销售问题(二次函数的应用)
初中数学二次函数应用专题-销售问题

二次函数的应用-销售问题【类型1】二次函数最值问题1.(2014•荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?2.(2014•丹东)在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?3.(2010•武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?4.(2014•抚顺)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)之间的函数关系如图所示:(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?5.杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y (万件)与产品售价x (元)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式,并写出x 的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.6.(2014•西宁)今年5月1日起实施《青海省保障性住房准入分配退出和运营管理实施细则》规定:公共租赁住房和廉租住房并轨运行(以下简称并轨房),计划10年内解决低收入人群住房问题.已知第x 年(x 为正整数)投入使用的并轨房面积为y 百万平方米,且y 与x 的函数关系式为y=﹣16x+5.由于物价上涨等因素的影响,每年单位面积租金也随之上调.假设每年的并轨房全部出租完,预计第x 年投入使用的并轨房的单位面积租金z 与时间x 满(2)设第x 年政府投入使用的并轨房收取的租金为W 百万元,请问政府在第几年投入使用的并轨房收取的租金最多,最多为多少百万元?【类型2】二次函数方案问题(2013•青岛)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.(2014•呼伦贝尔)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.3.(2014•滦县一模)为了抓住国家降低汽车购置税,刺激汽车消费的大好机遇,实现新的发展,汽车生产企业策划部拟定了以下两种新的投资方案.方案一:生产家用型汽车,每辆汽车成本为a万元(a为常数,且3<a<8),每辆汽车销售价为10万元,每年最多可生产200辆;方案二:生产豪华型汽车,每辆汽车成本为8万元,每辆汽车销售价为18万元,每年最多可生产120辆.假设生产汽车的辆数为x(x为正整数),且生产的汽车可全部售出,又已知年销售x辆豪华型汽车时需上交0.05x2万元的附加税.在不考虑其他因素的情况下:(1)分别写出该企业两个投资方案的年利润y1、y2与生产汽车辆数x之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪种投资方案?4.(2014•裕华区模拟)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?5.某服装经销商甲库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年刚好卖完.现市场上流行B品牌服装,此品牌服装进价每套200元,售出每套500元,每月可卖出120套(两种服装的市场行情相互不受影响).目前有一可进B品牌服装的机会,若这一机会错过,估计一年内进不到这种服装,可是经销商手头无流动资金可用,只有折价转让A品牌服装,经与销售商乙协商,达成协议,转让价格(元/套)现在经销商甲面临三种选择:方案一:不转让A品牌服装,也不经销B品牌服装;方案二:全部转让A品牌服装,用转让得来的资金一次性购入B品牌服装后,经销B品牌服装;方案三:为谋求更高利润,部分转让A品牌服装,用转让来的资金一次性购入B品牌服装后,经销B品牌服装,同时也经销A品牌服装.问:(1)如经销商甲选择方案一,则他在一年内能获得多少利润?(2)如经销商甲选择方案二,则他在一年内能获得多少利润?(3)经销商甲选择哪种方案可以使自己在一年内获得最大利润?并求出此时他转让给经销商乙的A品牌服装的数量是多少?此时他在这一年内共得利润多少元?【类型3】二次函数图象与不等式(2009•武汉四月调考)某商场将进货价为30元的书包以40元售出,平均每月能售出600个.调查表明:这种书包的售价每上涨1元,其销售量就减少10个.(1)请写出每月售出书包利润y(元)与每个书包涨价x(元)间的函数关系式;(2)设每月的利润为10 000元,此利润是否为该月的最大利润,请说明理由;(3)请分析并回答售价在什么范围内商家获得的月利润不低于6000元?(2009•武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?3.(2011•青岛二模)在创新素质实践行活动中,某位同学参加了超市某种水果的销售调查工作.已知该水果的进价为8元/千克,下面是他们在调查结束后的对话:小明:如果以10元/千克的价格销售,那么每天可以售出300千克;小强:如果以13元/千克的价格销售,那么每天可获利750元;小亮:通过调查验证,我发现每天的销售量与销售单价之间存在一次函数关系.(1)设超市每天该水果的销售量是y(kg),销售单价是x(元),写出y与x的关系;(2)在进货成本不超过1200元时,销售单价定为多少元可获得最大利润?最大利润是多少?(3)如果要使该水果每天的利润不低于600元,销售单价应在什么范围内?4.(2012•辽阳)某商场将进价为4000元的电视以4400元售出,平均每天能售出6台.为了配合国家财政推出的“节能家电补贴政策”的实施,商场决定采取适当的降价措施,调查发现:这种电视的售价每降价50元,平均每天就能多售出3台.(1)现设每台电视降价x元,商场每天销售这种电视的利润是y元,请写出y与x之间的函数表达式.(不要求写出自变量的取值范围)(2)每台电视降价多少元时,商场每天销售这种电视的利润最高?最高利润是多少?(3)商场要想在这种电视销售中每天盈利3600元,同时又要使百姓得到更多实惠,每台电视应降价多少元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于3600元?5.(2014•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)6.(2013•黄冈四月调考)某大学生创业团队新研发了一日常科技用品,决定在市场上进行试销,已知团队试销期间每天需支出各种费用(差旅费、人工费、运输费等)800元,该产品成本价为每个4元,经测算若按成本价5元/个进行推销,每天可销售1440个,若每个提高1元,每天就少销售120个,为便于测算,每个产品的售价x(元)只取整数,设该团队的日净收入为y元.(1)写出y与x的函数关系式,并指出x的取值范围;(2)团队要使得日净收入最大,同时尽可能多的推销产品以扩大人气,则每个产品的售价应定为多少元?此时日净收入是多少?(3)若要求日净收入不低于3000元,则每个产品的售价应定在什么范围?7.(2014•中山模拟)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)该玩具销售单价定为多少元时,商场能获得12000元的销售利润?(2)该玩具销售单价定为多少元时,商场获得的销售利润最大?最大利润是多少?(3)若玩具厂规定该品牌玩具销售单价不低于46元,且商场要完成不少于500件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?8.(2014•牡丹江)某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.9.(2014•市北区二模)某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售y(件)之间的关系如下表:(1)试判断y与x之间的函数关系式,并求出函数关系式;(2)求日销售利润w(元)与销售单价x(元)之间的函数关系式;(310.(2013•咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?11.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【类型4】2类商品的二次函数最值问题1.(2014•本溪)国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A ,B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元,花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同,销售中发现A 型汽车的每周销量yA (台)与售价x (万元/台)满足函数关系式y A =-x+20,B 型汽车的每周销量y B (台)与售价x (万元/台)满足函数关系式y B =-x+14.(1)求A 、B 两种型号的汽车的进货单价;(2)已知A 型汽车的售价比B 型汽车的售价高2万元/台,设B 型汽车售价为t 万元/台.每周销售这两种车的总利润为W 万元,求W 与t 的函数关系式,A 、B 两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?(2014•资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y 1(元/台)与采购数量x 1(台)满足y 1=-20x 1+1500(0<x1≤20,x 1为整数);冰箱的采购单价y 2(元/台)与采购数量x 2(台)满足y 2=-10x2+1300(0<x2≤20,x 2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的119,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.3.(2014•石家庄二模)农科院研发了一种新型农作物复合肥料,市场调研结果如下:年产量为x (吨)时,所需的全部费用y (万元)与x (吨)满足关系式y=5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价Z 甲、Z 乙(万元)均与x (吨)满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)当x 吨复合肥料仅在甲地销售时,Z 甲=-15x+16,用含x 的代数式表示甲地当年的销售额 _________ ,甲地当年的利润W 甲(万元)与x (吨)之间的函数关系式为 _________ .(2)当x 吨复合肥料仅在乙地销售时,Z 乙=﹣12x+n (n 为常数),且在乙地当年的最大年利润为72万元,是确定n 的值;(3)如果开发商准备在将生产的42吨复合肥料在甲、乙两地同时销售,设在甲地的销售量为t 吨,写出在两地所获的销售利润之和W (万元)与t (吨)之间的函数关系式,并请你通过计算帮助开发商决策,在甲、乙两地各销售多少吨复合肥料时获得的销售利润之和最大,最大利润是多少?4.(2014•洪山区一模)某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y 1(万台)与本地的广告费用x (万元)之间的函数关系满足y 1=3x+25,该产品的外地销售量y 2(万台)与外地广告费用t (万元)之间的函数关系可用如图所示的抛物线和线段AB 来表示.其中点A 为抛物线的顶点.(1)结合图象,求出y 2(万台)与外地广告费用t (万元)之间的函数关系式;(2)求该产品的销售总量y (万台)与本地广告费用x (万元)之间的函数关系式;(3)若本地安排的广告费必须在15万元以上,如何安排广告费用才能使销售总量最大?最大总量为多少?【类型5】含参二次函数最值问题1.(2014•长沙二模)长沙市某商业公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未y=根据以上提供的条件解决下列问题:(1)认真分析上表中的数据,用所学过的一次函数的知识分别确定1≤t≤20,21≤t≤40时,满足这些数据的m (件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的最小值.2.(2014•新华区模拟)创美公司生产的某种时令商品每件成本为20元,据市场调查分析,五月份的日销售量m(件)与时间t(天)符合一次函数关系m=at+b,且t=2时,m=92;t=10时,m=76.而且,前15天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=0.25t+25(1≤t≤15且t为整数),第16天到月底每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣0.5t+40(16≤t≤31且t为整数).(1)求m与t之间的函数关系式;(2)请预测五月份中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前15天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前15天中,每天扣除捐款后的日销售利润随时间t(天)的增大而增大,求a的取值范围.y1=y2=t+40(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少;(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元(a <4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.4.(2010•安庆一模)某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如图.未来40天内,前20天每天的价格y 1(元/件)与时间t (天)的函数关系式为y 1=14t +25(1≤t ≤20,且t 为整数),后20天每天的价格30元/件 (21≤t ≤40,且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程.公司通过销售记录发现,前20天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.未来20天内每天的价格y (元/件)与时间t (天)的函数关系式为y 1=14t +25(1≤t ≤20且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)设未来20天日销售利润为p (元),请写出p (元) 与t (天)之间的关系式;并预测未来20天中哪一天的日销售利润最大,最大日销售利润是多少?(3)若该公司预计日销售利润不低于560元,请借助(2)小题中的函数图象确定时间的取值范围,持续了多少天?(4)在实际销售的20天中,该公司决定每销售一件商品就捐赠a 元利润(a <5)给希望工程.公司通过销售记录发现,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.6.(2013•随州)某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x (元),年销售量为y (万件),当35≤x <50时,y 与x 之间的函数关系式为y=20﹣0.2x ;当50≤x ≤70时,y 与x 的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x ≤70时,求出甲种产品的年销售量y (万元)与x (元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W (万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x (元)在50≤x ≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m (元)的范围.。
二次函数有关的应用题---营销问题(含详细答案)

二次函数有关的应用---营销问题1、某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.2、某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?3、鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?4、某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销. 经调查有如下数据:销售单价x (元/件) … 20 30 40 50 60 …每天销量y (件) … 500 400 300 200 100 …(1)判断y 与x 的之间的函数关系,并求出函数关系式;(2)市物价部门规定:该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺品厂每天获得的利润最大?最大利润是多少元?5、某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11Q 302x =+ (1≤x≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x≤30,且x 为整数).(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入一购进成本.6、某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足下列关系式:54(05)30120(515)x x y x x ≤≤⎧=⎨+<≤⎩(1)李明第几天生产的粽子数量为420只?(2)如图,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w 元,求w与x 之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价-成本)参考答案:1.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.【解答】解:(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000;(2)w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=2250,故当单价为35元时,该文具每天的利润最大;(3)A方案利润高.理由如下:A方案中:20<x≤30,故当x=30时,w有最大值,此时w A=2000;B方案中:,故x的取值范围为:45≤x≤49,∵函数w=﹣10(x﹣35)2+2250,对称轴为直线x=35,∴当x=45时,w有最大值,此时w B=1250,∵w A>w B,∴A方案利润更高.2.某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?【解答】解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.3、鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.4、(1)猜想y是x的一次函数.设这个一次函数为(0)y kx b k=+≠,∵假设这个一次函数的图象经过(20,500),(30,400)这两点,∴5002040030k b k b=+⎧∴⎨=+⎩,解得10700kb=-⎧⎨=⎩,∴10700y x=-+.……………………………………3分经验证,其他几个点也在该函数图象上,所求函数式是一次函数10700y x =-+.………………………………………4分(2)设工艺厂试销该工艺品每天获得的利润是W 元,依题意得:22(10)(10700)10800700010(40)+9000W x x x x x =--+=-+-=--,………6分 100-<,∴抛物线开口向下,当35x ≤时,W 的值随着x 值的增大而增大,∴销售单价定为35元∕件时,工艺厂试销该工艺品每天获得的利润最大.7分此时,8750=最大W (元)……………………………………8分5、(1)根据题意,得R1=P (Q1-20)=(-2x+80)[( x+30)-20],=-x2+20x+800(1≤x ≤20,且x 为整数),R2=P (Q2-20)=(-2x+80)(45-20),=-50x+2000(21≤≤30,且x 为整数);(2)在1≤x ≤20,且x 为整数时,∵R1=-(x-10)2+900,∴当x=10时,R1的最大值为900,在21≤x ≤30,且x 为整数时,∵R2=-50x+2000,-50<0,R2随x 的增大而减小,∴当x=21时,R2的最大值为950,∵950>900,∴当x=21即在第21天时,日销售利润最大,最大值为950元.点评:本题需要反复读懂题意,根据营销问题中的基本等量关系建立函数关系式,根据时间段列出分段函数,再结合自变量取值范围分别求出两个函数的最大值,并进行比较,得出结论6、(1)设李明第n 天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x ≤9时,p=4.1;当9≤x ≤15时,设P=kx+b ,把点(9,4.1),(15,4.7)代入得,, 解得,∴p=0.1x+3.2,①0≤x ≤5时,w=(6﹣4.1)×54x=102.6x ,当x=5时,w 最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=714(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.。
二次函数应用题-销售问题

二次函数应用题-销售问题1.(2013•孝感)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?2.(2012•舟山)某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为_________元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?3.(2012•茂名)每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m=﹣10x+120,那么当销售单价定为多少时,每天获得的利润w最大?4.(2013•营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?5.(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)6.(2013•咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?7.(2008•凉山州)我州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?8.(2009•西藏)有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.(1)设x天后每千克鲜葡萄的市场价为P元,写出P关于x的函数关系式;(2)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为y元,写出y关于x的函数关系式;(3)问个体户将这批葡萄存放多少天后出售,可获得最大利润,最大利润q是多少?9.(2010•青岛)某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)10.(2013•鄂州)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?11.(2013•乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?12.(2013•铁岭)某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y的函数关系式:_________(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?13.(2012•朝阳)某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?14.(2012•菏泽)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?15.(2012•河北)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?16.(2012•西藏)为了落实国家的惠农政策,某地政府制定了农户投资购买收割机的补贴办法,其中购买Ⅰ、Ⅱ型(1)分别求出y1和y2的函数解析式;(2)旺叔准备投资10万元购买Ⅰ、Ⅱ两型收割机.请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的补贴金额.17.(2012•青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.18.(2012•淮安)国家和地方政府为了提高农民种粮的积极性,每亩地每年发放种粮补贴120元.种粮大户老王今年种了150亩地,计划明年再承租50~150亩土地种粮以增加收入,考虑各种因素,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系如图所示:(1)今年老王种粮可获得补贴多少元?(2)根据图象,求y与x之间的函数关系式;(3)若明年每亩的售粮收入能达到2140元,求老王明年种粮总收入W(元)与种粮面积x(亩)之间的函数关系式.当种粮面积为多少亩时,总收入最高?并求出最高总收入.19.(2013•随州)某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.20.(2013•本溪)某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时,直接写y与x之间的函数关系式:_________.(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?21.(2013•朝阳)甲、乙两企业去年末都有利润积累,甲企业利润为300万元,甲企业认为:企业要可持续发展,必须进行自主创新和技术改造,由于投资更新等原因,甲企业的利润积累y甲(万元)与时间x(年)之间的函数图象呈抛物线(如图)乙企业的利润积累y乙(万元)每年增加50万元,预计第一年末(今年末)利润积累150万元.(1)乙企业去年末的利润积累是_________万元,乙企业利润积累y乙(万元)与时间x(年)之间的函数关系式为_________(不必写出自变量x的取值范围).(2)到第几年末,甲企业的利润积累重新达到去年末与乙企业利润积累的倍数关系?(3)改造初期,甲企业的利润积累逐渐减少,甚至会低于乙企业的利润积累.随着甲企业进入改造成长期,甲企业的利润积累重新高于乙企业的利润积累,试问第几年(保留整数位.参考数据:≈3.6)甲企业开始进入改造成长期?5年后(含5年)甲企业进入改造成熟期,效益将显现出来.改造成熟期,甲企业的利润积累最少会高于乙企业的利润积累多少万元?22.(2011•恩施州)宜万铁路开通后,给恩施州带来了很大方便.恩施某工厂拟用一节容积是90立方米、最大载重量为50吨的火车皮运输购进的A、B两种材料共50箱.已知A种材料一箱的体积是1.8立方米、重量是0.4吨;B种材料一箱的体积是1立方米、重量是1.2吨;不计箱子之间的空隙,设A种材料进了x箱.(1)求厂家共有多少种进货方案(不要求列举方案)?(2)若工厂用这两种材料生产出来的产品的总利润y(万元)与x(箱)的函数关系大致如下表,请先根据下表画出简图,猜想函数类型,求出函数解析式(求函数解析式不取近似值),确定采用哪种进货方案能让厂家获得最大23.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)24.(2013•沈阳)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x (小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为_________,其中自变量x的取值范围是_________;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.25.(2008•青海)王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(学习收益总量=解题的学习收益量+回顾反思的学习收益量)(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?26.(2009•荆州)由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金.他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价y(万元/台)与月次x(1≤x≤12且为整数)满足关系式:y=,一年后发现实际每月的销售量p(台)与月次x之间存在如图所示的变化趋势.(1)直接写出实际每月的销售量p(台)与月次x之间的函数关系式;(2)求前三个月中每月的实际销售利润w(万元)与月次x之间的函数关系式;(3)试判断全年哪一个月的售价最高,并指出最高售价;(4)请通过计算说明他这一年是否完成了年初计划的销售量.参考答案与试题解析一.解答题(共26小题)1.(2013•孝感)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?2.(2012•舟山)某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为(1400﹣50x)元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?3.(2012•茂名)每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m=﹣10x+120,那么当销售单价定为多少时,每天获得的利润w最大?4.(2013•营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?5.(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)=356.(2013•咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?。
2023年二轮复习解答题专题十七:二次函数的应用(销售利润问题)(原卷版)

2023年二轮复习解答题专题十七:二次函数的应用——销售利润问题方法点睛二次函数解决销售问题是我们生活中经常遇到的问题,这类问题通常是根据实际条件建立二次函数关系式,然后利用二次函数的最值或自变量在实际问题中的取值解决利润最大问题.典例分析例1:(2022青岛中考)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?专题过关1. (2022鄂尔多斯中考)(10分)某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?2.(2022荆门中考)(10分)某商场销售一种进价为30元/个的商品,当销售价格x(元/个)满足40<x <80时,其销售量y (万个)与x 之间的关系式为y =﹣x +9.同时销售过程中的其它开支为50万元.(1)求出商场销售这种商品的净利润z (万元)与销售价格x 函数解析式,销售价格x 定为多少时净利润最大,最大净利润是多少?(2)若净利润预期不低于17.5万元,试求出销售价格x 的取值范围;若还需考虑销售量尽可能大,销售价格x 应定为多少元?3. (2022宁波中考)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ££,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大产量?最大产量为多少千克?4. (2022广元中考)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?4. (2022滨州中考)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.5. (2022营口中考)某文具店最近有A ,B 两款纪念册比较畅销,该店购进A 款纪念册5本和B 款纪念册4本共需156元,购进A 款纪念册3本和B 款纪念册5本共需130元.在销售中发现:A 款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B 款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价的之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)…22232425…每天销售量(本)…80787674…(1)求A ,B 两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A 款纪念册的利润,同时提高每本B 款纪念册的利润,且这两款纪念册每天销售总数不变,设A 款纪念册每本降价m 元.①直接写出B 款纪念册每天的销售量(用含m 的代数式表示);②当A 款纪念册售价为多少元时,该店每天所获利润最大,最大利润多少?6. (2022盘锦中考)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y (个)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w 元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?7. (2022抚顺中考) 某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足如图所示的一次函数关系.是(1)求y 与x 之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?8.(2022葫芦岛中考)(12分)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系,部分数据如表:每千克售价x (元)……202224……日销售量y (千克)……666054……(1)求y 与x 之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?9. (2022铜仁中考)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y (吨)与批发价x (千元/吨)之间的函数关系式,并直接写出自变量x 的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?10.(2022天门中考)(10分)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y (千克)与销售单价x (元/千克)有如下表所示的关系:销售单价x (元/千…2022.52537.540…克)销售量y (千克)…3027.52512.510…(1)根据表中的数据在如图中描点(x ,y ),并用平滑曲线连接这些点,请用所学知识求出y 关于x 的函数关系式;(2)设该超市每天销售这种商品的利润为w (元)(不计其它成本).①求出w 关于x 的函数关系式,并求出获得最大利润时,销售单价为多少;②超市本着“尽量让顾客享受实惠”的销售原则,求w =240(元)时的销售单价.11. (2022荆州中考)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?12. (2022十堰中考)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <£ì=í-+<£î,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <£时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?13 .(2022大庆中考) 果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg .在确保每棵果树平均产量不低于40kg 的前提下,设增种果树x (0x >且x 为整数)棵,该果园每棵果树平均产量为kg y ,它们之间的函数关系满足如图所示的图象.(1)图中点P 所表示的实际意义是________________________,每增种1棵果树时,每棵果树平均产量减少____________kg ;(2)求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(3)当增种果树多少棵时,果园的总产量(kg)w 最大?最大产量是多少?14. (2022贺州中考) 2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品,某商家以每套34元的价格购进一批冰墩墩和雪容融套件,若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x 元时,求该商品销售量y 与x 之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W 最大,最大利润是多少元?15. (2022北部湾中考) 打油茶是广西少数民族特有的一种民俗,某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y (盒)与销售单价x (元)之间的函数图像如图所示.(1)求y 与x 的函数解析式,并写出自变量x 的取值范围;(2)当销售单价定为多少元时,该种油茶月销售利润最大求出最大利润.16.(2022郑州一模) 某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入,试销的30天中,该村第一天卖出土特产42千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出6千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为y =()()821202030mx m x n x ì-£<ïí££ïî,x 为正整数,且第14天的售价为34元/千克,第27天的售价为27元/千克.已知土特产的成本是21元/千克,每天的利润是W 元(利润=销售收入﹣成本).(1)m = ,n = ;(2)求每天的利润W 元与销售的天数x (天)之间的函数关系式;(3)在销售土特产的30天中,当天利润不低于1224元的共有多少天?17. (2022河南天一大联考)某体育用品专卖店新进一批篮球和足球,已知每个篮球的进的价比每个足球的进价多30元,用6000元购进篮球的数量与用4800元购进足球的数量相同.(1)求篮球、足球每个进价分别为多少元?(2)专卖店准备在进价基础上,篮球加价60%作为售价,足球加价50%作为售价.该专卖店平均每天卖出篮球120个,足球100个.为回馈顾客,减少库存,专卖店准备搞活动促销.经调查发现,篮球、足球的销售单价每降低10元,这两种商品每天都可多销售20个,为了使每天获取更大的利润,该专卖店决定把篮球、足球的销售单价都下降a 元.请通过计算说明,如何定价,专卖店才能获取最大利润.18. (2022河南商水二模)小强经营的网店以特色小吃为主,其中一品牌茶饼的进价为6元/袋,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:袋)与线下的售价x (单位:元/袋,1016x ££,且x 为整数)满足一次函数的关系,部分数据如下表所示.x (元/袋)1011121314y (袋)10090807060(1)求y 与x 的函数关系式.(2)若线上的售价始终比线下的售价每袋便宜1元,且线上的月销量固定为60袋.问当x 为多少时,线上和线下的月利润总和达到最大?并求出此时的最大利润.19.(2022河南虞城二模) 铁棍山药上有像铁锈一样的痕迹.故得名铁棍山药.某网店购进铁根山药若干箱.物价部门规定其销售单价不高于80元/箱,经市场调查发现:销件单价定为80元/箱时,每日销售20箱;如调整价格,每降价1元/箱,每日可多销售2箱.(1)已知某天售出铁棍山药70箱,则当天的销售单价为______元/箱.(2)该网店现有员工2名.每天支付员工的工资为每人每天100元,每天平均支付运费及其他费用250元,当某天的销售价为45元/箱时,收支恰好平衡.①铁棍山药的进价;②若网店每天的纯利润(收入-支出)全部用来偿还一笔15000元的贷款,则至少需多少天才能还清贷款?20. (2022平顶山一模)基商场以30元/台的价格购进500台新型电子产品,在销售过程中发现,其日销售量y (单位∶台)与销售单价x (单位∶元)之间存在如图所示的函数关系.(1)求y 与x 的函数关系式;(2)按物价部门规定,产品的利润率不得超过 80%,该电子产品每台最高售价为 元,此时的日销售量为台 ;(3)若按照日销售获得最大利润时的售价,计算商场销售完这批电子产品获得的总利润.21. (2022开封二模)“慈母手中线,游子身上衣”,为感恩母亲,许多子女选择用康乃馨这种鲜花来表达对母亲的祝福.某花店采购了一批康乃馨,进价是每支8元.当每支售价为12元时,可销售30支;当每支售价为10元时,可销售40支.在销售过程中,发现这种康乃馨的销售量y (支)是每支售价x (元)的一次函数()030x £<.(1)求y 与x 之间的函数关系式;(2)设此花店这种康乃馨的销售利润是w 元,根据题意:当销售单价为多少元时,商家获得利润最大.22. (2022河南安阳县一模)疫情期间,为满足市民防护需求,某药店想要购进A 、B 两种口罩,B 型口罩的每盒进价是A 型口罩的两倍少10元.用6000元购进A 型口罩的盒数与用10000元购进B 型口罩盒数相同.(1)A 、B 型口罩每盒进价分别为多少元?(2)经市场调查表明,B 型口罩受欢迎,当每盒B 型口罩售价为60元时,日均销量为100盒,B 型口罩每盒售价每增加1元,日均销量减少5盒.当B 型口罩每盒售价多少元时,销售B 型口罩所得日均总利润最大?最大日均总利润为多少元?23. (2022河南汝州一模)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.已知2盆盆景与1盆花卉的利润共330元,1盆盆景与3盆花卉的利润共240元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).①含x 的代数式分别表示1W ,2W ;②当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少元?。
初中数学二次函数的应用题型分类——商品销售利润问题(精选50题 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题(精选50题附答案)1.某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该产品的总开支(不含进价)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在如图所示的一次函数关系.(1)求y关于x的函数关系;(2)试写出该公司销售该种产品的年获利W(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支),当销售单价为何值时年获利最大?并求这个最大值.2.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(单位:元)与每件涨价x(单位:元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.3.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?你若是商场经理,为获得最大利润,每件衬衫应降价多少元,此时最大利润是多少?4.银隆百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.5.某商店销售一种商品,通过记录,发现该商品从开始销售至销售的第x天结束时(x 为整数)的总销量y(件)满足二次函数关系,销量情况记录如下表:(1)求y与x之间的函数关系式(不需要写自变量的取值范围);(2)求:销售到第几天结束时,该商品全部售完?(3)若第m天的销量为22件,求m的值.6.河西王府井销售一种T 恤衫,每件进价为40 元,经过市场调查,一周的销售量y 件与销售单价x 元/件满足某种函数关系:(1)请根据所学的知识,选择合适的函数模型,求出y 与x 的之间的函数关系式;(2)设一周的销售利润为w 元,请求出w 与x 的函数关系式,并确定当销售单价为多少时一周的销售利润最大,并求出最大利润;(3)商场决定将一周销售T 恤衫的利润全部捐给某村用于精准扶贫的水网改造项目,在商场购进该T 恤衫的资金不超过6000 元情况下,请求出该商场最大捐款数额是多少元?7.某产品成本为400元/件,由经验得知销售量y与售价x是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润W最大?最大利润是多少?8.某大型超市将进价为40 元的某种服装按50 元售出时,每天可以售出300 套,据市场调查发现,这种服装每提高1 元,销售量就减少5 套,如果超市将售价定为x 元,请你求出每天销售利润y 元与售价x 元的函数表达式.9.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之问存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助⑵中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?10.我市红领服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如表所示:时间t(天)0 5 10 15 20 25 30 日销售量y t0 25 40 45 40 25 0 (百件)(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的关系如图所示.求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y 与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.11.某旅游度假区内某个宾馆有120间标准房,当标准房价格为每间200元时,每天都客满,经市场调查,标准房价格与平均入住房数之间的关系如下:(1)若日平均入住房数y(间)与日平均每间房价x(元)之间成一次函数关系,求出y关于x的函数关系式:(2)如果不考虑其他因素,宾馆的标准房日平均每间房价为多少元时,客房的日营业收入最大,最大日营业额为多少元?12.某商品现在的售价为每件25元,每天可售出30件.市场调查发现,售价每上涨1元,每天就少卖出2件.已知该商品的进价为每件20元,设该商品每天的销售量为y 件,售价为每件x元(x为正整数)(1) 求y与x之间的函数关系式;(2) 该商品的售价定为每件多少元时,每天的销售利润P(元)最大,最大利润是多少元?(3) 如果物价部门规定该商品每件的售价不得高于32元,若要每天获得的利润不低168元,请直接写出该商品的售价x(元)的取值范围.13.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)14.某商场将进货价30元的书包以40元售出,平均每月能售出600个。
销售问题(二次函数的应用)

二次函数的应用——销售问题知识回顾: 1.抛物线21(2)12y x =++的顶点坐标是 ,当x = 时,y 有最 值为 。
2.抛物线()2254y x =--+的顶点坐标是 ,当x = 时,y 有最 值为 。
3.抛物线2247y x x =-++的顶点坐标是 ,当x = 时,y 有最 值为 。
例1:某超市销售一种商品,成本是每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查发现:每天销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:⑴求y 与x 之间的函数关系式:⑵设商品每天的总利润为W (元),求W 与x 之间的函数关系式:⑶试说明⑵中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少 练习:1.汽车城销售某种型号的汽车,每辆进货价为25万元,经市场调研表明:当销售价为29万元时,平均每周售出8辆,而当销售价每降低万元时,平均每周能多售出4辆,如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元。
(销售利润=销售价-进货价) ⑴求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; ⑵假设这种汽车平均每周的销售利润为Z 万元,试写出Z 与x 的函数关系式; ⑶当每辆汽车的定价为多少万元时,平均每周的销售利润最大最大利润是多少2.李经理按市场价格30元/千克收购了一种可食用的野生菌1000千克存入冷库中,据预测,该野生菌的市场价将以每天每千克上涨1元;但冷库存放这种野生菌时每天需要支付各种费用合计310元,而且这类野生菌在冷库中最多可保存160天,同时,平均每天有3千克的野生菌损坏而不能出售。
⑴设x天后每千克该野生菌的市场价为y元,试写出y与x的函数关系式及x的取值范围;⑵若存放x天后,将这批野生菌一次性出售,设出售这批野生菌获得的利润为W元,试写出W与x的函数关系式;(利润=销售额-收购成本-各种费用)⑶将这批野生菌存放多少天后出售可获得最大利润最大利润是多少3.某商店经营一组小商品,规定销售单价不得低于成本单价,且获利不得高于100%。
二次函数应用——销售问题

题型四:二次函数应用-销售问题例题解析例1.襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为{mx−76m(1≤x<20,x为整数)n(20≤x≤30,x为整数)且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).(1)m=________,n=________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?例2. 为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?习题精练1.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?2.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y= {2x+20(1≤x<10,且x为整数) 40(10≤x≤15,且x为整数),设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?3.某大学生利用暑假40天社会实践进行创业,他在网上开了一家微店,销售推广一种成本为25元/件的新型商品.在40天内,其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时,n=36+12x;当21≤x≤40时,n=25+630x.这40天中的日销售量m(件)与时间x(天)符合函数关系,具体情况记录如下表(天数为整数):(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元,试写出日销售利润w(元)与时间x (天)的函数关系式;(3)求这40天中该同学微店日销售利润不低于640元有多少天?4.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P= 120t+4(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q= {2t+8,0<t≤12−t+44,12<t≤24(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.5.某商场经销一种商品,已知其每件进价为40元。
二次函数的应用于销售业问题

二次函数的应用于销售业问题销售业作为商业领域的重要一环,对于销售额的预测和分析非常重要。
而二次函数作为数学中的一种函数类型,在销售业的应用中具有广泛的应用价值。
本文将结合实际案例,探讨二次函数在销售业问题中的应用。
一、销售业问题的背景以某公司某产品的销售业绩为例,假设该产品销售量与售价之间存在着一定的关系。
随着售价的不同,销售量也会发生相应的变化。
我们希望通过建立二次函数模型,来预测销售量与售价参数的关系,并进一步分析其在销售业中的应用。
二、建立二次函数模型假设销售量用x表示,售价用p表示,可以假设销售量与售价之间存在以下二次函数关系:x = ap^2 + bp + c其中,a、b、c为待确定的常数。
三、数据采集和拟合为了建立二次函数模型,我们首先需要采集一定数量的销售数据。
根据实际情况,可以收集到一组售价和销售量的数据,并通过线性回归等方法对二次函数模型进行参数的拟合。
通过最小二乘法等统计方法,可以求解出模型中的常数a、b、c,从而确定二次函数模型。
四、模型分析与应用1. 预测销售量通过建立的二次函数模型,可以根据给定的售价参数,预测销售量的数值。
例如,当提供一个售价参数时,根据二次函数模型,即可计算出对应的预测销售量。
这对于企业决策和市场战略的制定具有重要的参考价值。
2. 销售业绩分析基于建立的二次函数模型,可以对销售业绩进行深入分析。
通过对模型中的常数a、b、c进行解释和理解,可以得到销售业绩受售价的影响程度以及对应的变化规律。
这有助于企业优化定价、促销策略等,以提升销售业绩。
3. 销售预测与决策支持二次函数模型可以进一步用于销售预测和决策支持。
通过对模型的扩展和参数调整,可以建立更加复杂的销售预测模型,辅助企业进行市场规划、销售策略的制定等决策过程,帮助企业提高销售效益。
五、案例分析为了更好地说明二次函数在销售业中的应用,我们以某电子产品的销售为例进行案例分析。
根据历史销售数据,我们建立了二次函数模型,并通过参数拟合得到了三个常数的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的应用——销售问题
知识回顾: 1.抛物线21
(2)12
y x =
++的顶点坐标是 ,当x = 时,y 有最 值为 。
2.抛物线()2
254y x =--+的顶点坐标是 ,当x = 时,y 有最 值为 。
3.抛物线2
247y x x =-++的顶点坐标是 ,当x = 时,y 有最 值为 。
例1:某超市销售一种商品,成本是每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查发现:每天销售量y (千克)与每千克售价x (元)满足一次函数关系,
部分数据如下表:
⑴求y 与x 之间的函数关系式:
⑵设商品每天的总利润为W (元),求W 与x 之间的函数关系式:
⑶试说明⑵中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少 练习:
1.汽车城销售某种型号的汽车,每辆进货价为25万元,经市场调研表明:当销售价为29万元时,平均每周售出8辆,而当销售价每降低万元时,平均每周能多售出4辆,如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元。
(销售利润=销售价-进货价) ⑴求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; ⑵假设这种汽车平均每周的销售利润为Z 万元,试写出Z 与x 的函数关系式; ⑶当每辆汽车的定价为多少万元时,平均每周的销售利润最大最大利润是多少
2.李经理按市场价格30元/千克收购了一种可食用的野生菌1000千克存入冷库中,据预测,该野生菌的市场价将以每天每千克上涨1元;但冷库存放这种野生菌时每天需要支付各种费
用合计310元,而且这类野生菌在冷库中最多可保存160天,同时,平均每天有3千克的野
生菌损坏而不能出售。
⑴设x天后每千克该野生菌的市场价为y元,试写出y与x的函数关系式及x的取值范围;
⑵若存放x天后,将这批野生菌一次性出售,设出售这批野生菌获得的利润为W元,试写出
W与x的函数关系式;(利润=销售额-收购成本-各种费用)
⑶将这批野生菌存放多少天后出售可获得最大利润最大利润是多少
3.某商店经营一组小商品,规定销售单价不得低于成本单价,且获利不得高于100%。
已知
该商品进价为40元,据市场调查,销售单价是80元时平均每天销售量是100件,而销售价
每降低1元,平均每天就可以多售出10件。
⑴假定每件商品降价x元,商店每天销售y件,写出y与x的函数关系式,并写出x的取值
范围;
⑵每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大最大利润是多少
4.某饮料经营部每天的固定成本为
200元,其销售的饮料每瓶进价为5
元。
销售单价与日平均销售量的关系
如下表:
⑴若销售单价比每瓶进价多x元(x为正整数),则销售量为瓶(用含x的式子表示)
⑵求日平均利润(利润=售价-进价-固定成本)y与x的函数关系式;
⑶若要使日平均利润达到1400元,则销售单价应定为多少元
⑷若要使日平均利润达到最大,销售单价应定为多少元最大日平均利润是多少
例2:某商场将每件进价为80 元的某种商品原来按每件100元出售,一天可售出100件。
后来经过市场调查,发现这种商品单价没降低1元,其销售量可增加10件,设后来该商品每件降价x元,商场一天该商品的销售量为y件,所获利润为W元。
⑴试求出y与x的函数关系式;
⑵每件降价多少元时,每天的销售利润最大最大利润是多少
⑶①若商场经营该商品一天要获得利润2160元,则每件商品应降价多少元
②写出当x取何值时,商场获得利润不少于2160元此时商场每天至少销售该商品多少件
⑷若商场希望该商品一天的销售利润不低于2160元,请你帮助商场确定这种商品的降价的范围。
在此条件下,要使该商品的销售量最大,你认为销售单价应定为多少元
练习:
4.为满足市场需求,某超市在八月十五“中秋节”来临前夕,购进一种品牌月饼,每盒进价40元,超市规定每盒售价不得少于45元。
根据以往销售经验发现:当售价定为45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒。
⑴试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
⑵当每盒售价定为多少元时,每天销售的利润P(元)最大最大利润是多少
⑶为稳定物价,有关管理部门限定:这种月饼的每盒售价不得高于58元,如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售这种月饼多少盒
5.某商场经营某种品牌的童装,购进时的单价是60元。
根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件。
⑴写出销售量y(件)与销售单价x(元)之间的函数关系式;
⑵写出销售该品牌童装获得的利润W(元)与销售单价x(元)之间的函数关系式;
⑶当销售单价定为多少元时,商场销售该品牌童装获得的利润最大,最大利润是多少
⑷商场限定:这种童装的每件售价不得低于75元。
如果商场销售该童装想要每天获得不低于4320元的利润,那么商场每天至少销售该童装多少件
6.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。
市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件。
设每件涨价x元(x为非负整数),每星期的销售量为y件。
⑴求y与x的函数关系式及自变量x的取值范围;
⑵如何定价才能使每星期的利润P(元)最大且每星期的销量最大每星期的最大利润是多少
7.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:
y=−x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大最大利润是多少元
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元。