有超高输入阻抗,极其良好的CMRR,低输入偏移,低输出阻抗,能放大那些在共模电压下的信号。
随着电子技术的飞速发展,运算放大电路也得到广泛的应用。
仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。
仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。
仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益组件,具有差分输入和相对参考端的单端输出。
与运算放大器不同之处是运算放大器的闭环增益是由反相输入端与输出端之间连接的外部电阻决定,而仪表放大器则使用与输入端隔离的内部反馈电阻网络。
仪表放大器的 2 个差分输入端施加输入信号,其增益即可由内部预置,也可由用户通过引脚内部设置或者通过与输入信号隔离的外部增益电阻预置。
仪表放大器构成原理仪表放大器电路的典型结构如图1所示。
它主要由两级差分放大器电路构成。
其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。
这样在以运放A3为核心部件组成的差分放大电路中,在CMRR 要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。
在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)Rf/R3。
由公式可见,电路增益的调节可以通过改变Rg阻值实现。
仪表放大器特点●高共模抑制比共模抑制比(CMRR)则是差模增益(A d)与共模增益(Ac)之比,即:CMRR = 20lg。
仪表放大器优势_仪表放大器典型应用及实例

仪表放大器优势_仪表放大器典型应用及实例随着电子技术的飞速发展,运算放大电路也得到广泛的应用。
仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。
仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。
本文首先介绍了仪表放大器的原理及特点,其次介绍了仪表放大器的优势,最后介绍了仪表放大器典型应用及实例。
仪表放大器的原理仪表放大器电路的典型结构如图1所示。
它主要由两级差分放大器电路构成。
其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得共模抑制比得到提高。
这样在以运放A3为核心部件组成的差分放大电路中,在共模抑制比要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。
在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:Au=(1+2R1/Rg)(Rf/R3)。
由公式可见,电路增益的调节可以通过改变Rg阻值实现,仪表放大器典型结构见图1。
仪表放大器的特点仪表放大器是一种高增益、直流耦合放大器,它具有差分输入、单端输出、高输入阻抗和高共模抑制比、低噪声、低线性误差、低失调电压和失调电压漂移、低输入偏置电流和失调电流误差等特点。
仪表放大器的优势1、高共模抑制比仪表放大器具有能够消除任何共模信号(两输入端电位相同)而放大差模信号(两输入端电位不同)的特性。
为了使仪表放大器能正常工作,要求它既能放大微伏级差模信号,同时又能抑制几伏的共模信号,实现这种功能的仪表放大器必须具有很高的共模抑制能力。
共模抑制比的典型值为70- 100dB.通常,在高增益时,CMRR 的性能会得到改善,即。
仪表放大器AD623(AD627)简介

仪表放大器AD623(AD627)1、放大器性能特点AD623是一款性能非常好的仪表放大器,它有以下特点:·在单电源3——12V下提供满电源幅度输出,使设计更为简单;·虽为单电源工作方式优化设计,但在±——±6V双电源时,仍有优良性能;·增益通过一只外接电阻可方便地调节.无外接电阻时,被设置为单位增益(G=1),接人电阻时,增益可高达1000;·共模抑制比随增益的增加而增大,保持最小误差;(·低功耗,宽电源电压,适合电池供电电路,线性度、温度稳定性、可靠性好;·具有较宽的共模输入范围,可以放大具有低于地电平150mv的共模电压信号;·高精度直流、交流性能。
放大器应用电路AD623(AD627)主要应用于传感器接口、工业过程控制、低功耗医疗仪器、热电偶放大器、便携式供电仪器(AD627)。
·双电源应用。
图1(a)为双电源应用的基本电路,正负电源引脚处接的电容(最好是表面安装的陶瓷片状电容)和10uF电容(最好为钽电解电容)。
·单电源应用。
图1(b)为单电源应用的基本电路,电源引脚处接的电容(最好是表面安装的陶瓷片状电容)和10uF电容(最好为钽电解电容)。
AD623内设以电源为基准的箝位二极管,使得输入端、输出端、基准端、增益调节端能安全地承受高于或低于的过电压。
%AD623设计为驱动10kΩ或以上的负载,如果负载小于10kΩ,则需用一个诸如OPll3的精密单运放作为缓冲器提高驱动能力,如图2。
这时当负载小到600Ω时也能在负载上得到0——4V的输出摆幅。
图3为一AD623工作于单电源方式下双极性信号数据采集系统的应用实例。
在实际应用中,经常遇到将双极性信号放大后送入ADC进行A/D转换的情况,这就需要将双极性信号转换到ADC的有效输入范围内,图3利用AD623的参考电压端相好地解决了这个问题。
仪表放大器 原理

仪表放大器原理
仪表放大器是一种电路设备,用于将输入信号放大并输出至仪表显示。
其基本原理是通过放大器电路对输入信号进行放大,以便能够更好地显示在仪表上。
仪表放大器的核心部件是放大器,根据不同的应用需求,可以选择使用不同类型的放大器,如运放放大器、电子管放大器等。
放大器接收输入信号,经过放大后输出到仪表上。
在仪表放大器中,通常还会加入一些辅助电路来实现对输入信号的处理和调节。
比如,可以加入滤波电路来滤除输入信号中的噪音和干扰,提高信号的纯净度;还可以加入增益调节电路,以便根据需求调节放大倍数。
此外,在仪表放大器中,还需要考虑输入和输出的匹配问题,以确保输入信号的准确度和稳定性。
通常会根据输入信号的幅度范围和仪表的灵敏度要求,选择合适的放大倍数和增益值。
最终,经过放大和处理后的信号将输出至仪表上,实现对输入信号的具体量化和显示。
仪表放大器的设计和调试是一个复杂的过程,需要考虑到多个因素如电路的稳定性、信号的准确度和仪表的精度等。
总结来说,仪表放大器通过放大器电路对输入信号进行放大,再经过处理和调节,将信号输出至仪表显示。
其原理主要涉及信号放大、滤波和增益调节等。
通过合理的设计和调试,能够实现对输入信号的准确量化和显示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪表放大器特点及作用
仪表放大器是一个特殊的差动放大器,具有超高输入阻抗,极其良好的CMRR,低输入偏移,低输出阻抗,能放大那些在共模电压下的信号。
仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益组件,具有差分输入和相对参考端的单端输出。
与运算放大器不同之处是运算放大器的闭环增益是由反相输入端与输出端之间连接的外部电阻决定,而仪表放大器则使用与输入端隔离的内部反馈电阻网络。
仪表放大器的2个差分输入端施加输入信号,其增益即可由内部预置,也可由用户通过引脚内部设置或者通过与输入信号隔离的外部增益电阻预置。
一、仪表放大器特点
1、高共模抑制比
共模抑制比(CMRR)则是差模增益(Ad)与共模增益(Ac)之比,即:CMRR=20lg|Ad/Ac|dB;仪表放大器具有很高的共模抑制比,CMRR典型值为70~100dB 以上。
2、高输入阻抗
要求仪表放大器必须具有极高的输入阻抗,仪表放大器的同相和反相输入端的阻抗都很高而且相互十分平衡,其典型值为109~1012Ω。
3、低噪声
由于仪表放大器必须能够处理非常低的输入电压,因此仪表放大器不能把自身的噪声加到信号上,在1kHz条件下,折合到输入端的输入噪声要求小于10nV/Hz.
4、低线性误差
输入失调和比例系数误差能通过外部的调整来修正,但是线性误差是器件固有缺陷,它不能由外部调整来消除。
一个高质量的仪表放大器典型的线性误差为0.01%,有的甚至低于0.0001%.
5、低失调电压和失调电压漂移
仪表放大器的失调漂移也由输入和输出两部分组成,输入和输出失调电压典型值分别为100μV和2mV。
二、仪表放大器的作用
目前仪表放大器在多方面已经得到运用,典型应用如下:
1、高边监视器
简单的高边监视器通常需要一个精密运算放大器和一些精密电阻,常见的高边测量都采用经典的差分放大器(用作增益放大和高边到地的电平转换)。
虽然很多应用中也会使用分离电路,但其输入阻抗较低,而且电阻之间有较大差异。
电阻的匹配必须非常才能获得可接受的共模抑制比,任一个电阻值存在0.01%的偏差都将使cmrR 降低到86dB;如果偏差为0.1%,将使cmrR降低到66dB;而1%的偏差将使cmr R降低到46dB。
选择仪表放大器结构时,有一个需要特别关注的参数,即在放大器任何输出摆幅下,输入共模电压的范围均应包括高边电压加上一个安全裕量。
2、电平转换器
此电路的工作原理可以这样来理解,将max4198看作一个三输入求和放大器(如图7所示),其电压传输函数为Vout=Vb-Va+Vshift,此式表明,输出由差分信号与REF输入电压的代数和所决定,VREF可为任意值,它不会使max4198的放大器输出饱和,max4194也适合作一个精密放大器,它可以很方便地配置成如下固定增益:-1、2或±1。
3、应力测量
三运放拓扑的真正优势是其能够进行真正的差分测量(很高的cmr),同时又有非常高的输入阻抗,这些特点使其得到了广泛应用,特别是在信号源阻抗非常高的场合。
为使信号源对地的漏电流达到小,本例采用了一些防护技术,信号源电缆采用屏蔽电缆,并将其屏蔽隔离层接到(Vcm+ΔV/2)。
图8给出了一个包括惠斯通电桥传感器的放大电路,对该电路的电桥阻抗可适当减小,并不会降低仪表放大器的cmr值。